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A NANOS3 mutation linked to protein degradation
causes premature ovarian insufficiency

X Wu1,4, B Wang2,3,4, Z Dong1, S Zhou3, Z Liu1, G Shi1, Y Cao*,2 and Y Xu*,1

Primary ovarian insufficiency (POI), or premature ovarian failure, is defined as the cessation of ovarian function before the age of 40.
An insufficient ovarian follicle pool derived from primordial germ cells (PGCs) is an important cause of POI. Although the Nanos gene
family is known to be required for PGC development and maintenance in diverse model organisms, the relevance of this information
to human biology is not yet clear. In this study, we screened the coding regions of the NANOS1, NANOS2 and NANOS3 genes in 100
Chinese POI patients and identified four variants in the coding regions of these three genes, including one synonymous variant in
NANOS3, one missense variant in each of NANOS1 and NANOS2 and one potentially relevant mutation (c.457C4T; p.Arg153Trp,
heterozygous) in NANOS3. We demonstrated that the p.Arg153Trp substitution decreases the stability of NANOS3, potentially
resulting in a hypomorph. Furthermore, an investigation of the relationship between the number of PGCs and the dosage of NANOS3
in mouse models showed that the population of PGCs is controlled by the level of NANOS3 protein. Taken together, our results
provide new insight into the properties of the NANOS3 protein and establish that NANOS3 mutation is one possible cause of POI.
Cell Death and Disease (2013) 4, e825; doi:10.1038/cddis.2013.368; published online 3 October 2013
Subject Category: Experimental Medicine

Primary ovarian insufficiency (POI) is a heterogeneous
disorder that affects B1% of women under 40 years of age,
including 1 : 10 000 women by age 20 and 1 : 1000 women by
age 30.1 The age at which menopause naturally occurs is
largely determined by the size of the initial primordial follicle
pool. The follicles are derived from primordial germ cells
(PGCs), a transient population of germline stem cells that
undergo several rounds of cell proliferation2 and subsequently
arrest at prophase I. The arrested cells make up the pool of
primordial follicles3 that will provide the basis for the future
reproductive lifespan of the adult female, although it should be
noted that some aspects of this model have recently been
questioned.4,5 PGC behaviour is tightly regulated by intrinsic
and microenvironmental factors.

The Nanos genes are evolutionarily conserved across
many organisms and have important roles during germ cell
development.6–8 In Drosophila, the single nanos (Nos) is
required for development of the abdomen as well as for the
germline maintenance.9,10 Generally, NANOS is recruited by
its cofactor pumilio to Nanos-response elements on target
mRNAs, where the NANOS protein represses translation.11 In
mouse, three homologues exist, with Nanos2 and Nanos3
functioning primarily in male germ cell development and
maintaining PGCs viability, respectively.12,13 However, the
function of NANOS homologues in human is not yet known.
We speculated that there is a relationship between POI and

defects in NANOS genes, as POI is largely dependent on the
size of the pool of PGCs.

Here, we found a novel mutation in the NANOS3 gene
through screening the coding regions of the NANOS1,
NANOS2 and NANOS3 genes in 100 Chinese POI patients.
In addition, we investigated the effect of this mutation on
protein stability by biochemical assays. Finally, we estab-
lished the relationship between the dosage of NANOS3
protein and the numbers of PGCs in mouse models. These
findings provide new insights into the pathogenic mechanism
of POI and have important implications for understanding the
properties of NANOS3 and its role in PGC maintenance.

