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Abstract

Genomic selection is an attractive strategy for apple breeding that could reduce the length of breeding cycles. A possible limitation to the
practical implementation of this approach lies in the creation of a training set large and diverse enough to ensure accurate predictions. In
this study, we investigated the potential of combining two available populations, i.e., genetic resources and elite material, in order to obtain
a large training set with a high genetic diversity. We compared the predictive ability of genomic predictions within-population, across-popu-
lation or when combining both populations, and tested a model accounting for population-specific marker effects in this last case. The
obtained predictive abilities were moderate to high according to the studied trait and small increases in predictive ability could be obtained
for some traits when the two populations were combined into a unique training set. We also investigated the potential of such a training set
to predict hybrids resulting from crosses between the two populations, with a focus on the method to design the training set and the best
proportion of each population to optimize predictions. The measured predictive abilities were very similar for all the proportions, except for
the extreme cases where only one of the two populations was used in the training set, in which case predictive abilities could be lower than
when using both populations. Using an optimization algorithm to choose the genotypes in the training set also led to higher predictive abili-
ties than when the genotypes were chosen at random. Our results provide guidelines to initiate breeding programs that use genomic selec-
tion when the implementation of the training set is a limitation.

Keywords: genomic selection; training set design; population combination; germplasm; Malus domestica; Genomic Prediction;
GenPred; Shared Data Resource

Introduction
Breeding programs in outbred fruit tree crops can take many
years before new varieties are released, in part because of the
long juvenile phase of the trees. Shortening the breeding cycle
length for these crops could help increase genetic gain (van
Nocker and Gardiner 2014). The length of the breeding cycle is
also a constraint when breeders aim to introgress new traits from
distant relatives or genetic resources, because several genera-
tions are usually needed before genotypes with the desired traits
can be released as varieties.

In both cases, the use of molecular markers is an attractive
strategy for the early identification of the most promising selec-
tion candidates or genetic resources (Myles 2013). Since most ap-
ple breeding programs around the world rely on a limited
number of genotypes that are frequently used as parents for vari-
ety development (Noiton and Alspach 1996), mating strategies
based on molecular markers could be used to broaden the genetic
base of elite material (Yu et al. 2016) by identifying without

phenotyping promising genetic resources that could be used as
novel parents in pre-breeding programs (Crossa et al. 2016).

Recently, an approach referred to as genomic selection has
particularly gained popularity among plant breeders (Voss-Fels
et al. 2019), as genetic gain is expected to be higher with genomic
selection compared to marker-assisted breeding, especially for
complex traits (Xu et al. 2020). Genomic selection uses a training
population of individuals that have been genotyped and pheno-
typed in order to estimate marker effects, then allowing the esti-
mation of genomic breeding values of a candidate population
that has only been genotyped (Meuwissen et al. 2001). The suc-
cess of genomic selection depends on the accuracy of the pre-
dicted breeding values. The size of the training set (Zhang et al.
2017; Edwards et al. 2019), the relatedness between the training
set and the candidates (Clark et al. 2012; Lehermeier et al. 2014) or
the genetic architecture of the trait (Daetwyler et al. 2010;
Wimmer et al. 2013) have been reported as factors affecting pre-
diction accuracy. In fruit tree crops, the potential of genomic
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selection has been outlined (Kumar et al. 2012a; Nsibi et al. 2020)
and its implementation could help in efficiently using genetic
resources in apple (Kumar et al. 2020). However, initiating
pre-breeding programs based on genomic predictions can be
challenging, in part because maintaining and phenotyping popu-
lations of large size is time-consuming and costly. The establish-
ment of a large training set could thus limit the implementation
of genomic selection. A way to overcome this limitation could be
to combine data coming from several breeding populations, like
historical data or data from other countries. This strategy has
been explored in animal breeding (Hayes et al. 2009; Ibán~ez-
Escriche et al., 2009; Wientjes et al. 2015) and more recently in
plant breeding (Technow and Totir 2015; Sverrisdóttir et al. 2018;
Olatoye et al. 2020) generally showing little to no gain in predic-
tion accuracy. This observation may result from differences in
marker effects between the combined populations, as well as
from the differences in relatedness between these populations
and the candidates to predict. Prediction models that allow the
estimation of population-specific marker effects have been pro-
posed (Karoui et al. 2012; Schulz-Streeck et al. 2012; Lehermeier
et al. 2015) but few studies have used such models in plant breed-
ing (Ramstein and Casler 2019; Rio et al. 2019). Differences in LD
patterns between the combined populations may also explain
the low observed gains from combination. In this case, it has
been suggested to use high-density marker data in order to en-
sure consistency in SNP-QTL linkage disequilibrium between
populations (de Roos et al. 2008).

