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ABSTRACT In every cell from bacteria to mammals, NusG-like proteins bind tran-
scribing RNA polymerase to modulate the rate of nascent RNA synthesis and to co-
ordinate it with numerous cotranscriptional processes that ultimately determine the
transcript fate. Housekeeping NusG factors regulate expression of the bulk of the ge-
nome, whereas their highly specialized paralogs control just a few targets. In Esche-
richia coli, NusG stimulates silencing of horizontally acquired genes, while its paralog
RfaH counters NusG action by activating a subset of these genes. Acting alone or as
part of regulatory complexes, NusG factors can promote uninterrupted RNA synthe-
sis, bring about transcription pausing or premature termination, modulate RNA pro-
cessing, and facilitate translation. Recent structural and mechanistic studies of NusG
homologs from all domains of life reveal molecular details of multifaceted interac-
tions that underpin their unexpectedly diverse regulatory roles. NusG proteins share
conserved binding sites on RNA polymerase and many effects on the transcription
elongation complex but differ in their mechanisms of recruitment, interactions with
nucleic acids and secondary partners, and regulatory outcomes. Strikingly, some can
alternate between autoinhibited and activated states that possess dramatically differ-
ent secondary structures to achieve exquisite target specificity.
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Il cellular genomes are transcribed by multisubunit, evolutionarily related RNA

polymerases (RNAPs), whose function is elaborately regulated by a plethora of
divergent accessory factors (1). Among those regulators, NusG homologs stand out as
the only universally conserved family of transcription factors (2). These proteins exert a
combination of direct and indirect effects on gene expression through modifying the
properties of transcription elongation complexes (TECs) and bridging RNAP to diverse
proteins involved in RNA processing, modification, translation, etc. In addition to
ubiquitous housekeeping NusG proteins (called Spt5 in archaea and eukaryotes and
DRB-sensitivity-inducing factor [DSIF] in humans), which associate with RNAP transcrib-
ing most of the cellular genome (3, 4), many species also encode specialized NusG
paralogs (NusG®P), which modulate expression of a subset of genes, sometimes acting
orthogonally to the essential (in most cases) primary NusG (5).

Escherichia coli NusG, the founding member of this family, has been identified along
with other N-utilization substances (Nus) proteins as a cellular factor required for
bacteriophage AN-mediated antitermination within delayed early genes (6, 7). This
antitermination activity is orthogonal to the main cellular role of NusG, i.e., to aid the
termination factor Rho in silencing harmful horizontally acquired DNA in E. coli (8). The
first specialized NusG paralog, RfaH (also known as SfrB and HIyT), was first identified
in E. coli (9) and Salmonella (10). RfaH opposes the Rho-stimulating action of NusG to
activate expression of some xenogenes (11, 12). Biochemical, genetic, and structural
studies of E. coli NusG and RfaH contributed the bulk of information about the
molecular mechanisms and regulatory diversity of this class of proteins with important
insights from studies of NusG homologs from diverse phyla.
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TABLE 1 Summary of main properties of E. coli RfaH and NusG?

mBio’

Property, interaction, and/or activity NusG RfaH

Interdomain contacts in free protein None Extensive

CTD fold B-barrel a-Helix in free protein B-barrel when
bound to TEC

Sequence requirement for recruitment to RNAP None ops element

Contact sites on the B’ subunit
Contact sites on the 8 subunit
Interactions with the nontemplate DNA strand

Clamp domain, CH
GL, lobe, protrusion
Not observed

Interactions with NusE (S10) Yes

Interactions with Rho Yes

Effect on the upstream edge of the transcription Stabilizes
bubble

Effect on backtracking Inhibits

Effect on hairpin-stabilized pausing None

Activates
Proposed to couple RNAP and 70S
during elongation

Effect on Rho-dependent termination
Effect on translation

Clamp domain, CH

GL, lobe, protrusion,? flap
Yes, stabilizes a DNA hairpin

Yes
No
Stabilizes

Inhibits
Inhibits
Inhibits

Proposed to recruit 30S

during initiation

9ln the ops-TEC, RfaH contacts with the protrusion are blocked by the NT-DNA hairpin. Once RNAP escapes from the ops site, RfaH is expected to make contacts to

the protrusion, as observed for NusG.
bCH, clamp helices; GL, gate loop.

While this family of regulators has been studied since the early 1980s, recent
advances in whole-genome and structural analyses are rapidly reshaping our views and
opening new areas of investigation. In this minireview, we will focus on recent findings,
and we direct the reader to more comprehensive reviews that do more justice to the
history of this fascinating family (2, 5, 13, 14). In particular, we will cover new insights
from structural studies of NusG proteins, revealing molecular details of interactions with
RNAP, other accessory factors, and nucleic acids that determine their effects on
transcription. We will concentrate on bacterial regulators, drawing parallels with their
eukaryotic homologs to highlight the universal principles of RNA synthesis control. We
sincerely apologize for failing to cite work of many colleagues whose contributions
have defined the field and made recent advances possible.