Results and Discussion

Identifying NANOS family mutations in POI patients. We
sequenced all coding regions of the NANOS1, NANOS2 and
NANOS3 genes in 100 Chinese POI patients. This analysis
identified a total of four variants in the coding regions of these
three genes, including one synonymous variant in NANOS3
and one missense variant in each of NANOS1, NANOS2 and
NANOS3 (Table 1). Among these variants, three were also
found in the National Center for Biotechnology Information
(NCBI) SNP database (dbSNP) or the 1000 Genomes
Project database. In contrast, the variant in NANOS3
(c.457C4T; p.Arg153Trp) was not observed in the two
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databases14 and was not present in the control group of our
study. The affected woman was 23 years old, hetero-
zygotes for the variant, unmarried and the offspring of
consanguineous parents. Her mother was 45 years old,
premenopausal and had a normal menstrual cycle. She had
elevated follicle-stimulating hormone (4124.89 U/l) and
luteinising hormone (443.17 U/l) on several examinations,
with the cessation of periods. Her estradiol (E2) level was
70.2 pmol/l.

Characterising the Arg153Trp mutation in NANOS3. We
aligned the amino-acid sequences of NANOS3 homologues
in different species to determine the location of the identified
mutation, and we found that it was located within a region of

the NANOS3 gene that is highly conserved among Homo
sapiens, Pan troglodytes, Mus musculus and Rattus norve-
gicus (Figure 1a). To confirm that the potential mutation
(Arg153Trp) is pathological, we analysed the biochemical
effect of the mutation on the stability of HA-tagged human
NANOS3 (hNANOS3) protein in transiently transfected
HEK293 cells using a cycloheximide (CHX)-chase analysis.
The hNANOS3 protein has a half-life of 3 h, suggesting that
hNANOS3 is normally an unstable protein; however,
hNANOS3 with the Arg153Trp mutation has an even shorter
half-life of 1.5 h (Figures 1b and c). Using co-transfected
GFP as a reporter, we confirmed that the reduction in
hNANOS3 protein level was not due to variability in the
transfection efficiency (Figure 1b).

Table 1 Variations found in study cohort

Gene
name

Location dbSNP ID Sequence
change

Amino-acid
change

Number of patients found
(total¼ 100)

MAF in public database
(CHB population)

NANOS1 Exon rs200443184 c.413C4T p.Pro138Leu 1 0.026
NANOS2 Exon rs138997781 c.39C4G p.Leu13Phe 4 0.005
NANOS3 Exon Novel c.457C4T p.Arg153Trp 1 0a

NANOS3 Exon rs2016163 c.354A4G p.Thr118Thr 47 0.335
NANOS3 Intron rs897790 c.1-23C4T NA 47 0.330

aThis variation was not observed in the National Center for Biotechnology Information (NCBI) SNP database (dbSNP) and the 1000 Genomes Project database
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Figure 1 Characterisation of the properties of wild-type and mutant hNANOS3 proteins. (a) The alignment of amino-acid sequences of NANOS3 homologues in different
species shows that the arginine (grey shadow) is conserved. (b) Turnover of hNANOS3 and hNANOS3 R153W proteins. (c) The levels of hNANOS3 and hNANOS3 R153W
proteins were quantified and plotted relative to the corresponding hNANOS3 levels at 0 h. Data represent the means±S.E. of the results from at least three independent
experiments. Two stars represent statistical significance, Po0.001. (d) Turnover of hNANOS3 protein with R153 substituted with Ala, Phe, Leu, Met, Pro and Val. (e) Turnover
of mNANOS3 and NANOS3 R133W with or without T132 substituted with Val. (f) Turnover of hNANOS3 protein with MG132 (20 mM), chloroquine (100 mM) or NH4Cl (50 mM)
treatment. Treatment with MG132 obviously slowed the turnover of both wild-type and mutant NANOS3 proteins. (g) The increased accumulation of hNANOS3 R153W in the
insoluble fraction
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Because of the non-polar nature of Trp, we substituted six
other non-polar amino acids (Ala, Met, Leu, Phe, Val and Pro)
at position 153 in the hNANOS3 protein. Five of the six non-
polar amino-acid substitutions (excluding Pro) decreased
hNANOS3 stability (Figure 1d), indicating that the polar nature
of the residue at position 153 is important for protein stability.
However, in marked contrast to hNANOS3, in mouse
NANOS3 (mNANOS3), the Arg133Trp mutation (Arg 133 is
the murine analogue to human Arg 153) has less effect on
protein stability (Figure 1e). We noted that in mNANOS3, the
amino acid immediately before the arginine is threonine, a
polar amino acid (at position 132), whereas in hNANOS3, it is
valine, a non-polar amino acid (at position 152). To test
whether the non-polar nature at this position can affect
mNANOS3 stability, we replaced the polar amino acid Thr with
the non-polar amino acid Val at position 132, or we replaced
both Thr and Arg at positions 132 and 133 with non-polar Val
and Trp. We found that mNANOS3 with T132V degraded
rapidly compared with the wild type, and mNANOS3 with both
T132V and R133W degraded even more rapidly in CHX-
chase analysis (Figure 1e), suggesting that NANOS3 is
sensitive to nonpolar amino-acid substitution at the conserved
arginine and the preceding amino acid, and that the
hydrophilic environment at these positions is crucial for
NANOS3 stability.