Multi-population training sets can also be interesting when
the genotypes to predict results from crosses between the com-
bined populations. If no phenotypic records are available for the
progenies of such crosses (as can be the case when initiating a
new breeding program or when crossing selection material with
exotic germplasm), one could consider combining populations in
order to increase the diversity of the training set (Brandariz and
Bernardo 2019). In this context, an optimum proportion of each
combined population may exist. If this occurs and the sizes of the
populations differ, it can be relevant to use a subset of the popu-
lations rather than to combine all the genotypes into a unique
training set. When the size of the training set has to be fixed in
advance, different algorithms exist to optimize the composition
of the training set (Rincent et al. 2012; Akdemir et al. 2015; Mangin
et al. 2019; Ou and Liao 2019) and they could be used to choose
the genotypes to include in a training set in each of the combined
populations (Isidro et al. 2015).

In this study, we considered the two abovementioned scenar-
ios to investigate the interest of combining different populations
into a unique training set for genomic prediction in apple. First,
we assessed the potential increase in prediction accuracy when
combining two populations, namely genetic resources and elite
material, instead of using only one of the two, either using a stan-
dard GBLUP model or a model that allows the marker effects to
differ between populations. We then predicted the GEBV of the
progenies from crosses between elite material and genetic
resources and evaluated the prediction accuracy when using dif-
ferent proportions of genetic resources and elite material in the
training set and different strategies to choose the genotypes of
this training set.

The objectives of our study were to (1) compare the predictive
ability of genomic prediction models using simple or combined
training sets within and across populations, (2) investigate the ef-
fect of different proportions of the two populations used in a
training set and (3) assess the impact of high and medium marker
density in these cases.

Materials and methods
In this study, three datasets were used for genomic predictions:
the first one (hereafter referred to as the FBo-Hi dataset) regroups
data coming from two past European projects while the second
dataset (from here on referred to as the REFPOP dataset) contains
data from an ongoing European project. The genotypes in both
the FBo-Hi and REFPOP datasets are either old varieties (called ge-
netic resources from now on) or progenies from breeding pro-
grams (called elite material in this study). Due to the different
experimental design between the panels of the two datasets (see
below), the FBo-Hi and REFPOP datasets provide an opportunity
to investigate the effect of genomic predictions with or without
the presence of genotype by environment interactions.

The third dataset contains data from crosses between old and
modern varieties, which are part of a pre-breeding initiative en-
gaged at IRHS, INRAE Angers. In this study, this dataset was only
used as a validation set (VS).

Plant material
FBo-Hi panel
The panel regroups two different apple populations, from here on
referred to as the genetic resources and elite material of the FBo-
Hi dataset, for which phenotypic and genotypic data are avail-
able. The genetic resources represent European apple germplasm
preserved in six European core-collections along with data com-
ing from the EU-FP7 FruitBreedomics (FBo) project described in
Laurens et al. (2018), while the elite material consists of progenies
originating from biparental combinations from six European
breeding programs that were gathered for pedigree-based QTL
analysis during the HiDRAS (Hi) project (Kouassi et al. 2009). A to-
tal of 1194 unique genotypes (mainly old dessert apple cultivars)
from the genetic resources were genotyped and phenotyped for
at least one trait (see below). Similarly, 1018 progenies from 23 bi-
parental combinations were genotyped and phenotyped for at
least one trait. The genotypes of the FBo-Hi panel were not repli-
cated across sites, except for some genotypes that were used to
adjust phenotypic data.

REFPOP panel
The apple REFPOP is described in detail in Jung et al. (2020). This
panel consists of 269 cultivars (hereafter referred to as genetic
resources of the REFPOP) that are representative of the worldwide
apple genetic diversity and of 265 progenies (hereafter referred to
as elite material of the REFPOP) originating from 27 biparental
combinations from various European breeding programs. Some
of the genotypes of the REFPOP panel are also part of the FBo-Hi
panel, as 189 accessions and 155 progenies are found in both pan-
els. The panel is replicated across six locations in six European
countries with contrasting environments and each genotype is
replicated at least twice in each environment. At each site, the
genetic resources and elite material are planted in the same or-
chard.

Panel of hybrids
The panel consists of 348 so-called “hybrids” originating from 10
biparental combinations of approximately the same size. Each
combination involved a controlled cross between an old cultivar
and an elite cultivar. The mating design is presented in
Supplementary Table S1 and involved five old cultivars and five
elite cultivars. Each hybrid genotype was represented by only one
tree in the orchard in Angers, France.
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Genotypic data
Genotyping of the plant material
For both the FBo-Hi and REFPOP panels, the genetic resources
were genotyped using the Affymetrix Axiom Apple 480K SNP gen-
otyping array (Bianco et al. 2016) and the elite material using the
Illumina Infinium 20K SNP genotyping array (Bianco et al. 2014).
The hybrids were also genotyped with the 20K genotyping array.
After filtering, 303,239 SNP markers were retained from the 480K
array and 10,295 SNP markers from the 20K array, of which 7060
were common to the 480K array. More information about the fil-
tering and quality check procedure can be found in Jung et al.
(2020).