NusG and RfaH: similarities and differences. Extensive structural and functional
data available for E. coli RfaH and NusG reveal a mix of common and divergent
properties (Table 1). The two proteins bind to RNAP roughly in the same place, as do
all other NusG homologs (Fig. 1), but their contacts to the enzyme are not identical.
RfaH binds to the transcribing RNAP more tightly (15), as is required to fend off
competition with the more abundant NusG (11), and recognizes a specific DNA
sequence during recruitment (11). NusG appears to be recruited to RNAP at random
sequences (4) and does not interact with DNA in the structure of a NusG-bound scaffold
TEC (15); however, it is possible that, similarly to its Bacillus subtilis ortholog (16), E. coli
NusG has some nucleic acid sequence preferences. NusG and RfaH also differ in their
effects on transcription. While both factors counteract backtracking (17-20), only RfaH
can suppress the effects of pause-stabilizing effects of nascent RNA hairpins (21-23).
Neither protein exhibits strong effects at intrinsic terminators, although both factors
have been reported to decrease termination 2-fold at selected sites in vitro (24, 25);
antitermination of an intergenic hly terminator observed in vivo by RfaH is thought to
contribute to the activation of hemolysin expression (26). NusG and RfaH make similar
contacts to ribosomal protein S10 (also known as NusE) as observed by nuclear
magnetic resonance (NMR) spectroscopy (27, 28); these contacts are proposed to
bridge RNAP and the ribosome (29) and to mediate 30S recruitment by RfaH (27).

The defining functional difference between RfaH and NusG lies in their opposite
effects on Rho-dependent termination. NusG stimulation of Rho activity is evident in
vitro (30, 31), even in the absence of RNAP; NusG directly binds to Rho and facilitates
its isomerization into a closed, active state (32). RfaH does not interact with Rho under
physiological conditions and has only a mild antitermination effect in vitro (22), in sharp
contrast to potent antitermination observed in vivo (12). These results argue that RfaH
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FIG 1 Structures of elongation complexes with bound NusG proteins. The schematics above each panel indicate the domain arrangement in the respective
NusG protein. RNAP is in surface representation, NusG is in surface and ribbon representation, and nucleic acids are in ribbon representation. (A) E. coli TEC
with NusG (PDB ID 6C6U). NusG-NTD contact surfaces are highlighted in cyan. (B) Mammalian RNAP Il TEC with DSIF (PDB ID 50IK). (C) E. coli TEC with RfaH
(PDB ID 6C6T), with NTD contacts shown as in panel A. The inset shows an enlargement of the boxed region. The central ops nucleobases are depicted as sticks

with N atoms in blue and O atoms in red. White dashed lines indicate hydrogen bonds between base pairs C3:G8 and G4:A7 that form the stem of the ops
hairpin. The ops sequence is shown below with the central bases essential for RfaH recruitment boxed.

inhibits Rho indirectly by excluding NusG and facilitating the ribosome loading onto
mRNA (11, 27).

Structural basis for antipausing. As the only ubiquitous family of transcription
factors, NusG-like proteins are expected to share some modes of action. Indeed, despite
their significant sequence divergence, NusG/Spt5 interactions with and effects on the
TEC are broadly conserved (15, 33-35). Most functionally characterized NusG homologs
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reduce transcriptional pausing and arrest, thereby favoring productive RNA synthesis,
through conserved interactions with RNAP (17, 20, 36, 37). However, this ability can be
masked at regulatory sites (38), as sequence-specific contacts to DNA by E. coli RfaH (22)
and B. subtilis NusG (16, 39) hinder RNAP escape.

NusG-like proteins have a modular structure and share a similar core architecture
(Fig. 1), consisting of at least two flexibly tethered domains, an N-terminal domain (NTD;
also known as NGN, NusG N-terminal domain) with conserved, mixed «/fB topology
(40), and a C-terminal domain (CTD) that contains a Kyrpides, Ouzounis, Woese (KOW)
motif (41) and folds into a five-stranded antiparallel B-barrel. Bacterial NusGs exhibit
this basic two-domain structure (Fig. 1A), but some have additional domains inserted
into the NTD (42). Archaeal Spt5 proteins are also composed of an NTD and a single
KOW domain but form heterodimers with a small accessory factor Spt4. Increased
regulatory complexity in eukaryotes is reflected by an even more elaborate structure of
NusG homologs: Spt5 harbors an unordered acidic N terminus, the NGN domain,
several KOW domains, and a mobile C-terminal repeat (CTR) region (Fig. 1B).

Within the last 2 years, many structures of active and paused TECs in the absence
and presence of NusG/Spt5 proteins were obtained by cryo-electron microscopy (cryo-
EM) and X-ray crystallography (15, 33, 34, 36, 38, 43-46). These structures, obtained
with TECs ranging from bacteria to mammals, revealed common molecular principles
for the regulation of elongation and pausing. RNAP is shaped like a crab claw with the
two largest subunits (8’ and B in bacteria, Rpo1 and Rpo2 in archaea, and Rpb1 and
Rpb2 in eukaryotic RNAPII) constituting the two pincers (47). The cleft formed by the
pincers harbors the nucleic acid chains and contains the active site. In E. coli TEC, the
downstream duplex DNA enters the active site cleft and separates at position +1 to
place the template (T) strand +1 base into the active site, where it can pair with an
incoming substrate NTP (45). The template DNA (T-DNA) pairs with the RNA to form a
9-bp hybrid, whereas the single-stranded nontemplate (NT) DNA is solvent accessible
and flexible and not visible in most structures unless constrained by transcription
factors (44-46). Conserved RNAP elements at the upstream edge of the RNA:DNA
hybrid direct RNA and the T-DNA away from each other, preventing the formation of
an extended DNA:RNA hybrid (45). The T-DNA reanneals with the NT-DNA, resulting in
a distorted —10 bp, but leaving no single-stranded gap in the T-DNA strand (18, 45).
The upstream DNA duplex is mobile and has only few interactions with RNAP, forming
an ~110° angle with the downstream DNA duplex (45).

