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Abstract: Atopic dermatitis and psoriasis are members of a family of inflammatory skin disorders.
Cellular immune responses in skin tissues contribute to the development of these diseases. However,
their underlying immune mechanisms remain to be fully elucidated. We developed a computational
pipeline for analyzing the single-cell RNA-sequencing profiles of the Human Cell Atlas skin dataset
to investigate the pathological mechanisms of skin diseases. First, we applied the maximum relevance
criterion and the Boruta feature selection method to exclude irrelevant gene features from the single-
cell gene expression profiles of inflammatory skin disease samples and healthy controls. The retained
gene features were ranked by using the Monte Carlo feature selection method on the basis of their
importance, and a feature list was compiled. This list was then introduced into the incremental
feature selection method that combined the decision tree and random forest algorithms to extract
important cell markers and thus build excellent classifiers and decision rules. These cell markers
and their expression patterns have been analyzed and validated in recent studies and are potential
therapeutic and diagnostic targets for skin diseases because their expression affects the pathogenesis
of inflammatory skin diseases.

Keywords: skin disease; cell marker; expression pattern; feature selection; classification algorithm;
rule learning

1. Introduction

The skin is the largest and most extensive organ of the human body, accounting for
approximately 15% of the total body weight of adult humans [1]. It serves as a barrier
between the body and the external environment and has diverse functions, such as body
protection, waste excretion, body temperature regulation, and sensory perception [2]. The
skin can be divided into the epidermis and dermis, from the outside to the inside. The epi-
dermis can be divided into the stratum corneum, stratum granulosum, stratum spinosum,
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and basal layer, from top to bottom, as illustrated in Figure 1. It is mainly composed of
keratinocytes, melanocytes, and Langerhans cells. Among these cells, keratinocytes are
predominant. They are produced in the basal layer and continuously migrate outward
during differentiation and maturation to form the stratum spinosum, stratum granulosum,
and stratum corneum. Melanocytes and Langerhans cells are specific dendritic cells that
are distributed near the basal layer and are responsible for pigment synthesis and antigen
presentation, respectively [3]. The dermis is mainly composed of fibroblasts and is rich in
blood vessels, lymphatic vessels, and nerve endings. It can be divided into two regions:
the papillary dermis and the deeper reticular dermis. The deeper reticular dermis, which is
largely acellular and rich in extracellular matrix (ECM) components, can confer physical
strength, flexibility, and support to the skin [4,5].
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Figure 1. Structure of the skin. The skin is mainly divided into epidermis and dermis. The epidermis
layer can be further divided into stratum corneum, stratum granulosum, stratum spinosum, and
basal layer, and is mainly composed of keratinocytes, melanocytes, and Langerhans cells. The dermis
is much thicker than the epidermis and is mainly composed of collagen and elastin, which make
the skin elastic and stretchable. This figure was plotted by Figdraw (www.figdraw.com, accessed on
13 March 2022).

Atopic dermatitis (AD) and psoriasis are inflammatory skin diseases that are believed
to be the result of the interaction of immune cells and keratinocytes. AD is a multifactorial
and complex disease that is characterized by pruritic, erythematous, and scaly skin lesions;
its pathogenic trigger has been proposed to comprise environmental and genetic factors
and immune response dysregulation [6]. Previous studies have shown that a variety
of immune cells in patients with AD are abnormal. For example, in patients with AD,
Th2, eosinophils, and IgE production are increased and interleukin is upregulated [7,8].
Psoriasis is another immune-related disease that is characterized by accelerated epidermal
proliferation, cellular influx, and inflammatory mediators [9,10]. A variety of interleukins
that are produced by inflammatory myeloid dendritic cells can activate multiple types of T
cells. These T cells produce abundant psoriatic cytokines, which further affect keratinocytes
and promote psoriasis [11,12].