Genotype imputation
For the elite and hybrids genotypes, the 20K SNPs were completed
to reach the 480K genotyping array density by imputation with
BEAGLE 4.0 software (Browning and Browning 2007), which can
use a reference set of phased marker data along with pedigree in-
formation to improve the imputation quality. The reference
panel proposed by Jung et al. (2020) was used in this study.
Missing SNP marker data in the reference panel were first im-
puted and haplotypes were phased using the default parameters
of BEAGLE 4.0. The phased marker data along with pedigree infor-
mation inferred in Muranty et al. (2020) and updated in an ongo-
ing apple pedigree project (Howard et al. 2018) were then provided
to the software for the imputation from medium to high-density.
Since high-density genotypes were not available for the elite
material in the FBo-Hi and hybrids datasets, we could not directly
assess the imputation accuracy by comparing imputed and true
marker data. Imputation accuracy was estimated by computing
the mean of the markers Allelic R2 (AR2) values provided by
Beagle 4.0 after imputation, where the AR2 value of a marker is
an approximation of the correlation between true and imputed
genotypic values based on the posterior probabilities of imputa-
tion (Browning and Browning 2007). We considered that a marker
was well imputed if its AR2 value was larger than 0.7.

Phenotypic data
FBo-Hi dataset
The genetic resources were phenotyped between 2012 and 2014
in six European research institutes. Several fruit quality and phe-
nology traits were measured by assessor pairs according to the
recommendations of the European Cooperative Programme for
Plant Genetic Resources (Watkins and Smith 1982) and the nota-
tion for each trait was harmonized between institutes. When
available, each institute also provided FBo-Hi notations for the
measured traits (Supplementary Table S2).

The elite material was phenotyped between 2003 and 2005 in
six European countries. Several traits linked to the productivity
and fruit quality were measured. More details about the pheno-
typing procedure can be found in Muranty et al. (2015) and
Kouassi et al. (2009).

Five traits were phenotyped in both populations: harvest date,
fruit over-color, fruit juiciness, fruit acidity, and fruit crispness.
As we were interested in combining phenotypic information from
both populations, only these traits were used for the genomic
predictions. When the traits in the two populations were evalu-
ated using different ordinal scales, a correspondence table be-
tween the two scales was created in order to use phenotypic data
that could be combined.

REFPOP dataset
Traits related to yield, fruit quality and phenology were mea-
sured between 2018 and 2020 using a common protocol in each
location. The detailed protocol is described in Jung et al. (2021).
Harvest date and fruit over-color were the only two traits that
were measured in both the FBo-Hi and the REFPOP panels.

Dataset of hybrids
The hybrids were phenotyped in 2019 and 2020. Fruit weight, fruit
number, fruit over-color, and harvest date were measured for
each tree following the protocol proposed for the REFPOP dataset.

Data adjustment
The phenotypic data of the REFPOP dataset and the genetic
resources of the FBo-Hi dataset were adjusted for year and site
effects and those of the hybrids were adjusted for year effect,
as they were evaluated in only one site. To do so, the estimated
marginal means of the raw phenotypic data were computed us-
ing the emmeans function of the emmeans package (Lenth
2021). Prior to this adjustment, the phenotypic data of the
REFPOP dataset were also corrected for spatial heterogeneity as
in Jung et al. (2020) using the P-spline ANOVA approach with
the PSANOVA function of the SpATS package (Rodr�ıguez-
Álvarez et al. 2018).

Heritability of genotypic means was estimated in both cases

as H2 ¼ r2
G

r2
Gþ

r2
E
n

, where r2
G is the variance of genotype effects, r2

E is

the residual variance and n is the mean number of observations
per genotype.

Genomic heritability was estimated as h2 ¼ r2
g

r2
gþr2

e
, where r2

g

and r2
e are the posterior means of the genomic and residual var-

iances estimated by the MG-GBLUP model (see below). The stan-
dard deviation of these genomic heritability values was also
computed from the posterior genomic and residual variances as
in Lehermeier et al. (2015).In the case of the elite material of the
FBo-Hi dataset, the best linear unbiased predictors (BLUPs) of
clonal values computed in Kouassi et al. (2009) were used as phe-
notypic values.

Genetic characterization of the populations
Structure and genetic diversity across the populations
The structure of the populations was investigated through a prin-
cipal component analysis (PCA) performed on the SNP marker
data of the hybrids, the genetic resources, and the elite material.
A PCA was thus performed for the FBo-Hi dataset and another
one for the REFPOP dataset. To reduce the computational time of
the analysis, the marker data were first pruned based on linkage
disequilibrium using the indep-pairwise function in the PLINK 1.9
program (Purcell et al. 2007), by pruning the markers with a pair-
wise r2> 0.1 in a 50-kb window. In total, 12,363 SNP markers were
retained after pruning from the FBo-Hi dataset and 12,290
markers from the REFPOP dataset. The PCA was carried out with
the prcomp function from the R stats package. To further assess
the differentiation between the elite material, the genetic resour-
ces, and the hybrids, pairwise FST values between the populations
were computed using the pairwise. WCfst function from the R
hierfstat package (Goudet 2005).

