
Total Organic Carbon (TOC): a simple tool for assessing micro(nano)plastics and nanocellulose recovery during size-based fractionation

Guillaume Bucher¹, Gabriella F. Schirinzi¹, Chiara Verra¹, Hind El Hadri¹, Otmar Geiss¹, Douglas Gilliland*¹

Supplementary Information

Fig. S1 Typical fractogram of a crystalline nanocellulose sample during AF4 fractionation with MALS, rG and RI signals. The collection times of fractions F1 and F2 are shown in the background in yellow and orange, respectively.

¹European Commission, Joint Research Centre (JRC), Ispra, Italy

^{*}Corresponding Author

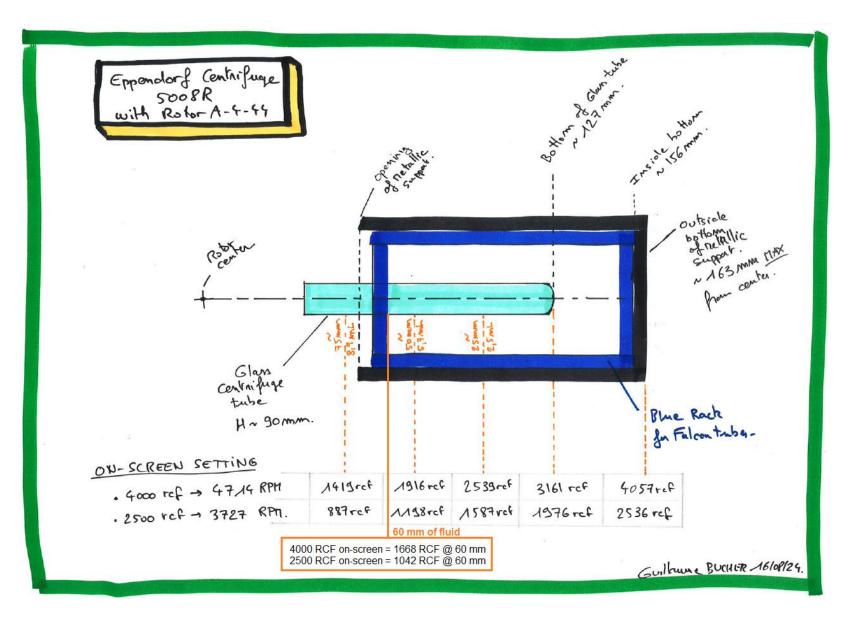
Table S2. pH, total inorganic carbon (TIC) and concentrations of 39 elements in environmental surface water samples collected from Lake Maggiore (Ispra, Italy, Coordinates 45°48'23.8"N - 8°36'23.7"E) and the Variola River (Monte Ossolano, Italy, Coordinates 46°07'31.2"N - 8°13'29.3"E).