www.figdraw.com
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Given that AD and psoriasis are closely related to immune disorders, understanding
the interaction between immune cells and keratinocytes is extremely important. Advances
in single-cell sequencing have provided us with precise tools for the comprehensive analy-
sis of these diseases. By using single-cell sequencing, researchers can clearly analyze each
type of cell in an inflammatory skin disease sample and characterize the expression patterns
of different cell populations and the relationship between them. Previous single-cell studies
have found some rare subpopulations, including inflammatory fibroblasts, that are unique
to patients with AD and that AD lesions are characterized by enlarged type 2 T cells and
inflammatory DC. However, the interaction of cells with inflammatory fibroblasts and
immune cells in damaged skin is largely unknown and needs to be further studied [13].
Another single-cell study identified the molecular characteristics of multiple monocyte-
derived cells in patients with inflammatory skin diseases. Research on the regulatory,
repair, or anti-inflammatory functions of these cell types may help develop new treatment
strategies for inflammatory skin diseases [14]. One study also utilized single-cell sequenc-
ing technology to map the immune landscape of the synovium in psoriatic arthritis and
observe changes in CD8 T cell clones; this study may provide a reference for studying the
driving antigens of psoriatic arthritis [15]. A recent paper published in Science determined
the differences in immune cell composition in two inflammatory skin diseases (AD and
psoriasis) by comparing fetal and healthy adult skin and thus provided a road map for
the pathological processes of inflammatory skin diseases [16]. The present study further
investigated the data reported in the previous study.

In contrast to previous single-cell studies on inflammatory skin diseases, our study
compared the gene expression levels of different cell types in inflammatory skin disease
samples and healthy controls by using several machine learning methods, which constituted
a computational pipeline. Original gene features in the expression profiles were filtered
one by one by the maximum relevance criterion and Boruta feature selection method [17].
Irrelevant gene features were excluded, and the remaining ones were further analyzed by
Monte Carlo feature selection (MCFS) [18], resulting in a feature list. Such a list was fed into
the incremental feature selection (IFS) method [19], incorporating random forest (RF) [20]
and decision tree (DT) [21] as classification algorithms. Through such a procedure, we
obtained essential gene features and decision rules that may be crucial for the classification
of 114 cell types. The genes can be latent cell markers, and rules can indicate different
expression patterns in different cell types. Furthermore, an efficient RF classifier was built,
which can be a useful tool to identify cell types. The findings reported in this analysis may
provide novel insights into the pathogenesis of inflammatory skin disease, as well as a
reference for the development of new therapies.

2. Materials and Methods
2.1. Single-Cell RNA-Sequencing Profiles of Skin Samples

We downloaded the single-cell expression profiles of 451,280 cells of 114 cell types in
inflammatory skin disease samples and healthy controls from https://developmentcellatlas.
ncl.ac.uk/datasets/hca_skin_portal (accessed on 15 January 2021) [16]. The sample sizes of
each cell type are presented in Table S1. The expression levels of 33,538 genes were assessed
in a previous study [16]. Our purpose is to distinguish cell types at the single-cell level.

2.2. Feature Selection

Analyzing all gene features was difficult because each cell sample had 33,538 features
in its original single-cell profiles. The feature selection method is an excellent way to extract
essential features from such large profiles. Here, we adopted several feature selection
methods or criteria.

2.2.1. Feature Exclusion Based on the Maximum Relevance Criterion

We first applied the maximum relevance criterion to exclude the most unrelated features.

https://developmentcellatlas.ncl.ac.uk/datasets/hca_skin_portal
https://developmentcellatlas.ncl.ac.uk/datasets/hca_skin_portal


Life 2022, 12, 550 4 of 17

The definition of the maximum relevance criterion suggests that predictive features
should exhibit a high degree of correlation with the label variable. The correlation between
features and the label variable was computed by using mutual information (MI), which is
defined as follows:

I(x, y) =
∫ ∫

p(x, y)log
p(x, y)

p(x)p(y)
dxdy, (1)

where p(x) and p(y) are the marginal probability densities of x and y, respectively, and
p(x, y) is the joint probability density of x and y. In the present study, to compute the MI
value of each gene feature, we adopted its codes integrated into the mRMR program, which
can be downloaded from http://penglab.janelia.org/proj/mRMR/ (accessed on 2 May
2018). A threshold of 0.001 was used to exclude the most unrelated features. Retained
features would be analyzed by using the following feature selection methods.