The allele frequencies along the genome of the elite material
and genetic resources were compared using sliding windows for
both datasets. For each chromosome, windows of 2 Mb with a shift
of 400 kb were built and the average minor allele frequency of the
SNPs included in the windows was computed for the genetic
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resources. The frequency of the minor allele in the genetic resour-
ces was then computed in the elite material following the same
procedure. When the number of SNPs of a window was less than
200, the mean minor allele frequency was set to missing.

Linkage disequilibrium
For each population of the FBo-Hi and REFPOP datasets, the link-
age disequilibrium (r2) was computed as the square correlation
coefficient between pairs of markers within a 500 kb distance us-
ing the r2 function of the PLINK 1.9 program. Marker pairs were
placed into bins of 500 bp according to their pairwise distance
and the LD decay was plotted as the mean r2 of each bin.

Evaluated scenarios for genomic predictions
We evaluated the interest of population combination for two pur-
poses: in the first case, we predicted a population (genetic resour-
ces or elite material) using either the same population (within-
population prediction), the other population (across-population
prediction) or a training set (TS for short) including genotypes
from both populations (combination prediction). In the second
case, we predicted the “genetic resources � elite” hybrids previ-
ously described with a training set combining genotypes from the
genetic resources and elite material populations (Prop_hybrids
scenario). In the latter case, we investigated the effect of different
proportions of the two combined populations on the predictive
ability given different TS sizes.

Genomic prediction models
Two different prediction models were evaluated in this study.
For both models, the genomic estimated breeding values
(GEBV) of the candidates were calculated using the following
mixed model:

y ¼ Xbþ Zuþ e;

where y is a vector of phenotypic values, X is an incidence matrix
relating fixed effects to the observations, b is the grand mean, Z is
an incidence matrix linking the observations to the breeding val-
ues, u is a vector of breeding values for each individual and e is
the vector of residuals.

Standard GBLUP model
We used the GBLUP model which is derived from the mixed
model presented above with u � N 0; Gr2

g

� �
and e � N 0; r2:

e

� �
r2

g

and r2
e are respectively the genetic and residual variances and G

is the genomic relationship matrix (GRM, see below). The vari-
ance components and the breeding values were estimated with
the kin.blup function of the R rrBLUP package (Endelman 2011).

Multigroup GBLUP model
A second model that takes the genomic correlation between the
populations into account was used. In contrast to the standard
GBLUP, this model allows the marker effects to be different (but
correlated) between the two populations. Following Lehermeier
et al. (2015), the model can be written as:

yGR

yElite

� �
¼ XGR 0

0 XElite

� �
bGR
bElite

� �
þ ZGR 0

0 ZElite

� �
uGR

uElite

� �
þ eGR

eElite

� �

where:

uGR

uElite

� �e N
0
0

� �
;

r2
gGR

rgGR;Elite

rgElite;GR r2
gElite

 !
� G

 !
:

Here, XGR and XElite are incidence matrices relating fixed effects to
the observations in each population, bGR and bElite represent the
mean of the two populations, ZGR and ZElite are the incidence ma-
trices relating the breeding values to the observations in each
population, uGR and uElite are the vectors of breeding values of the
genetic resources and the elite material, r2

gGRand r2
gElite are the

genomic variances of the genetic resources and the elite material,
rgGR;Elite is the genomic covariance between the two populations
and eGR and eElite are vectors of residuals for each population. The
genomic correlation between the two populations, defined as the
correlation of the marker effects of each population, was com-
puted from the estimated parameters as:

rGR; Elite ¼
rgGR;Eliteffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
gGR r2

gElite
q :

The genomic variances and covariances were estimated using a
Gibbs sampler implemented in the MTM package. The Gibbs sam-
pler was run for 20,000 iterations, the first 4000 being discarded
as burn-in. One in every two samples was kept and the genetic
parameters were then estimated by computing the posterior
means of the remaining samples.

Genomic relationship matrix
For both models, the genomic relationship matrix (GRM) G was
estimated as in VanRaden (2008):

G ¼ ZZ
0

2Rpi 1� pið Þ ;

where Z¼M—2pi is the centered matrix of the marker data, M is
the matrix of marker data and pi is the minor allele frequency at lo-
cus i. Here, Z corresponds to the marker data of both genetic resour-
ces and elite material combined into one dataset, allowing the
estimation of the relationships within and across populations. The
GRM was calculated with the A.mat function of the rrBLUP package.