	Lake Maggiore	Variola River		
Element Concentrations	pH 7.84	pH 8.03		
(μg L ⁻¹)	TIC 10.3 mg L ⁻¹	TIC 14.6 mg L ⁻¹		
Li	0.909	<lod (0.6)<="" th=""></lod>		
Ве	<lod (0.4)<="" th=""><th><lod (0.4)<="" th=""></lod></th></lod>	<lod (0.4)<="" th=""></lod>		
В	2.8	<lod (0.7)<="" th=""></lod>		
Na	2735	798		
Mg	3373	6576		
Al	5.93	4.22		
Si	3718	6861		
Cl	3542	896		
К	1445	409		
Са	13721	12984		
Sc	0.010	<lod (0.007)<="" th=""></lod>		
Ti	0.125	<lod (0.1)<="" th=""></lod>		
V	0.150	0.184		
Cr	0.079	1.691		
Mn	0.876	0.099		
Fe	5.065	0.590		
Со	0.016	0.012		
Ni	0.739	3.396		
Cu	0.766	0.574		
Zn	<lod (0.014)<="" td=""><td>0.103</td></lod>	0.103		
As	1.283	0.222		
Se	0.206	0.247		
Rb	2.057	0.562		
Sr	200	181		
Υ	0.017	0.006		
Zr	0.006	0.005		
Мо	1.082	2.467		
Ru	<lod (0.004)<="" th=""><th><lod (0.004)<="" th=""></lod></th></lod>	<lod (0.004)<="" th=""></lod>		
Rh	<lod (0.001)<="" th=""><th><lod (0.001)<="" th=""></lod></th></lod>	<lod (0.001)<="" th=""></lod>		
Pd	0.017	0.020		
Ag	0.002	<lod (0.001)<="" th=""></lod>		
Cd	<lod (0.011)<="" th=""><th>0.016</th></lod>	0.016		
In	<lod (0.002)<="" th=""><th><lod (0.002)<="" th=""></lod></th></lod>	<lod (0.002)<="" th=""></lod>		
Sn	0.015	0.040		
Ва	12.4	3.9		
Eu	<lod (0.001)<="" th=""><th><lod (0.001)<="" th=""></lod></th></lod>	<lod (0.001)<="" th=""></lod>		
Au	0.015	0.015		
Pb	0.018	0.089		
Bi	<lod (0.001)<="" th=""><th><lod (0.001)<="" th=""></lod></th></lod>	<lod (0.001)<="" th=""></lod>		

Table S3. AF4 parameters for nanocellulose fractionation

AF4 parameters					
Membrane	Regenerated cellulose 10 kDa				
Channel	Short channel with 350 µm spacer				
Temperature	25.0 ± 0.1 °C (channel and detectors)				
Eluent	1 mM NaCl				
Detector flow	0.5 mL min ⁻¹				
Cross flow	0.8 mL min ⁻¹				
Focus flow	2 mL min ⁻¹				
Elution method	2 min elution + cross flow				
	2 min focus				
	3 min focus + injection				
	3 min focus				
	60 min elution + cross flow				
	5 min elution (no cross flow)				

Table S4a. Expected and TOC-derived solid content for different PS micro- and nano-particle standards


	Particle characteristics		TOC measurement procedure	Solid Content (%wt)			.)
Sample Name	Nominal Size (nm)	Polymer Type	p. 000.0.	Expected	Source	Measured by TOC	Recovery (%) as Measured/Expected
PS 50 nm	50	PS	Standard	2.6%	CoA	2.4%	92.6% ± 0.7%
PS 100 nm	100	PS	Standard	2.6%	CoA	2.7%	104.8% ± 0.3%
PS 200 nm SA	200	PS	Standard	2.2%	Measureda	2.6%	118.0% ± 1.1%
PS 200 nm Poly	200	PS	Standard	2.6%	CoA	2.7%	104.9% ± 0.2%
PS 200 nm Fluo	200	PS	Standard	2.6%	CoA	2.6%	101.2% ± 0.3%
PS 500 nm	500	PS	Standard	2.7%	CoA	2.6%	98.1% ± 0.3%
PS 750 nm	750	PS	Standard	2.7%	CoA	2.7%	100.0% ± 0.7%
PS 1 μm	1000 (1 μm)	PS	Standard	2.6%	CoA	2.6%	100.7% ± 1.5%
PS 8 μm	8000 (8 μm)	PS	Standard	15.8%	Measureda	13.9%	87.9% ± 0.3%
DC 10	10000 (10 μm)	PS	Standard	2.3% Measur	Maasurada	2.0%	85.4% ± 0.8%
PS 10 μm			Modified		Measured	1.8%	79.2% ± 1.4%
DC 20 um	30000 (30 μm)	PS	Standard	10.0%	Measured ^a	7.4%	73.4% ± 3.7%
PS 30 μm			Modified			11.4%	113.6% ± 27.7%
PS 45 μm	45000 (45 μm)	n) PS	Standard	2.7%	CoA	1.6%	60.4% ± 10.4%
			Modified			2.9%	107.2% ± 5.3%
DC 00	00000 (00)	PS	Standard	2.5%	СоА	0.14%	5.6% ± 0.03%
PS 90 μm	90000 (90 μm)		Modified			2.8%	111.6% ± 15.9%

a solid content measured in-house as = dry weight of particle residue (drying overnight at 40° C) / wet weight of particle suspension (50 μ L of suspension)