To identify the degradation pathway responsible for the
clearance of hNANOS3 protein, we assessed the effects of
proteasome and lysosome inhibition on HA-tagged hNANOS3
and hNANOS3 with the Arg153Trp mutation in transfected
HEK293 cells. We found that the levels of both proteins were
increased significantly by treatment with the proteasome
inhibitor MG132 (Figure 1f, upper panel), whereas these
levels were not affected by treatment with the lysosome
inhibitors chloroquine (Figure 1f, middle panel) or ammonium
chloride (NH4Cl) (Figure 1f, lower panel). These data suggest
that the hNANOS3 protein is degraded primarily by the
proteasomal machinery.

The ubiquitin–proteasome system is the major pathway that
degrades misfolded proteins. The rapid degradation of mutant
proteins, generally due to their impaired folding, which is a
common pathological mechanism in disease-causing mis-
sense mutations.15,16 Therefore, we examined the potential
mechanism of rapid degradation of hNANOS3 with the
Arg153Trp mutation. We found no significant difference in
the levels of these proteins in the soluble fraction (Figure 1g).
However, exposure to MG132 resulted in much higher levels
of mutant NANOS3 in the insoluble fraction (Figure 1g). This
result suggests that the mutant NANOS3 protein tends to be
structurally unstable and form aggregates, which are cleared
by the ubiquitin–proteasome system, leading to the rapid
decrease in the level of NANOS3 protein after CHX treatment.

Functional consequence of decreased NANOS3 protein.
To investigate the possible causal link between NANOS3
dosage and POI, we generated a mouse model with
attenuated Nanos3 transcription levels instead of making
an R133W knock-in mouse, as mNANOS3 stability was less
sensitive to degradation affected by the R133W mutation.
A Neo cassette was inserted into the promoter region
of the Nanos3 gene (Figure 2a), and quantitative real-time

polymerase chain reaction (PCR) and immunofluorescence
were used to observe NANOS3 expression levels in the
female gonad at E12.5. As shown in Figure 2b, the
expression level of Nanos3 is obviously lower in Nanos3-
Neo/Neo mice than in Nanos3Neo/þ mice. We found that most
PGCs express NANOS3 in Nanos3Neo/þ mice (Figures 2c
and d). In contrast, Nanos3Neo/Neo mice strikingly display not
only reduced numbers of PGCs but also very low levels of
NANOS3 protein in OCT4-positive PGCs (Figures 2c and d),
suggesting that the Neo cassette influences the expression
level of Nanos3 in the female gonad as early as E12.5. Next,
gonadal ridges of E12.5 embryos were used to evaluate the
correlation between NANOS3 dosage and PGC number
using anti-MVH antibody, a marker for germ cells. Female
Nanos3Neo/Neo mice exhibited a significant decrease in germ
cell number (Figures 3a and b). Consequently, at postnatal
day 4, germ cells in Nanos3Neo/Neo ovaries were notably
reduced in number compared with Nanos3Neo/þ ovaries
(Figures 3c and d). Taken together, our data suggested that
the dosage of NANOS3 has a very important role in the
maintenance and survival of PGCs.