The cryo-EM structures of E. coli TEC bound to NusG and RfaH (15) reveal the details
of their interactions with RNAP and suggest several mechanisms of pause suppression.
The NTDs bind to RNAP at similar positions, whereas the flexibly connected CTD is
visible only in a subpopulation of the RfaH:TEC particles (Fig. 1A and C). The NTD is
located at the upstream side of the clamp, contacting the clamp helices (CH) of the B’
pincer and the protrusion and gate loop (GL) of the B pincer, thus bridging the active
site cleft and locking the nucleic acids inside. Functional studies implicated the B8’'CH
region as a high-affinity binding site of RfaH and NusG and demonstrated that the NTD
is sufficient for their antipausing effects (48, 49). The B'GL element, in contrast, is largely
dispensable for binding and activity of NusG (18, 50) but contributes to the antipausing
activity of RfaH (12). The NTD exerts several effects on the TEC structure. First, the NTD
alters the path of the upstream DNA duplex without making any interactions with this
DNA region. This effect is mediated by looping the NT-DNA strand out, which brings the
upstream and downstream DNA duplexes closer together, and is particularly pro-
nounced with RfaH. By changing the upstream DNA trajectory, the NTD indirectly
stabilizes the —10 bp at the upstream fork junction of the transcription bubble. The
—10 bp, which must melt during RNAP backtracking, is distorted in factor-free TECs
(45), thus favoring backtracking. Stabilization of the —10 bp by RfaH and NusG, which
was observed in cryo-EM structures (15) and confirmed by cross-linking (15, 18),
provides a straightforward explanation for antibacktracking effects of the NTD. Second,
the NTD may stabilize the active TEC state by sterically disfavoring subtle conforma-
tional changes (termed swiveling) observed in cryo-EM studies of hairpin-stabilized
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paused TECs (43, 44). This proposed antiswiveling effect was experimentally demon-
strated only with the RfaH-NTD (15), consistent with the lack of NusG effects at hairpin
sites. Third, the NTD is positioned to interact with the NT-DNA. No density of this
NT-DNA segment was observable in the TEC:NusG structure (15), in agreement with the
lack of apparent sequence specificity of E. coli NusG (4). In contrast, RfaH contacts the
NT-DNA strand, which contains the RfaH recognition sequence (Fig. 1C; see below).
Underscoring the ubiquity of these regulatory mechanisms, structures of eukaryotic
TECs bound to DSIF and Spt4:Spt5 (33, 34) reveal that the Spt5-NGNs make similar
bridging contacts at the cleft between the RNAP pincers to stabilize the bubble, interact
with the upstream DNA duplex, and contact the NT-DNA (Fig. 1B). By constraining the
path of the NT-DNA, NusG and Spt5 have been proposed to prevent it from assuming
nonproductive conformations (50, 51); in support of this model, antipausing effect can
be achieved by artificially shortening the NT-DNA strand in the TEC (52).

NT-DNA interactions. In the TEC, the central nucleotides of the single-stranded
NT-DNA are solvent accessible and could thus be contacted by NTDs. Specific NT-DNA
readout has been documented for B. subtilis NusG (16) and E. coli RfaH (22). In the latter
case, recruitment to RNAP requires a conserved 12-nt operon polarity suppressor (ops)
DNA element (14), located in untranslated leader regions of RfaH-activated operons.
RfaH readily binds to the ops element in the NT-DNA in static TECs (22), but efficient
recruitment to rapidly transcribing RNAP could be more challenging, particularly
because RfaH cellular levels are low (53). Fittingly, in addition to making specific
contacts to RfaH, the ops element halts RNAP to await RfaH arrival. ops, a backtrack-
stabilized (class ) pause signal (21) that matches the consensus pause sequence, is the
strongest pause in E. coli (54, 55). Functional analyses suggest that the consensus pause
comprises a group of chimeric elements, of which ops is just one example; these signals
could decelerate transcription and mediate specific interaction with diverse regulatory
factors (56). The flanking, conserved regions of the pause element slow RNAP down,
thus favoring the recruitment of regulators in low abundance kinetically. In contrast,
the central region is short and variable, and both its primary and secondary structures
must be read out by regulators to ensure tight control of recruitment (56). For example,
RfaH is faithfully recruited to a few ops operons in E. coli while being vastly outnum-
bered by NusG (11).