Table S4b. Expected and TOC-derived solid content for different types of micro- and nano-particles

	Particle chara	cteristics	%Carbon in the polymer	TOC measurement procedure	Solid Content (%wt))	
Sample Name	Size (nm)	Polymer Type			Expected	Source	Measured by TOC	Recovery (%) as Measured/Expected
Au-PE	≈ 120 ($\rho = 0.967 \text{ g cm}^{-3}$)	PE	85.63%	Standard	0.19%	Measured ^a	0.18%	93.8% ± 1.0%
Au-PP	≈ 120 ($\rho = 0.962 \text{ g cm}^{-3}$)	PP	85.63%	Standard	0.24%	Measured ^a	0.22%	89.7% ± 0.8%
Au-PVC	≈ 120 ($\rho = 1.435 \text{ g cm}^{-3}$)	PVC	38.44%	Standard	0.22%	Measured ^a	0.28%	126.2% ± 0.6%
CNC 1	≈ 7 (diameter) ≈ 208 (length)	crystalline nanocellulose	44.45%	Standard	10.6%	CoA	10.21%	96.3% ± 0.9%
CNC 2	≈ 6 (diameter) ≈ 169 (length)	crystalline nanocellulose	44.45%	Standard	6.0%	CoA	6.07%	101.2% ± 1.0%
CNC 3	≈ 5 (diameter) ≈ 220 (length)	crystalline nanocellulose	44.45%	Standard	6.0%	CoA	5.91%	98.5% ± 1.0%
NFC 1	≈ 7 (diameter) ≈ 188 (length)	TEMPO- oxidized cellulose nanofibers	40.92%	Standard	1.0%	СоА	1.024%	102.4% ± 1.0%
PET	< 5000 ($\rho = 1.4 \text{ g cm}^{-3}$)	PET	62.50%	Standard	0.0025%	Measured ^a	0.0021%	86.2% ± 2.9%

^asolid content measured in-house as = (dry weight of particle residue (drying overnight at 40° C) / wet weight of particle suspension (50 μ L of suspension)) – contribution from Au to the mass of particles

Fig. S2 Diagram (top view) of the A-4-44 rotor to scale, showing the position of the tube containing the sample. The table at the bottom indicates the actual g-force (expressed in RCF) experienced by the sample at various position with a focus at 60 mm when setting 2500 RCF or 4000 RCF on the centrifuge screen.

Table S5. Expected and measured cellulose concentrations in stock suspensions before and after filtration with 0.45 μ m PVDF syringe filters.

Material	CNC 1	CNC 2	CNC 3	NFC 1
Cellulose				
concentration from	10.60	6.00	6.00	1.00
CoA (% wt)				
Cellulose				
concentration from	10.21 ± 0.10	6.07 ± 0.06	5.91 ± 0.06	1.024 ± 0.01
TOC before	10.21 ± 0.10	0.07 ± 0.00	3.91 ± 0.00	1.024 ± 0.01
filtration (% wt)				
Recovery as ratio of	96.3 ± 0.9	101.2 ± 1.0	98.5 ± 1.0	102.4 ± 1.0
TOC vs. CoA (%)	30.3 ± 0.3	101.2 ± 1.0	96.3 ± 1.0	102.4 ± 1.0
Cellulose				
concentration from	10.16 ± 0.10	6.15 ± 0.06	5.90 ± 0.06	1.015 ± 0.01
TOC after filtration	10.10 ± 0.10			
(% wt)				
Recovery after				
filtration 0.45 μm	99.5 ± 2.0	101.4 ± 2.0	99.7 ± 2.0	99.0 ± 2.0
PVDF (%)				