2.2.2. Boruta Feature Filtering

The remaining features were further analyzed by Boruta [17], which is a wrapper
feature selection method that is based on the RF algorithm. It assesses the importance
of features by comparing the features with shuffled features. First, it attempts to add
randomness to a specific dataset by creating the shuffled duplicates of all features, which
are called shadow features. Then, an RF classifier is used to train the generated dataset and
evaluate the importance of each feature in accordance with the evaluation metrics. High
performance indicates high importance. In each iteration, it checks whether the importance
of a real feature is higher than the values of its shadow features and continuously removes
features that are considered very nonimportant. Finally, the Boruta stops running when all
features are confirmed or denied or when a specified limit of the RF operation is reached. In
this study, we applied the Boruta program written in Python language, which was retrieved
from https://github.com/scikit-learn-contrib/boruta_py (accessed on 14 September 2020).
Parameters in this program were set to default values. The selected features would be
investigated by the following MCFS method.

2.2.3. Monte Carlo Feature Selection

For the gene features selected by Boruta, they were finally analyzed by the MCFS
method. This is a powerful feature selection method that evaluates the relative importance
(RI) of features on the basis of a DT algorithm [18]. First, it randomly selects s subsets of
m features from all d features, where m << d. Then, t trees can be trained on randomly
selected samples that are represented by features in each subset, and the performance of
these trees is assessed. With the above procedures, s × t trees are established and evaluated.
The RI score of one feature f is calculated as follows, to assess the importance of features in
these trees:

RI f = ∑s×t
τ=1(wAcc)u IG

(
n f (τ)

)(no.in n f (τ)

no.in τ

)v

, (2)

where wAcc and IG
(

n f (τ)
)

are the weighted accuracy of DT τ and the information gain
of node n f (τ), respectively; no.in n f (τ) and no.in τ refer to the number of samples of
n f (τ) and τ, respectively; u and v are the weighting coefficients with a default setting value
of 1. Finally, a ranked feature list F is produced on the basis of the decreasing order of the
evaluated RI scores.

The MCFS program utilized in this analysis was obtained from http://www.ipipan.
eu/staff/m.draminski/mcfs.html (accessed on 4 June 2019), and the default parameters
were used.

2.3. Incremental Feature Selection

Although the features were ranked by using the MCFS method, the best number
of features that can be used to classify different cell types could not be determined. We
applied the IFS method [19] to identify the optimal number of features and construct the

http://penglab.janelia.org/proj/mRMR/
https://github.com/scikit-learn-contrib/boruta_py
http://www.ipipan.eu/staff/m.draminski/mcfs.html
http://www.ipipan.eu/staff/m.draminski/mcfs.html
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best classifier. At the same time, features used in the best classifier were obtained, which
can be important for classifying cell types. Specifically, based on the feature list (e.g., the
list F generated by MCFS), a series of feature subsets with a step size was constructed. For
example, when the step size was set to five, the first subset included the top five features in
the list, and the second subset was composed of the top 10 (5 × 2) features. Then, for each
feature subset, a classifier with a given classification algorithm (e.g., DT [21] or RF [20]) was
trained on the samples that were represented by features in this subset. Its performance was
evaluated via 10-fold cross-validation [22]. The classifier providing the best performance
was obtained, which was called the optimal classifier. Additionally, features used in such
an optimal classifier were termed optimal features.

2.4. Synthetic Minority Oversampling Technique

As listed in Table S1, the largest cell type contained more than 35,000 samples, whereas
the smallest cell type only contained 111 samples. Thus, the dataset was class-unbalanced.
The classifier directly built on such a dataset may produce bias. To overcome this problem,
the synthetic minority oversampling technique (SMOTE) [23] method was employed, which
can amplify samples in minority classes. Specifically, for a randomly selected sample x
in a minority class, the distance from it to all samples in this minority class is measured
by using the Euclidean distance, and its k-nearest neighbors are obtained. One neighbor,
e.g., y, is randomly selected. A new sample z is produced, which is defined as the linear
combination of x and y. Such a new sample z is also put into the minority class. The
above procedure stops until the minority class has the same number of samples as the
majority class. Finally, all classes contain the same number of samples. In the present study,
the SMOTE program that was obtained from https://github.com/scikit-learn-contrib/
imbalanced-learn (accessed on 24 March 2020), was applied to balance the data, and
the default parameters were used. It is necessary to note that SMOTE was only used in
evaluating the performance of classifiers in the IFS method.

2.5. Classification Algorithms

To perform the IFS method, one classification algorithm is necessary. This study
selected RF [20] and DT [21]. A brief introduction to these methods is provided in what follows.