To visualize the molecular details of DNA recognition by RfaH, the ops-paused TEC
was used to obtain cryo-EM structures of RfaH and NusG complexes (15). While both
RfaH and NusG are known to be active on the ops-TEC (21, 22), it represents a unique
recruitment target for RfaH. These structures revealed striking differences between DNA
conformations: the NT-DNA strand is invisible in NusG-bound TEC but forms a short
hairpin that is recognized and stabilized by the RfaH-NTD (Fig. 1C). Structural and
functional data demonstrate that the hairpin also forms in a binary RfaH:ops DNA
complex and is essential for RfaH function (56). The stem of the hairpin is formed by
two base pairs, a Watson-Crick C3:G8 base pair and a Saenger type XI G4:A7 base pair.
In the loop region, a conserved T6 base is flipped out to fit into a binding pocket of
RfaH-NTD, while G5 stacks on the upstream face of G4 and packs against the surface of
RfaH-NTD (15, 56). Very few RfaH side chains form base-specific hydrogen bonds with
DNA (15, 56), and each of these was shown to be important for RfaH function (57). Thus,
binding specificity of RfaH is conferred by only a few direct interactions that are
mediated by a secondary structure in the DNA. In contrast to other proteins that utilize
flipping of a base to allow sequence-specific readout (58-63), RfaH does not use a
wedge residue to mimic the flipped-out base. Instead, the NT-DNA hairpin exposes the
two central ops nucleotides for specific recognition (15, 56), which is an alternative way
of stabilizing a DNA conformation with a flipped-out base. The combination of con-
formational plasticity of the NT-DNA strand and neighboring RNAP features leads to
rich regulatory diversity, allowing context-dependent recruitment of auxiliary factors in
all domains of life.
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A question of a “postrecruitment” conformation of RfaH-bound TEC following RNAP
escape from the ops site remains to be addressed. Upon the loss of specific NT-DNA
contacts that preclude interactions with the B protrusion domain, RfaH could form
more extensive interactions with RNAP, explaining in part why it binds the TEC more
tightly than NusG (15). By bringing the DNA duplexes closer together, the RfaH-NTD is
expected to stabilize the NT-DNA strand in a looped-out, elongation-promoting con-
formation without making direct contacts to the DNA, which would likely hinder rapid
RNA synthesis.

Structural and regulatory diversity of NusG/Spt5-CTDs. In contrast to the nearly
identical interactions of NusG/Spt5-NTDs with the TEC that underlie their similar
(except at sequences that make specific contacts) effects on transcription elongation,
the CTDs mediate different interactions with other proteins that ultimately determine
the regulatory effect of each NusG homolog. CTDs may also establish additional
context-dependent contacts with the nucleic acids in the TEC (33, 34). For example, the
KOW1 domain and the adjacent linker (L1) of Spt5 contact and guide the upstream DNA
duplex in the TEC, whereas the KOW5 and KOWx-4 domains encircle the nascent RNA
(Fig. 1B). These DNA and RNA clamps likely stabilize the TEC and increase its proces-
sivity and may also inhibit formation of R-loops in the wake of transcribing RNAP.
Interestingly, in a subpopulation of RfaH:ops-TEC particles, the RfaH-CTD was bound on
the RNAP surface near the RNA exit channel (15) at a location similar to that occupied
by Spt5-KOW1 (33, 34). This observation suggests that the RfaH-CTD may alter the paths
of the upstream DNA and the nascent RNA, thereby contributing to inhibition of
hairpin-stabilized pausing and intrinsic termination (22, 25, 64).

While most regulatory diversity of the CTDs is achieved through different contacts
established by similarly folded B-barrel CTDs connected to the NTD by flexible linkers
(Fig. 2A), the structure of free RfaH (48) revealed that its CTD was folded as an a-helical
hairpin (Fig. 2B). In this autoinhibited state, the a-helical CTD tightly binds to and masks
the B'CH binding site on the NTD, ensuring that RfaH does not bind to RNAP unless
activated by the ops element. Upon recruitment, the domains dissociate and the CTD
spontaneously refolds into a NusG-type B-barrel (27, 65).

Autoinhibition as a regulatory mechanism. Autoinhibition provides an elegant
solution to a key regulatory challenge: how to direct NusG and RfaH, which bind to the
same site on the TEC, to different genes? Since RfaH opposes the essential Rho-
promoting NusG activity, its action must be narrowly confined to a few targets. While
rfaH is not essential in lab-grown E. coli, its absence increases sensitivity to detergents,
antibiotics, and bile (66, 67); reduces conjugation (68); increases biofilm formation (69);
and attenuates virulence (70, 71). Optimal fitness thus depends on a balanced action of
NusG and RfaH working alongside in the same cell. Their peaceful coexistence is made
possible by marked differences in their recruitment strategies. A conventional o-like
binding to distinct sequence motifs is likely not feasible for NusG, which is associated
with RNAP transcribing most of the genome (4) but appears to be bound only loosely
(15), necessitating frequent rebinding. In contrast, RfaH activates just a few targets,
making recruitment to a specific site a viable strategy.

Quite unusually, RfaH recruitment requires not only base-specific contacts between
RfaH-NTD and ops but also domain dissociation to expose the high-affinity B'CH-
binding site on the RfaH-NTD (Fig. 2B). The relief of autoinhibition is achieved when
RfaH binds to RNAP paused at the ops site and is thought to be triggered by the
recognition of the ops DNA hairpin and some RNAP element, most likely the BGL (65).
While a short DNA oligomer containing ops can bind to RfaH (at high concentrations)
and establish contacts that are similar to those observed in the complete ops-TEC, RfaH
remains in the autoinhibited state in the binary complex (56, 65).