We realise that the PGC reduction in Nanos3Neo/Neo mice
may not directly reflect the result effected by the Arg153Trp
mutation, but there is a clear correlation between NANOS3
dosage and PGC survival. We considered the nature of the
Arg133Trp mutation and the neighbouring amino acid to
determine whether it was advisable to generate a knock-in
mouse model. We observed a strong polar region preceding
the arginine in mNANOS3, which enhanced its stability; this
direct experimental evidence suggested that the pathogenic
nature of this point mutation might not be conserved across
species. Furthermore, heterozygous knockout mice showed
almost normal pools of PGCs, whereas homozygous mice
exhibited a complete loss of PGCs, suggesting that the
expression of Nanos3 from a single Nanos3 allele is sufficient
to maintain the number of PGCs (data not shown). To gauge
the relative contribution of the decreased NANOS3 level
to PGC number, we made every effort to generate
Nanos3Neo/Neo mice. As expected, these mice showed a
marked reduction in the pool of PGCs during development.
The identified human NANOS3 mutation accelerates
hNANOS3 degradation by altering polar amino acids to a non-
polar nature, consistent with the observation that a decreased
dosage of NANOS3 protein reduces the pool of PGCs, which
leads to decreased germ cell number in the mouse model.
Although only one patient was found to carry this mutation in this
study, it is challenging to study the genetics of PGC formation
and related human diseases that cause infertility due to the
reduced chance of germline transmission of the transferred
genes. The successful elucidation of the molecular mechanism
of the Arg153Trp mutation in NANOS3 and its absence from
unaffected controls argue that the Arg153Trp mutation was the
causative mutation. Thus, our results provide insights that
NANOS3 haplo-insufficiency caused by the Arg153Trp mutation
disrupts the process of human germ cell development. This
and other studies have addressed the physiological impor-
tance of Nanos3 in PGC development for most species;
however, accurate information from a primate model may help
to elucidate the specific mechanistic effect of Nanos3 on
human fertility.
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Materials and Methods
Study population. A total of 100 Chinese POI patients and 200 healthy
controls were recruited from the First Affiliated Hospital, Anhui Medical University,
China. The ages of these patients ranged from 15 to 39 years. The diagnostic
criteria were menopause occurring before age 40, at least two serum FSH
concentrations of 440 IU/l and an exclusion of chromosomal abnormalities.
Patients with associated endocrinopathies or autoimmune disorders, infections or
iatrogenic agents, such as chemotherapy or radiotherapy, were also excluded.
Controls were individuals of proven fertility, with normal menstrual cycles and
ovary morphology, without a history of subfertility treatment. All human-related
studies were approved by the Anhui Medical University ethics board and informed
consent was obtained from responsible persons on behalf of all the study
participants.

Mouse models. Animal studies were performed in an Association for
Assessment and Accreditation of Laboratory Animal Care (AAALAC) International-
accredited SPF animal facility, and all animal protocols were approved by the
Animal Care and Use Committee of the Model Animal Research Center, the host
for the National Resource Center for Mutant Mice in China, Nanjing University.

Mutation screen. Genomic DNA was extracted from the peripheral blood
leukocytes using standard methods. The coding regions of the NANOS1, NANOS2
and NANOS3 genes were amplified by PCR using specific primer sets (Table 2).

PCR products were sequenced on an ABI 3730XL automated sequencer
(Applied Biosystems, Foster City, CA, USA) for mutation analysis.