2.5.1. RF

RF [20] is an ensemble learning method that trains and predicts a sample by using
multiple trees. Each tree is constructed based on samples randomly selected from the
original dataset. Then, features are randomly selected and used to grow the tree at each
node. When using RF for classification, the prediction results are outputted by the majority
voting of all trees. Although DT is a weak algorithm, RF is generally much more powerful.
Several studies adopted it to build efficient classifiers [24–30]. In the present study, the
RF program was performed by using the scikit-learn (https://scikit-learn.org/stable/,
accessed on 3 November 2020) module [31], and the default parameters were used to
construct classifiers.

2.5.2. DT

Although we can build an efficient classifier using RF, its underlying principle is
difficult to understand, preventing us from uncovering essential differences in various cell
types. Accordingly, we also employed DT [21] in this study, which is a white-box model
that can yield interpretable decision rules. DT is usually developed on the basis of the
IF–THEN principle, starting with a single node that can branch into possible results. Each
outcome leads to other nodes, which, in turn, branch into other possibilities, thus yielding
a tree-like structure. From this tree, several rules can be obtained, each of which contains a
condition and one result. In this study, the condition of one rule always involved several
gene features, indicating a special expression pattern. The result of the condition was one
cell type, suggesting the special expression pattern was an essential marker for this cell

https://github.com/scikit-learn-contrib/imbalanced-learn
https://github.com/scikit-learn-contrib/imbalanced-learn
https://scikit-learn.org/stable/
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type. Further investigation of obtained rules can improve our comprehension of different
cell types. Such merit of DT induces its wide applications in the biomedical field [32–34].
In this study, the scikit-learn (https://scikit-learn.org/stable/, accessed on 3 November
2020) module was applied with default parameters to build the DT.

2.6. Performance Measurement

The Matthews correlation coefficient (MCC) [35–38] was used as the evaluation metric
to quantify the performance of all constructed classifiers. In multiple classification tasks,
the MCC is defined as follows:

MCC =
cov(x, y)√

cov(x, x)cov(y, y)
, (3)

where x and y represent the binary matrixes of the true and predicted labels, respectively;
and cov( ) denotes the covariance function between two factors, such as x and y. The value
of MCC is in the range of −1 to 1, and a high MCC value indicates the strong performance
of the classifier.

In addition to MCC, some other measurements were also calculated to fully evaluate
the performance of all classifiers, including overall accuracy (ACC) and individual accuracy
on each cell type. ACC was defined as the proportion of correctly predicted cell samples,
and individual accuracy on one cell type was the ratio of the number of correctly predicted
cell samples in this type and the total number of cell samples in such type. MCC was
selected as the key measurement, whereas others were provided for reference.

3. Results and Discussion

In the present study, we proposed a computational pipeline, which contained several
feature selection methods and classification algorithms, to identify essential biomarkers,
build efficient classifiers, and extract decision rules. The whole procedure is illustrated in
Figure 2.

3.1. Features Selected by Using the Maximum Relevance Criterion, Boruta, and MCFS Methods

We designed a workflow for feature selection to select important genes from the
original single-cell expression profiles. First, we applied the MaxRel method to filter gene
features on the basis of a cutoff score. A total of 18,023 features were selected in this
step when the cutoff score was set to 0.001. Then, these features were subjected to the
Boruta feature selection method to discard irrelevant features. Through the analysis, we
removed 14,265 gene features and retained 3758 important gene features. These retained
features are provided in Table S2. After the above process, the MCFS method was used to
rank the remaining features in accordance with the evaluated RI scores. A ranked feature
list, which is presented in Table S2, was obtained. The top five genes were CD74, HLA-
DRA, HLA-DRB1, HLA-DPB1, and TYROBP. Through feature selection, we filtered and
ranked 3758 important features from the original 33,538 features. This step facilitated the
identification of the best genes, in addition to reducing the computational consumption of
the next step.