The available data argue that the stability of the interdomain interface determines
the maintenance of the alternative «-helical RfaH-CTD fold and, thus, autoinhibition,
since isolated RfaH-CTD spontaneously folds into the B-barrel conformation (27, 48, 72).
Analysis of the autoinhibited RfaH structure identified several residues predicted to be
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E. coliNusG T. maritima NusG-ADII

CTD

FIG 2 Domain arrangements of NusG and RfaH. Structures of E. coli NusG (A); E. coli RfaH (B); T. maritima NusG-ADI|,
a variant of T. maritima NusG where the additional domain DIl is deleted (C); and E. coli RfaH, modeled in a closed
state according to T. maritima NusG-ADIl with its CTD in the all-B state (D). All structures are in ribbon
representation. In panel A, the loops L1 and L2 of NusG-CTD that interact with Rho are highlighted in yellow. The
region that is additionally involved in the NusG-CTD:S10 interaction is colored in orange. Phe165, which is essential
for both NusG-CTD:Rho and NusG-CTD:S10 interaction, is depicted as sticks. PDB IDs: E. coli NusG-NTD, 2K06; E. coli
NusG-CTD, 2JVV; RfaH, 5O0ND; RfaH-CTD all-B, 2LCL; T. maritima NusG, 2LQ8.

critical for the domain interactions. Phylogenetic analysis of the NusG family suggested
that among these residues, RfaH 193 and F130 could be essential for the unique
properties of RfaH: these residues are highly conserved among RfaH orthologs but are
different, and equally conserved, among NusGs. Consistent with this prediction, sub-
stitution of either residue for its NusG counterpart (I93E and F130V) converted RfaH into
a NusG-like regulator that lost dependence on ops even though neither residue is
involved in direct interactions with ops (73). Molecular dynamics simulations performed
by several groups using different methodologies identified multiple candidate mech-
anisms for the a—fB conversion of the RfaH-CTD but were all in agreement on the
central role of F130 in this conversion (74-77). One study also highlighted the contri-
bution of 193 therein (77).

In cells that encode more than one NusG homolog, differential targeting should be
enabled to insulate the NusG regulon from interference, but no information is available
on the mechanism of recruitment of any NusG>? other than RfaH. We argue that the
acquisition of autoinhibition may represent a relatively late step in the evolution of
RfaH. In relatively recent NusG duplication events, targeted recruitment could be
achieved in cis, a model consistent with observations that many NusG®Ps are encoded
within or near the operons they control (11). The availability of structural information
on both sets of interactions and sequences of numerous NusG homologs should enable
us to start addressing this question. By combining ancestral reconstructions of the
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NusG>P family with the biochemical and structural analysis of the putative key inter-
mediates, we expect to trace the evolution of this universally conserved family of
transcription factors. We note that autoinhibition does not have to be coupled to the
CTD transformation. We showed that in Thermotoga maritima NusG, interdomain
interactions between the NTD and the B-barrel CTD mask the binding sites for Rho, 510,
and RNAP and must be broken to achieve activation (Fig. 2C). In this case, the
autoinhibited state is argued to stabilize the protein, a function that may be important
in the hyperthermophilic niche of T. maritima (42).

Spontaneous refolding of the RfaH-CTD is critical for RfaH function as it enables
recruitment of the 30S ribosomal subunit to mRNAs that lack recognizable Shine-
Dalgarno elements, the major component of RfaH activation of gene expression (27).
Refolding of the RfaH-CTD into the B-barrel creates the interaction surface for S10 (27),
with the resulting RfaH-CTD:S10 complex closely resembling that formed by NusG (28).
Why is RfaH autoinhibition so drastic, requiring both the domain dissociation and the
CTD refolding? A model where the all-B RfaH-CTD interacts with the NTD as it does in
T. maritima NusG (RfaHP<TP) reveals a significantly smaller interaction surface than the
one in the all-a CTD-inhibited RfaH (Fig. 2B and D; 65). We speculate that a very potent
autoinhibition is necessary to tightly control the off-target recruitment of RfaH, which
would have severe deleterious effects because RfaH binds to RNAP more tightly than
NusG (15). Studies of structures and recruitment of NusG paralogs from other species
will reveal their underlying specificity mechanisms.

NusG-CTD interactions support transcription termination. Despite its widely
accepted role as a transcription processivity factor, E. coli NusG has been long known
to promote factor-dependent termination; depletion of NusG compromises termination
by Rho and bacteriophage HK202 Nun proteins (78). These termination-promoting
activities rely on protein-protein contacts mediated by the NusG-CTD. A recent struc-
ture of Rho bound to NusG (32) shows that two loops in the NusG-CTD (Fig. 2A), L1
(residues 140 to 144) and L2 (residues 163 to 167), directly interact with the C terminus
of Rho to promote Rho isomerization into an active, translocation-competent state in
which the hexameric ring is closed around the nascent RNA (79). An allosteric signal
triggered upon NusG binding rearranges a network of intersubunit contacts that
maintain Rho in an autoinhibitory state prior to binding to a preferred RNA substrate
(32). NusG stimulation is particularly important on sequences that lack high-affinity
C-rich Rho loading sites (also known as Rho utilization, or rut, sites) and thus represents
an important quality control mechanism. Bacterial genomes are pervasively transcribed,
generating many nonfunctional RNAs that include antisense and other translation-
defective mRNAs. These RNAs would be silenced by Rho but frequently lack canonical
rut sites. In E. coli, NusG corrects this problem by reprogramming Rho to act on
suboptimal C-poor sites (80). While this is an essential function of NusG, at least in E. coli
(8), it is not clear how junk RNAs are silenced in other species in which NusG is
dispensable, e.g., B. subtilis (81).