Plasmids, antibodies and reagents. Full-length human NANOS3 WT,
R153W, R153A, R153F, R153L, R153M, R153P and R153V and mouse Nanos3
WT, R133W, T132V, T132V/R133W cDNA coding sequences were subcloned into
the pCGN-HA vector to generate N-terminal HA-tagged NANOS3.

The antibodies used in this study include anti-ACTIN (5A7, Abmart, Shanghai,
China), anti-GFP (sc-8334, Santa Cruz, Santa Cruz, CA, USA), anti-HA (HA7,
Sigma, St. Louis, MO, USA), anti-OCT3/4 (sc-5279, Santa Cruz), anti-NANOS3
(ab70001, Abcam, Cambridge, MA, USA) and anti-MVH (ab13840, Abcam).

The reagents used for protein stability assays include CHX (C7698, Sigma),
MG132 (C2211, Sigma), chloroquine (C6628, Sigma) and ammonium chloride
(0612, AMRESCO, Solon, OH, USA).

Protein stability assay. HEK293T cells were transfected with HA-tagged
NANOS3 as indicated. At 24 h post transfection, the cells were treated with the
protein biosynthesis inhibitor CHX at 50mg/ml and incubated for an indicated time,
then lysed. Total cell lysates were analysed by western blotting.

Treatment of cells with proteasome and lysosome inhibitors.
HEK293T cells were transfected with HA-tagged hNANOS3 WT or R153W. At
24 h post transfection, the cells were treated with the protein biosynthesis inhibitor
CHX at 50mg/ml plus the proteasome inhibitor MG132 at 20 mM, the lysosome
inhibitor NH4Cl at 50 mM or the lysosome inhibitor chloroquine at 100 mM.

Preparation of soluble and insoluble fraction of cell lysates.
Cells were lysed in RIPA buffer. After incubating on ice for 15 min, the lysates
were cleared by centrifugation at 13 000� g for 10 min and the supernatant was
collected as the soluble fraction. The pellets were washed two times with RIPA
buffer, and then they were suspended in RIPA buffer and sonicated three times.
The samples were then centrifuged at 13 000� g for 10 min to obtain the insoluble
fraction.

Generation of conditional nanos3 knockout mice. The Nanos3
targeting construct was generated according to our standard protocol.17 One LoxP
site was inserted 906 bp downstream of Nanos3 30UTR, and a neomycin
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Figure 2 Neo cassette insertion into the promoter region decreased Nanos3 expression level. (a) A PGK-Neo cassette flanked by two flippase recognition target (FRT)
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resistance cassette was introduced 1476 bp upstream of Nanos3 50UTR. The
neomycin resistance coding sequences were under the control of the PGK
promoter. This cassette was flanked by FRT sites and followed by one LoxP site.
The targeting construct was electroporated into strain 129 ES cells, and targeted
clones were identified by Southern blotting. Germline chimaeras were generated
by morula aggregation and succeed in germline transmission. The resulting
chimaeric males were mated to C57BL/6J mice. Heterozygous mice were
continuously backcrossed to C57BL/6J mice for at least five generations before
being used for experiments.

Immunohistochemistry. E12.5 embryos and ovaries were fixed in 4%
PFA, embedded in paraffin and sectioned (6mm). Tissue sections were
rehydrated, incubated in Coplin jars filled with 1 mM EDTA (pH8.0) in a

95–99 1C water bath for 30 min, cooled at room temperature (RT) for 60 min and
then blocked in 10% normal goat serum for 60 min. The sections were incubated
overnight at 4 1C with anti-MVH (1 : 200), anti-OCT3/4 (1 : 50) and anti-NANOS3
(1 : 400). The following day, the sections were washed in PBS and incubated for
1.5 h at RT with secondary antibodies. The sections were then counterstained with
DAPI and analysed by confocal laser microscopy.

Statistical analysis. All experiments were repeated at least three times.
Data were subjected to statistical analyses by ANOVA. A P-value of less than 0.05
was considered statistically significant.
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