The GRM used in the models was computed according to the
populations used in the training and VSs as presented in Table 1.
In the case of within-population prediction, the marker data of
the predicted population was used to compute the GRM, while
the marker data of the two populations was used to compute the
GRM for the across-population prediction and combination pre-
diction cases. To evaluate the influence of the marker density on

Table 1 Composition of the training and validation set in the
different scenarios

Method Training set Validation set

WP Genetic resources Genetic resources
Elite Elite

AP Elite Genetic resources
Genetic resources Elite

Comb Genetic resources þ Elite Genetic resources
Genetic resources þ Elite Elite

Prop_hybrids Genetic resources þ Elite Hybrids
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the predictive ability of the models, the GRM was computed using
the high-density marker data and a subset corresponding to the
SNP markers of the 20K genotyping array in each case.

Predictive ability
The predictive ability of the different models was evaluated as the
Pearson correlation coefficient between the GEBV and the pheno-
typic values of the individuals in the VS. In a first step, the elite ma-
terial and genetic resources were considered separately and a
fivefold cross-validation scheme was used to randomly split the
genotypes between training and VSs within each population, allow-
ing within-population genomic predictions (from here on referred to
as WP method). The same VSs were also predicted using all the gen-
otypes in the complementary population (across-population predic-
tion, from here on referred to as AP method) or by combining the
genotypes of the two populations into a unique training set (com-
bined-populations prediction, Comb and MG-Comb methods, see
below). In this case, both the standard GBLUP (Comb method) and
multi-group GBLUP (MG-Comb method) models described above
were used. This procedure was replicated 20 times for both the FBo-
Hi and REFPOP datasets. The approach is summarized in Figure 1A
and the different TS and VS compositions are shown in Table 1. For
the Comb method, we also studied the effect of the TS size by com-
bining an increasingly large number of genotypes from the same
population as the candidates with all the genotypes from the com-
plementary population. This approach is described in more detail in
Supplementary Materials S1.

Proportion of GR/elite in the training set
When predicting the hybrids, the influence of the elite/GR pro-
portion in the TS was also investigated (Prop_hybrids scenario in
Table 1). To do so, the total size of the TS was first fixed and the
TS was then built with increasing proportions of elite individuals,
from 0% to 100% by steps of 20%, and correspondingly decreasing
proportions of genetic resources individuals (Figure 1B). From
here on, the tested proportions will be noted as “propelite/propGR

proportion,” where propelite and propGR are values between 0 and
1 that refer to the tested proportions (for example the 0.2/0.8 pro-
portion means that the TS contains 20% of elite genotypes and
80% of genotypes from the genetic resources). For all the propor-
tions, different TS sizes were evaluated: the TS size ranged from
50 to 500 by steps of 50 individuals when the genotypes in the TS
were chosen from the FBo-Hi dataset and from 50 to 250 by steps
of 50 individuals when using the REFPOP dataset. In this last
case, the maximum TS size was smaller than for the FBo-Hi data-
sets because all the proportions could not be tested otherwise
given the smaller number of genotypes in each population of the
REFPOP. The individuals in the TS were chosen with 3 different
methods, as described below. These methods were applied sepa-
rately to the elite and GR populations by sampling n1 genotypes
from the elite population and n2 genotypes from the genetic
resources, where n1 and n2 depend on the studied proportion and
n1 þ n2 ¼ n is a predefined TS size as described above. The chosen
individuals in the two populations were then combined into a
unique TS that was used for the prediction of the hybrids The
GEBV of the hybrids were predicted with the standard GBLUP

Pop2

Validation Set

Within-population prediction

Across-population prediction

Combination prediction

Data 
combinationTraining Sets Pop1

Validation Set: 
panel of hybrids

Training Sets
Increasing size

Proportions

A

B

Figure 1 Schematic representation of the tested scenarios in this study. (A) The VS is composed of 20% of one of the two populations (elite material or
genetic resources) and is predicted either by the remaining 80% of the population (within-population prediction), by the other population (across-
population prediction) or by combining both populations (combination prediction). (B) The panel of hybrids is used as VS and is predicted by combining
elite material and genetic resources into a unique population. Several training sets with increasing sizes and different proportions of the two
populations are tested.
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model described above. In order to compare the predictive abili-
ties obtained with defined training set sizes or with larger train-
ing set sizes, the hybrids were also predicted using all the genetic
resources and elite material genotypes in the FBo-Hi dataset or
the REFPOP dataset.

Method 1: choice of the TS based on the CDpop criterion
The CDpop criterion proposed by Rincent et al. (2017) was used to
choose the individuals for the TS. CDpop is derived from the coef-
ficient of determination or CD (Rincent et al. 2012), which is a
measure of the expected reliability of the predictions. The optimi-
zation based on CDpop aims to maximize the mean CD of the
contrast matrix of the VS to predict, as defined in Rincent et al.
(2017). For the two populations, an initial number n1 (respectively
n2) of genotypes was first sampled. An exchange algorithm was
then used to replace an individual within each group by an indi-
vidual from the same population that had not been included yet,
and this latter was kept in the group if the mean CD of the group
increased after its inclusion. With our data, we found that the
mean CD reached a plateau after 1000 to 5000 iterations. Since
the choice of the TS based on CDpop is based on the initial sam-
pling, the final TS composition can vary. The method was thus
repeated 20 times with 3000 iterations.