In contrast, NusG stimulation of Nun termination appears to be indirect. NusG
decreases Nun-mediated transcriptional arrest in vitro when present alone, presumably
via its antibacktracking activity (17), but potentiates termination/arrest by Nun when
NusA, B, and E are also present (82). Substitutions of NusG residues F144 and N145 (in
and adjacent to L1) interfere with Nun function (83). Similarly to the wild-type NusG, the
F144Y variant decreases RNAP pausing, inhibits Nun arrest, and stimulates Rho but fails
to promote Nun-mediated transcription arrest in the presence of other Nus factors (83).
This defect is likely explained by weakening of productive interactions with NusE/S10:
F144 is located at the interface with NusE in a structure of the NusG:E:B complex (28).
This interface is dominated by hydrophobic contacts, which are expected to be
weakened by a Tyr substitution.

Multicomponent complexes that regulate transcription. Long RNAs that are
translated inefficiently are susceptible to premature termination by Rho. Thus, special-
ized antitermination mechanisms have evolved to protect these transcripts from Rho.
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TEC TAC

FIG 3 Dual role of NusG in transcription elongation. In the TEC (left), NusG serves as an adapter to enhance the
nascent RNA release by Rho, and NusA stabilizes nascent RNA hairpins to stimulate pausing and intrinsic
termination. Ongoing NusG-coupled translation (not shown) would protect the RNA from Rho because the same
sites on the CTD make direct contacts to Rho and NusE/S10. In the TAC (right), NusA and NusG-CTD interactions
are reprogrammed to support the antitermination function of AN. The antibacktracking activity of the NusG-NTD
may independently contribute to the pause resistance of the TAC.

Early studies identified NusG as an essential component of multipartite transcription
antitermination complexes (TACs) that assemble on nascent RNAs bearing box A
elements and box B hairpins during transcription of phage A or rRNA genes (84, 85). The
shared ability of NusG homologs to decrease RNAP pausing, which is required for
termination (86), suggested that NusG contribution to antitermination could be due in
part to its antipausing activity. However, a recent medium-resolution cryo-EM structure
of a complete AN-dependent TAC (AN-TAC) that contains NusA, NusB, NusE, and NusG
and AN paints a picture in which protein-protein contacts take center stage instead (46).
AN-TAC is resistant to both hairpin- and Rho-dependent termination (87), but the Nus
factors appear to play supporting/stabilizing roles as AN alone has been shown to
promote readthrough of intrinsic terminators over short distances (88). An intrinsically
disordered AN threads through the TAC and along the RNA, making numerous contacts
to RNAP and the Nus factors. Strikingly, AN neutralizes termination-promoting proper-
ties of NusA and NusG, converting them into antitermination factors (Fig. 3). AN
remodels the B flap domain, which forms one wall of the RNA exit channel, and the
RNA-binding domains of NusA to redirect the nascent RNA away from the RNA exit
tunnel where formation of a terminator hairpin, stabilized by NusA in the absence of AN
(89), would trigger inactivating changes in RNAP (43, 44). These interactions explain
how intrinsic termination is disfavored (90) and why Rho may fail to dissociate AN-TAC
(91, 92): Rho has to track along the nascent RNA to trigger termination and could thus
be sterically blocked from accessing RNAP by NusA domains. The AN-TAC structure also
reveals that NusE interacts with L1 and L2 loops of the NusG-CTD, i.e., the same region
that binds to Rho (32), thereby preventing NusG activation of Rho through direct
exclusion. In addition, their juxtaposition in the complex suggests that NusG-NTD and
AN may cooperate to stabilize the upstream edge of the transcription bubble, reducing
pausing and termination; NusG and, even more prominently, RfaH display this stabi-
lizing activity (15). A higher-resolution view of AN and NusG interactions with the
nucleic acid chains in the AN-TAC would be required to reveal fine details of the
antitermination mechanism. In particular, the C-terminal segment of AN, which re-
mained disordered in AN-TAC, could make additional functional interactions.

Using a highly flexible protein hub able to maximize contacts with the TEC and
modify its properties emerges as a common strategy in transcription regulation. The
termination factor Nun, a functional antipode of AN, is also a small and intrinsically
disordered protein. Upon binding to an N-utilization (nut) box A-box B RNA element
(93), Nun arrests the elongating RNAP and blocks its interactions with AN, thus stopping
transcription of the A genome and preventing coinfection with A (82). A structure of
Nun bound to a nonspecific, factorless TEC reveals that Nun sneaks inside the RNAP,
making numerous contacts that fill in preexisting cavities in the structure and lock the
enzyme in place (45), blocking translocation in either direction (94). In this structure,
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only a short C-terminal segment of the full-length Nun protein, which is sufficient for
Nun-mediated arrest, is visualized. However, just like AN, Nun activity is potentiated by
NusA, NusB, NusE, and NusG that assemble on the nascent RNA to bolster its arrest
activity (83, 95). Future studies will show whether the missing 80% of Nun binds to and
remodels the intrinsically pliable NusA and NusG (or recruits other players) to make a
supertermination complex; these contacts could explain observed site-specific differ-
ences in Nun action (83).