3.2. Determination of the Optimal Features by the IFS Method

We still could not determine the number of features that can effectively classify cell
types after the analysis with the MCFS method. Therefore, the IFS method with DT and
RF algorithms was utilized to identify the optimal feature number. Several feature subsets
were generated from the top 1000 features in the ranked feature list when the step size
of IFS was 5. On each subset, an RF classifier was built and evaluated by using 10-fold
cross-validation. The performance of these classifiers, including MCC, ACC, and individual
accuracies on 114 cell types are presented in Table S3. For ease of viewing the performance
of these RF classifiers, an IFS curve was plotted, with the number of features as the x-axis
and the MCC as the y-axis (Figure 3A). Clearly, the highest MCC was 0.949 when the top

https://scikit-learn.org/stable/
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795 gene features were used. Accordingly, these features were optimal features for RF, and
therefore, an optimal RF classifier was built on these features. The detailed predicted results
of this classifier (confusion matrix) are provided in Table S4. The ACC of this classifier
was 0.951, as listed in Table 1. The individual accuracies of all cell types are illustrated in
Figure 4. In total, 25 cell types were perfectly predicted, and 110 (96.49%) types received
individual accuracies higher than 0.900. All these indicated the superior performance of
this optimal RF classifier. However, the efficiency of this classifier was not very high due
to the number of features used. By carefully checking the performance of the RF classifier
with fewer features, we found that when the top 225 features were used, the RF classifier
can yield an MCC of 0.931. The confusion matrix of this classifier is provided in Table S4,
indicating its high performance. The following 570 features can only improve MCC by
0.018. As listed in Table 1, the ACC of this RF classifier was 0.932, only 0.019 lower than
that of the optimal RF classifier. Furthermore, the individual accuracies yielded by this
classifier were also quite high, as shown in Figure 4. Cell samples in 16 types were perfectly
predicted, and 108 individual accuracies were higher than 0.900, which indicates that this
RF classifier provided almost equal performance to the optimal RF classifier. However,
this classifier had higher efficiency than the optimal RF classifier because it needed much
fewer gene features. The computation time of the 10-fold cross-validation on the optimal
RF classifier was 14,722.01 s, whereas this time for the RF classifier with top 225 features
was only 5300.73. This fact suggested that the RF classifier with top 225 features was much
faster than the optimal RF classifier. It can be an efficient tool to determine cell types.
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Table 1. Performance of some key classifiers.

Classification Algorithm Number of Features ACC MCC

Random forest 795 0.951 0.949
Random forest 225 0.932 0.931
Decision tree 805 0.815 0.810

As mentioned in Section 2.5, RF can be helpful to build efficient classifiers. However,
few insights can be obtained from these classifiers. Thus, we also employed DT. The
same procedures were conducted for DT. Its performance on different top features is also
presented in Table S3. An IFS curve was also plotted to show the performance of all DT
classifiers, as illustrated in Figure 3B. It can be observed that the highest MCC was 0.810,
which was obtained by using the top 805 features. Accordingly, an optimal DT classifier was
built using these features. The detailed predicted results of this DT classifier are available
in Table S4. The ACC of this DT classifier was 0.815, as listed in Table 1. Its performance
on 114 cell types is shown in Figure 4. Evidently, this level of performance was much
lower than that of the above-mentioned RF classifiers. However, the DT classifier has its
own merit, not shared by the RF classifier. It can produce decision rules, which made the
classification procedures completely open and also provided new insights to investigate
the differences in various cell types of inflammatory skin disease. These rules are provided
in Section 3.3.

In summary, the IFS method identified the best number of features for different
classification algorithms, as well as established an efficient tool that can quickly classify
different cell types of inflammatory skin disease.

3.3. Classification Rules Extracted by the Optimal DT Classifier

Although the optimal DT classifier had a weaker classification performance than that
of the RF classifiers, it can provide interpretable rules that were useful for mining biological
molecular mechanisms. The rules were generated by using the constructed optimal DT
classifier. For further investigation, we extracted the top 1000 rules, which are listed in
Table S5. These rules are stated in Section 3.6.