Method 2: choice of the TS based on relatedness
For each population, the genotypes were chosen based on their
relationship with the VS. To do so, we calculated the mean rela-
tionship coefficient between an individual and the candidates
from the GRM and chose the genotypes with the highest mean re-
lationship to be part of the TS.

Method 3: choice of the TS by random sampling
In the “Random_strat” method, the TS was constituted by com-
bining n1 genotypes sampled from the elite population and n2

genotypes sampled from the genetic resources. The “Random”
method is similar except that n genotypes were sampled to con-
stitute the TS, regardless of the population to which they
belonged. The two methods were applied 100 times.

Results
Imputation accuracy
We used the AR2 values provided by Beagle 4.0 as a proxy of imputa-
tion accuracy. The distribution of the AR2 values for the imputed
datasets is shown in Supplementary Figure S1. Respectively 81% and
79% of the markers had an AR2 value higher than 0.7 in the elite ma-
terial of the FBo-Hi dataset and hybrids dataset. In the case of the
REFPOP dataset, Jung et al. (2020) reported an imputation accuracy of
0.95 using Beagle 4.0 and the same reference panel as in this study.

Characterization of the populations
In order to investigate the potential of combining genetic resources
and elite material into a training set, we first investigated the genetic
and phenotypic differences between the two populations. Since the
results were very similar between the two datasets, we only present
the results obtained with the FBo-Hi dataset. See Supplementary
Data for the same analyses with the REFPOP dataset.

Figure 2 shows the first two principal components from the
PCA obtained using the pruned SNP marker data. A clear distinc-
tion between the two populations can be observed, although some
genetic resources (for example Golden Delicious, Jonathan or
Cox’s Orange Pippin) appear to be closer from the elite material
than from the other genetic resources. As expected, the hybrids

were plotted between the two populations. The FST value com-
puted for the marker data indicated a low differentiation between
the genetic resources and elite material (FST ¼ 0.023, see
Supplementary Table S3). The linkage disequilibrium decay was
rapid in both genetic resources and elite material (Supplementary
Figure S2), the decay being faster in the genetic resources with an
average r2 calculated at 1, 5, 100, and 250 kb of 0.24, 0.2, 0.18, and
0.15 in the genetic resources and 0.29, 0.26, 0.22, and 0.2 in the elite
material in the FBo-Hi dataset. Very similar values were observed
in the REFPOP dataset. In the two panels, allelic frequencies were
similar between elite material and genetic resources for the largest
part of the genome (Supplementary Figures S3 and S4), although
some major differences could be observed for some genomic
regions (for example in chromosomes 3 and 15).

Supplementary Figures S5–S7 show that the phenotypic distri-
bution is different for some traits between the two populations.
Fruits phenotyped in the elite material were juicier and crispier
than in the genetic resources, and there were more fruits per tree
in the elite material. The mean fruit over-color was also slightly
higher in the elite material, although the same bimodal distribu-
tion could be observed in the two populations. The mean fruit
acidity, fruit weight, and harvest date were similar for both popu-
lations, but a wider range in acidity score was measured in the
elite material compared to genetic resources, while the range in
harvest date was larger in the genetic resources. The fruit weight
distribution was extremely similar in both populations. In both
datasets, the heritability values were generally high (>0.7) for all
the traits (Supplementary Figure S8 and Table S2).

The genomic correlations between the two populations were
moderate to high, ranging from 0.42 to 1 (Table 2). The lowest geno-
mic correlations were measured for fruit weight, fruit crispness,
and fruit juiciness. The correlation was high for fruit over-color and
acidity (around 0.7 in both cases) and was highest for harvest date
(in both datasets) and fruit number, with a correlation of almost 1.

Predictive abilities when combining populations
Table 3 presents the predictive abilities for within and across-
population predictions, as well as for predictions obtained when
combining elite material and genetic resources into a unique
training set for the FBo-Hi and REFPOP datasets.

For the within-populations predictions, the predictive abilities
varied between 0.33 and 0.82 for the elite material of the FBo-Hi
dataset (respectively between 0.46 and 0.79 for the REFPOP dataset),
and between 0.34 and 0.83 for the genetic resources of the FBo-Hi
dataset (respectively between 0.5 and 0.79 for the REFPOP dataset).
In both datasets, predictive abilities were high for harvest date (be-
tween 0.79 and 0.83 for FBo-Hi and between 0.6 and 0.79 for
REFPOP, see Figure 3A) and fruit over-color (between 0.59 and 0.72
for FBo-Hi and between 0.64 and 0.79 for REFPOP, see Figure 3B),
while they were moderately high for the other traits (0.33 to 0.58,
Supplementary Figures S9–S13). The predictive abilities were higher
when predicting harvest date (with a difference up to 0.19 and
smaller standard errors in the REFPOP dataset), fruit weight (differ-
ence up to 0.06) and fruit number (difference up to 0.05) in the ge-
netic resources than in the elite material, while fruit over-color
(difference up to 0.14) and juiciness (difference up to 0.09) were bet-
ter predicted when using elite material in the training and VS.