Another large nucleoprotein complex thought to be assembled from the same
cellular building blocks is the ribosomal (rrn)-TAC. The rrn operons also contain box A
and box B motifs, although in reversed order, and published data show that rrn-TAC and
AN-TAC share many functional requirements (84, 92). The minimal rrn-TAC is composed
of Nus factors and RNA, but the identity of a central AN-like hub has remained elusive.
The presence of cell extract was shown to stimulate rrn antitermination, and ribosomal
protein S4 was identified as a key player (96). Other proteins recently implicated in rRNA
biosynthesis, SuhB (97) and YbeY (98), may be involved in rrn antitermination as well
but are more likely to function posttranscriptionally, and the importance of antitermi-
nation has been questioned (97). In particular, SuhB plays a critical role in rRNA
biogenesis by promoting the maturation of 16S RNA (97). However, while the evidence
for S4 contribution to antitermination is solid, it is unclear whether S4 is principally
responsible for the potent antitermination activity of the rrn-TAC. Secondary RNA
structures, stabilized by NusA (or S4), could hinder Rho access (91, 96), but Rho is able
to terminate synthesis of highly structured tRNAs (99). Antipausing properties of NusG
unmasked by NusE contacts to the NusG-CTD (28) are unlikely to explain Rho inhibition
because a much more potent antipausing activity of RfaH (15) is largely dispensable for
its anti-Rho effects (12), which are instead due to RfaH activation of translation (27).
Perhaps, we should look for an intrinsically disordered protein that can make multi-
dentate contacts with the rrn-TAC to hold the complex together and stabilize it.
Notably, S4 contains a long flexible N-terminal tail that is essential for viability (100) and
could play an analogous role.

Specialized NusG paralogs. In addition to the housekeeping NusG/Spt5 present in
every cell, specialized paralogs have been identified in many species. NusG®Ps are
broadly distributed in bacteria (64) and are also present in ciliates (101) and plants
(102). While functions of most paralogs remain to be determined, the available evi-
dence suggests that they arose via gene duplication and evolved to modulate adap-
tation to diverse niches ranging from free-living to pathogenic. Most bacteria encode
only the housekeeping NusG; in others, several paralogs, as many as seven in Bacte-
roides fragilis (103), are present. In E. coli, RfaH is encoded on the chromosome, whereas
ActX and TraB are encoded on R6K and F plasmids, respectively (104, 105). Bacterial
NusG paralogs have been shown to activate biosynthesis of capsules in Klebsiella
pneumoniae (106) and B. fragilis (103), toxins in Serratia entomophila (107), antibiotics in
Myxococcus xanthus (108) and Bacillus amyloliquefaciens (64), and lipopolysaccharides
in several species (14). NusG>Ps encoded on multidrug-resistant plasmids isolated from
clinical K. pneumoniae strains could be essential for the spread of antibiotic-resistant
genes, as their location in the pilus biosynthesis operons (109) suggests.

Similar to ¢ initiation factors, which compete for RNAP core molecules and direct
them to dedicated subsets of promoters (110), NusG®Ps comprise a family of alternative
transcription factors that bind to an overlapping site with each other and with o on
elongating RNAP (15, 111). Unlike os, which all act to direct the formation of active
promoter complexes, NusG>Ps likely function differently from NusG. For example, RfaH
activates several long horizontally acquired operons that are silenced by NusG and Rho
(11, 12), and the loss of rfaH can be suppressed by defects in rho and nusG (66).

The details of molecular mechanisms by which other NusGSPs work are sketchy at
best. Their association with long operons, such as 70- to 80-kb antibiotic biosynthesis
clusters in M. xanthus (108) and B. amyloliquefaciens (64), is suggestive of a need for
specialized antitermination mechanisms. At least in the case of RfaH, inhibition of
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termination in vitro is not potentiated by accessory cellular factors (22), in contrast to
rr-TAC (96). One possibility is that, like RfaH, other NusG®Ps simply lose contacts with
Rho and turn into Rho inhibitors. This conversion appears straightforward because key
NusG:Rho contacts are highly localized; replacing five residues in its CTD with the
corresponding residues of NusG converts RfaH into a potent Rho activator (32). An
alternative possibility, suggested by studies of LoaP (64), is that NusG>Ps could reduce
intrinsic hairpin-dependent termination by altering the nascent RNA contacts in the exit
channel via CTD:f3 flap contacts observed with RfaH (15).