3.4. Computation Time vs. MCC

When constructing a tool, efficiency and accuracy are two important factors. In
this study, accuracy was measured by MCC, whereas efficiency is generally assessed by
computation time. To investigate the relationship of RF classifiers with different numbers
of features, we counted the computation time of 10-fold cross-validation on each classifier.
To exclude the influence of abnormal computation time, we grouped the computation time
with the interval of 100 features and computed the average time for each group. At the
same time, the average MCC in each group was also computed. These average values
of MCC and computation time are summarized in Figure 5. It can be observed that the
computation time always followed an increasing trend with the increase in feature number,
whereas the trend of MCC was different. It first followed a sharp increasing trend and
then became stable. When the feature number reached 300, the increase in MCC was quite
limited. Although an increasing number of features were added, inducing an increasing
amount of computation time, MCC did not obviously increase. In view of this, the feature
number between 200 and 300 was a good choice to construct the tool. This was the reason
why we selected the RF classifier with the top 225 features as the tool to classify cell types.
The above results also indicated that the feature selection method can help us find a balance
between efficiency and accuracy. We can, therefore, determine a classifier using a small
number of features and a high accuracy.
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3.5. Analysis of Features

By using the IFS method with RF, we identified a group of features that was very
significant for the classification of inflammatory skin disease and healthy control cells. The
optimal RF classifier can use 795 gene expression patterns as features to classify cell types
with an ACC of 0.951. However, the RF classifier with top 225 features also yielded quite
high performance and needed much fewer features. The 225 features used in this classifier
were more important than the following 570 features used in the optimal RF classifier.
Thus, we only focused on these gene features. At the same time, they also characterize
inflammatory skin disease and provide potential therapeutic targets.

Among the top 10 ranked features in our results, five genes encode heterodimers
that are composed of MHC class II molecules. HLA-DRA, HLA-DQA1, and HLA-DPA1
encode HLA class II alpha-chain paralogs, and HLA-DRB1 encodes an HLA class II beta-
chain paralog. Those genes are highly expressed in antigen-presenting cells, such as B
lymphocytes, dendritic cells, monocytes, and macrophages, which play critical roles in
immune response, given that they can present a variety of antigen peptides to provide the
capability to respond to a variety of pathogens [39]. MHC genes are also linked to a variety
of skin diseases, such as localized scleroderma and psoriasis [40,41]. These diseases are
often associated with MHC-related autoimmunity and inflammation. This finding proves
the reliability of our results because our data were from normal skin and inflammatory
skin disease cells, and HLA is very important for their classification.

PTPRC (ENSG00000081237), which is also known as CD45, encodes a member of the
protein tyrosine phosphatase family and is important for regulating T- and B-cell antigen
receptor signaling. It is a commonly used lymphocyte marker in flow cytometry because
it is expressed in all nucleated hematopoietic cells [42]. CD45 deficiency can cause severe
immune dysfunction and is associated with numerous diseases, such as autoimmune
diseases and cancer [43,44].

The protein encoded by PERP (ENSG00000112378) is a component of intercellular
desmosome junctions. It is a p63/p53 regulated gene that is essential for epithelial integrity
and cell–cell adhesion [45]. PERP is highly expressed in keratinocytes, and the loss of PERP
expression can weaken cell–cell adhesion at the leading edge of the wound and impairs
wound repair [46].

CD74 (ENSG00000019582) is a protein-coding gene and is critical in MHC class II
antigen processing. It is highly expressed in B cells and macrophages and could also
be used as a biomarker [47]. The association of CD74 with skin inflammation and skin
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fibrosis [48,49] proves that the CD74 level could be a significant feature for distinguishing
different cell types in healthy skin and inflammatory skin disease samples.

The protein encoded by TM4SF1 (ENSG00000169908) is a member of the transmem-
brane 4 superfamily. TM4SF1 is highly expressed in fibroblasts and endothelial cells [50,51]
and is important for endothelial cell adhesion, proliferation, and migration. The expression
level of the DSP gene (ENSG00000096696) is also a signature of some fibroblasts [50]. The
DSP gene encodes the desmoplakin protein and acts as an anchor for intermediating fila-
ments to desmosomal plaques. Given that DSP mutations can cause keratodermas, such as
skin fragility–woolly hair syndrome, the regular expression of DSP is crucial for the normal
functioning of skin cells [52].