The across-population predictions always resulted in lower pre-
dictive abilities than the within-population predictions, with values
ranging from 0.13 (juiciness) to 0.64 (harvest date) for the FBo-Hi
dataset and from 0.19 (fruit weight) to 0.73 (fruit over-color) for the
REFPOP dataset. The standard errors of predictive abilities were also
generally higher than for within-population predictions. Across-
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population predictive abilities could be moderately high for some
traits, such as harvest date (between 0.47 and 0.64 for the FBo-Hi
dataset and between 0.41 and 0.47 for the REFPOP dataset) or fruit
over-color (between 0.35 and 0.47 for the FBo-Hi dataset and be-
tween 0.52 and 0.73 for the REFPOP dataset). All the traits were bet-
ter predicted when using genetic resources in the training set to
predict elite material than when using elite material to predict ge-
netic resources, with the exception of fruit number and crispness
that were slightly better predicted in the latter case. The decrease in
predictive ability between within and across-population prediction
was also more important when genetic resources constituted the
VS, especially for fruit over-color (for instance, with a decrease from
0.71 to 0.45 for the FBo-Hi dataset at high marker density), fruit
weight (from 0.57 to 0.19) and juiciness (from 0.49 to 0.18).

Combining populations into a unique training set allowed to
obtain predictive abilities that were slightly higher than with the
corresponding within-population prediction in most cases

(exceptions are some predictions for harvest date, fruit over-
color, and juiciness, for which the combination led to the same
mean predictive abilitiy). The highest increases in predictive abil-
ity were observed for the fruit over-color in the genetic resources
in the REFPOP (from 0.69 to 0.73 with medium density). Allowing
marker effects to differ between populations (MG-GBLUP model)
rarely led to improvements of the predictive ability compared to
a prediction using a standard GBLUP model, and when it did, the
increase in predictive ability was limited, the highest gain being
for juiciness when predicting genetic resources with an increase
of 0.02 at both medium and high marker density.

Using a high marker density allowed higher predictive abilities
compared to medium density only for harvest date and fruit
weight, especially when predicting across populations (for in-
stance, an increase from 0.60 to 0.64 for the FBo-Hi was observed
for harvest date when predicting elite material with a training set
of genetic resources). For some traits, measured predictive

Jonathan
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Figure 2 PCA performed using pruned marker data of the FBo-Hi and hybrids panel.

Table 2 Genomic and environmental variances and genomic correlations estimated from the Gibbs sampler for each trait in the two
population of the FBo-Hi and REFPOP datasets

Elite Genetic Resources

Trait r2
g r2

e h2 r2
g r2

e h2 rElite, GR

FBo-Hi dataset
Harvest date 194.2 (20.58) 85.81 (5.92) 0.69 (0.03) 314.5 (25.47) 108.91 (10.37) 0.74 (0.03) 0.99 (0.02)
Fruit over-color 0.6 (0.08) 0.53 (0.03) 0.52 (0.04) 0.8 (0.09) 0.43 (0.04) 0.65 (0.04) 0.65 (0.07)
Acidity 1.5 (0.24) 1.63 (0.1) 0.48 (0.05) 1.1 (0.15) 1.01 (0.08) 0.53 (0.05) 0.74 (0.07)
Juiciness 0.8 (0.15) 1.09 (0.07) 0.42 (0.05) 0.5 (0.07) 0.7 (0.05) 0.43 (0.04) 0.52 (0.12)
Crispness 0.4 (0.1) 1.16 (0.07) 0.27 (0.05) 0.5 (0.08) 0.85 (0.06) 0.37 (0.05) 0.45 (0.13)

REFPOP dataset
Harvest date 245.8 (46.47) 52.34 (14.25) 0.82 (0.06) 341.2 (38.37) 36.33 (13.84) 0.9 (0.04) 1 (0)
Fruit over-color 1 (0.16) 0.34 (0.06) 0.75 (0.05) 1.3 (0.15) 0.25 (0.06) 0.83 (0.05) 0.72 (0.08)
Fruit number 69.6 (23.01) 112.77 (15.64) 0.38 (0.1) 70.6 (16.03) 47.21 (10.4) 0.59 (0.1) 0.98 (0.03)
Fruit weight 0.4 (0.09) 0.21 (0.04) 0.66 (0.08) 0.6 (0.1) 0.23 (0.05) 0.74 (0.06) 0.42 (0.15)

The standard deviation of the genomic and environmental variances, of the heritability values, and of the genomic correlations is shown between brackets.
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abilities were higher with medium marker density than with high
marker density, as can be observed for over-color in both datasets
and for fruit acidity. The decrease in predictive ability was also
more important for across-population predictions for these two
traits, especially when predicting genetic resources (decrease of
0.04 for fruit over-color in both datasets and of 0.05 for acidity).
For the remaining traits, the influence of the marker density
depended on the population used in the VS: predictive abilities
for fruit number, juiciness, and crispness decreased when pre-
dicting elite material using a high marker density but increased
in the genetic resources.