NusG—an adapter between transcription and translation? In addition to their
role in the assembly of TACs and in Rho-dependent termination, contacts between
NusG and S10 have been proposed to underpin coupling of transcription and transla-
tion in Bacteria and Archaea, where a nascent RNA emerging from RNAP can be
immediately bound by the ribosome (112), protecting it from premature release by Rho
(113). Coupling has been observed directly (114), but its timing, mechanism, and extent
remain debated (115), and even its existence has been recently called into question
(116). Intimate coupling between the two machines is supported by observations that
RNAP and the ribosome move in unison (117, 118) and that the lead ribosome blocks
RNAP backtracking (118) as well as the formation of the termination hairpin (119). Two
modes of coupling have been proposed. In the NusG-coupled model, direct interac-
tions between NusG-CTD and (NusB-bound) S10 captured by NMR spectroscopy (28)
link the NusG-NTD-bound RNAP to the ribosome; a short flexible linker that connects
the two domains would ensure that the two machines move together yet would allow
for some variation in rates. This model is supported by a report that E. coli NusG
associates with 70S in vivo (29) and by observations that the refolded RfaH-CTD makes
similar contacts to S10 (27) and compensates for the lack of Shine-Dalgarno elements
on the target mRNA, presumably by recruiting 30S through direct protein-protein
contacts. Importantly, while the S10 contacts with NusG and RfaH were first observed
with isolated proteins (27, 28), recent structures reveal that these contacts are pre-
served in the complete E. coli TEC (46, 65). The alternative model posits that RNAP and
the ribosome are coupled directly, in the absence of an adapter protein. This model is
supported by the cryo-EM structure of an expressome, in which transcribing RNAP
establishes multiple interactions with 70S translating the nascent mRNA, leaving es-
sentially no free RNA in between (120), and by direct contacts between RNAP and the
ribosome observed in solution (121, 122). Although they appear to be mutually
exclusive, both modes of coupling may be utilized on different genes. Analysis of NusG
localization within the E. coli genome revealed a significant delay in NusG recruitment
to the RNAP transcribing most operons (4), suggesting that coupling, if it occurs on
upstream mRNA regions apparently devoid of NusG, is NusG independent.

Functional cycles of RfaH and NusG. NusG homolog contact sites on RNAP overlap
those for initiation factors, necessitating factor exchange during the transcription cycle
(111, 123). This process could be relatively straightforward in the case of NusG, which
binds to RNAP relatively weakly and would dissociate during/after termination and then
bind again after o release. An observed delay in NusG recruitment in vivo (4) could in
some cases be due to persistent o association (124, 125). RfaH, in contrast, is recruited
at promoter-proximal ops sites (11), and its off-target recruitment is disfavored by a
large excess of NusG (53) and autoinhibition. We posit that during recruitment to an
ops-paused TEC, autoinhibited RfaH forms a transient encounter complex (Fig. 4) in
which the RfaH-NTD can recognize the NT-DNA but is unable to bind to the B'CH until
the RfaH-CTD is released. Formation of this complex requires the release of o and likely
involves additional contacts with RNAP, plausibly with the BGL. The functional role and
the geometry of the hypothetical encounter complex are yet unknown. Contacts in the
encounter complex could (i) increase the local RfaH concentration near the B'CH,
facilitating binding of the RfaH-NTD liberated upon transient domain dissociation, or (ii)
induce conformational changes that destabilize the interdomain interface. Our failure
to observe an exchange between the autoinhibited and activated states of free RfaH by
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FIG 4 A complete functional cycle of RfaH. (i) Free RfaH exists in a closed, autoinhibited state with its CTD in an
a-helical conformation. (i) Recruitment to the ops-paused TEC most probably proceeds via formation of an
encounter complex where RfaH makes contacts to the ops hairpin and RNAP, positioning RfaH near its final binding
site. (iii) The domains dissociate, the RfaH-NTD binds to its high-affinity binding site, and the freed RfaH-CTD is
transformed into a NusG-type B-barrel. This active state persists throughout transcription, (iv) hindering Rho-
dependent termination and bridging transcription to translation. After transcription stops, the released RfaH
transforms back into the autoinhibited state (i).

NMR spectroscopy (65) supports the second scenario. Upon domain separation, the
RfaH-NTD binds RNAP to form a stable and processive RfaH:TEC complex that persists
throughout elongation (11), whereas the RfaH-CTD transforms into the NusG-type
B-barrel and binds S10, converting RfaH into a potent activator of translation initiation
(27) and possibly linking RNAP and 70S thereafter, as proposed for NusG (29). Finally,
we recently showed that upon its dissociation from RNAP RfaH is recycled by trans-
forming back into the autoinhibited state (65), thus resetting the cycle. If RfaH was
prematurely released during transcription, recycling would block its reengagement,
making the observed RfaH retention on the TEC for thousands of nucleotides (11) even
more remarkable. RfaH-CTD contacts with 70S (27) or with RNAP (15) could maintain
RfaH in an open, activated state and thus favor its stable association with RNAP. The
reversible transition between the autoinhibited and activated states of RfaH bolsters its
standing as a “transformer” protein (126). While RfaH plasticity is remarkable even
among metamorphic proteins, it is plausible that other members of the NusG family use
similar strategies to exert potent, yet exquisitely targeted, effects on gene expression.

Closing remarks. Proteins from the NusG family use largely congruent contacts
with RNAP to promote productive RNA synthesis but confer very diverse effects on
gene expression through interactions with nucleic acids, other regulatory proteins, and
potentially small ligands. Studies of just a few representative examples of this family
have already documented two different modes of autoinhibition, a complete and
reversible refolding of an entire protein domain, a unique mode of DNA recognition
with the NT strand serving as a versatile regulatory element, and a novel mechanism of
ribosome recruitment. The unprecedented structural plasticity of NusG homologs and
the wide range of their interaction partners and resulting activities all but guarantee
that future studies will uncover new regulatory mechanisms employed by these
ubiquitous proteins.
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