Several genes, such as FCER1G, IDO1, and CD83, are associated with inflammatory
processes. These inflammation-related genes may act as key features for distinguishing skin
cells derived from healthy samples from those originating from inflammatory skin disease
samples. The FCER1G gene (ENSG00000158869) encodes the Fc fragment of IgE and is
involved in transmembrane signaling receptor activity and IgE binding. FCER1G is strongly
upregulated in antigen-presenting cells in patients with AD, and the demethylation of
FCER1G is related to the overexpression of immunoglobulin E in monocytes and dendritic
cells and may be the cause of atopic dermatitis [53]. The downregulation of FCER1G in
mast cells can alleviate the skin inflammatory response [54]. The protein encoded by the
IDO1 gene is a heme enzyme that participates in the catabolism of tryptophan. IDO1
plays a role in a variety of physiological and pathological processes, such as immune
regulation, neuropathology, and antioxidant activity. Studies have proven the importance
of IDO1 in skin inflammatory disease [55]. The downregulation or inhibition of IDO1 can
accelerate skin wound healing by affecting the expression of proinflammatory cytokines and
chemokines [56]. IDO1 is highly expressed in skin samples from patients with psoriasis [57]
and is also abnormally expressed in patients with AD. Upon viral stimulation, IDO1 is
highly expressed at a significant level in the Langerhans cells of patients with AD. In
addition, the IDO1 expression of plasmacytoid dendritic cells is up-regulated in patients
with AD [58]. CD83 (ENSG00000112149) encodes a single-pas type I membrane protein
that is a member of the immunoglobulin superfamily of receptors. The increased number
of mature CD83+ dendritic cells is a distinct cellular feature of psoriatic skin. Normal
skin contains only 0–5 CD83+ dendritic cells per area; this number can increase to more
than 100 in active psoriatic lesions [59,60]. CD83 is highly expressed in the dendritic cells
of patients with AD, and CD83+ dendritic cells can directly stimulate T-cell activation in
the skin lesions of AD and psoriasis [61]. These immune-related genes can be used as
significant features for distinguishing skin disease cells from healthy control cells given
their importance in the occurrence and development of inflammatory skin diseases, thereby
further supporting the reliability of our results.

3.6. Analysis of the Rules

A large number of decision rules were established on the basis of the DT model, and
cells can be distinguished into 3 main groups and 114 subtypes, with an accuracy of 0.815,
by using the top 805 features. Below, we discuss some classification rules to verify the
reliability of our results.

The protein encoded by DMKN (ENSG00000161249) is dermokine, which is also
known as epidermis-specific secreted protein SK30/SK89. It was first observed to be
expressed in differentiated skin layers. In our decision rules, the expression level of
DMKN in the differentiated keratinocytes of all three sets of our samples was higher
than that in undifferentiated keratinocytes. This finding was consistent with the previous
results showing that DMKN regulates keratinocyte growth and differentiation and that
DMKN deficiency can cause skin keratinization defects in mice [62]. Moreover, DMKN
has been found to be upregulated in inflammatory skin disorders, including psoriasis
and AD, via a possible pathogenesis mechanism in which a high DMKN level leads
to the upregulation of chemokines and cytokines and further affects the growth and



Life 2022, 12, 550 12 of 17

differentiation of keratinocytes and the dermal recruitment of neutrophils [63]. Thus, the
differential expression of DMKN can be used as a decisive criterion for reflecting the
varying differentiation and pathological states of keratinocytes.

In our decision rules for the identification of T helper cells, CD3E and IL7R are required
to be highly expressed in all three groups. CD3E (ENSG00000198851) can be used as a
marker for T cells because it encodes the T-cell surface glycoprotein CD3 epsilon chain. It
plays a vital role in T-cell development and antigen recognition, and its deficiency causes
severe combined immunodeficiency [64]. Interleukin 7 receptor is the protein encoded
by the IL7R gene (ENSG00000168685). It plays a critical role in lymphocyte development,
and IL7R mutation may also lead to severe combined immunodeficiency [65]. A study
on autoimmune disease found that IL7R is essential for the survival and expansion of
pathogenic T helper types 17 [66]. Although whether IL7R has an important role in T
helper cells in inflammatory skin diseases remains unclear, this result provides us with
inspiration for further research. In addition, one gene was differentially expressed between
patients with psoriasis and healthy controls. Our decision rules showed that T helper cells
require lower TXNIP levels in patients with psoriasis than in healthy controls. TXNIP
(ENSG00000265972) encodes a thioredoxin-binding protein that can regulate cellular redox
signaling and protect cells from oxidative stress [67]. Studies have demonstrated that
TXNIP is hypermethylated in psoriasis samples relative to in control samples, and TXNIP
is downregulated in psoriatic skin [68,69]. This result may provide us with criteria for
distinguishing psoriasis cells from other cells.

The PLVAP gene encodes for the plasmalemma vesicle-associated protein, which is
required for the formation of the stomatal diaphragms associated with certain endothe-
lial fenestrations and the caveolar membrane system [70]. It is a crucial component of
vascular homeostasis, and a study on mutant mice found that the lack of PLVAP results
in subcutaneous edema, hemorrhages, and defects in the vascular wall of subcutaneous
capillaries [71]. The high PLVAP levels that usually appear in tumor endothelial cells may
be related to tumor vascular proliferation and increased permeability [72]. In our results,
the decision rules showed that vascular endothelial cells require relatively high PLVAP ex-
pression. Moreover, our decision rules indicated that the vascular endothelium of patients
with AD also requires a relatively high expression of SOCS3. SOCS3 (ENSG00000184557) is
a protein-coding gene that encodes a member of the STAT-induced STAT inhibitor family.
Other studies have confirmed that SOCS3 is significantly more highly expressed in the skin
of patients with AD than in the skin of healthy controls or patients with psoriasis and that
the high SOCS3 levels in patients with AD may be related to T helper cells [73,74].

In our decision rules for the identification of inflammatory macrophages, the CLEC10A
and CXCL8 genes are required to be highly expressed by inflammatory macrophages in
inflammatory skin disease samples. The protein encoded by CXCL8 (ENSG00000169429) is
interleukin-8, which is a member of the CXC chemokine family and a major mediator of
the inflammatory response. Considerable data have shown that CXCL8 can be secreted
by monocytes, macrophages, neutrophils, eosinophils, T lymphocytes, epithelial cells, and
fibroblasts after appropriate stimulation [75]. Several studies have illustrated the impor-
tant role of CXCL8 in acute and chronic inflammatory conditions and cancer [76,77]. In
accordance with our decision rules, CXCL8 is highly expressed in multiple cell types in
psoriasis skin samples [78]. High CXCL8 levels can activate the release of inflammatory me-
diators, thus leading to the inflammation and migration of neutrophils to the lesion [79,80].
CXCL8 is also upregulated in patients with AD and is involved in the inflammatory re-
sponse [81,82]. The protein encoded by CLEC10A is a member of the C-type lectin/C-type
lectin-like domain superfamily and is also known as macrophage lectin 2. It is most highly
expressed on dendritic cells and macrophages [83]. The high CLEC10A level in our decision
rules was in line with a previously reported result showing that CLEC10A is upregulated in
patients with psoriasis or AD and is particularly highly expressed in macrophage and den-
dritic cells [84,85]. In patients with AD, drug intervention decreases CLEC10A expression
and skin immune infiltration and relieves inflammation [86].
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Overall, the criteria of our decision rules for different cell types are usually cell markers
or are important for maintaining the function of a specific cell type (e.g., DMKN, CD3E,
CLEC10A). Consistent with the inflammatory microenvironment that is widespread in in-
flammatory skin diseases, numerous criteria for different pathological conditions are based
on the expression level of inflammation-related genes. However, the classification criteria
for some cell types have not been clearly studied (e.g., IL7R, PLVAP, SOCS3, CXCL8), and
our decision rules showed that their aberrant expression was associated with inflammatory
skin disease. The expression levels of these genes may have an effect on the occurrence and
development of diseases and may become potential therapeutic targets.

4. Conclusions

In this study, a computational flow with feature selection methods and classification
algorithms was designed to detect the key gene features and decision rules in the single-cell
expression profiles of inflammatory skin disease samples and healthy controls. These
findings can uncover essential expression differences in inflammatory skin diseases and
healthy controls, thereby helping us correctly diagnose such skin diseases. Furthermore,
the RF classifier using fewer gene features had superior performance, which can be a useful
tool to classify the cell types in inflammatory skin disease samples and healthy controls at
the single-cell level. Such a classifier and the decision rules can be applied to new datasets if
they are produced in the same way as the dataset investigated in this study. The reliability
of our findings was verified by recent publications. Thus, this study provides new insights
into future research on skin disease. Finally, the proposed computational flow is quite
general in scope, suggesting it can be used to analyze expression profiles of various diseases.
The codes used in this study are provided in File S1.
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