Proportion of the combined populations
When predicting the hybrids, we also investigated the influence
of the proportion of elite material and genetic resources used in
the training set. Four methods were compared to define the train-
ing set: the CDpop algorithm (CDstrat method), a choice based on
kinship between the training set and VS (Kinship method), or a
random choice of genotypes either within each population
(Random_strat method) or regardless of the populations
(Random method). The results for harvest date and fruit over-
color are presented in Figure 4 and the predictive abilities for fruit

weight and fruit number are presented in Supplementary Figures
S14 and S15. The predictive ability values obtained with the dif-
ferent methods for all the traits are also included in the
Supplementary File “Prop_predAbi”.

We observed that the predictions based on the CDstrat
method generally outperformed the Kinship, Random_strat and
Random methods, with the exception of the prediction of the
fruit number where the Random_strat method allowed to reach
slightly higher predictive abilities. The standard errors of the pre-
dictive abilities were also lower when using the CDstrat method
than when using the Random_strat or Random method. This ob-
servation holds true for all the tested training population sizes
and at medium and high marker density in the case of harvest
date predicted with the FBo-Hi dataset and for fruit weight (ex-
cept for one tested proportion, see below). When predicting har-
vest date with the REFPOP dataset, the CDstrat and Kinship
methods gave very similar results for all the tested proportions
and training set sizes, but CDstrat allowed to reach higher predic-
tive abilities for the 1/0 proportion, especially for small training
set sizes (with a maximum predictive ability difference of 0.46 be-
tween the two methods for a TS of 50 genotypes). For fruit over-
color, the best method depended on the tested proportion: with

Table 3 Predictive abilities of the measured traits in the within-population (WP), across-population (AP), combined populations (Comb),
and MG-GBLUP method

Elite material Genetic resources

Trait Method Medium density High density Medium density High density

FBo-Hi dataset
Harvest date WPP 0.79 (0.03) 0.79 (0.03) 0.82 (0.02) 0.83 (0.02)

APP 0.6 (0.05) 0.64 (0.04) 0.47 (0.05) 0.51 (0.05)
Comb 0.78 (0.03) 0.79 (0.03) 0.82 (0.02) 0.83 (0.02)
MG-GBLUP 0.79 (0.03) 0.8 (0.03) 0.82 (0.02) 0.83 (0.02)

Fruit over-color WPP 0.72 (0.03) 0.71 (0.03) 0.59 (0.04) 0.57 (0.05)
APP 0.47 (0.05) 0.45 (0.05) 0.39 (0.06) 0.35 (0.06)
Comb 0.72 (0.03) 0.72 (0.03) 0.61 (0.05) 0.58 (0.05)
MG-GBLUP 0.72 (0.03) 0.72 (0.03) 0.61 (0.04) 0.59 (0.04)

Crispness WPP 0.34 (0.06) 0.33 (0.06) 0.34 (0.05) 0.34 (0.05)
APP 0.15 (0.07) 0.17 (0.06) 0.21 (0.05) 0.22 (0.05)
Comb 0.36 (0.06) 0.36 (0.06) 0.35 (0.05) 0.36 (0.05)
MG-GBLUP 0.35 (0.06) 0.35 (0.06) 0.35 (0.04) 0.35 (0.05)

Juiciness WPP 0.49 (0.05) 0.48 (0.05) 0.4 (0.05) 0.41 (0.05)
APP 0.18 (0.07) 0.16 (0.07) 0.13 (0.07) 0.14 (0.07)
Comb 0.49 (0.05) 0.49 (0.05) 0.38 (0.05) 0.4 (0.05)
MG-GBLUP 0.49 (0.05) 0.49 (0.05) 0.4 (0.05) 0.42 (0.05)

Acidity WPP 0.48 (0.05) 0.47 (0.05) 0.45 (0.05) 0.43 (0.05)
APP 0.39 (0.05) 0.39 (0.05) 0.28 (0.06) 0.23 (0.06)
Comb 0.51 (0.04) 0.5 (0.04) 0.47 (0.06) 0.46 (0.06)
MG-GBLUP 0.51 (0.04) 0.49 (0.04) 0.47 (0.05) 0.45 (0.05)

REFPOP dataset
Harvest date WPP 0.6 (0.09) 0.6 (0.09) 0.79 (0.04) 0.78 (0.04)

APP 0.44 (0.12) 0.45 (0.12) 0.41 (0.08) 0.47 (0.08)
Comb 0.6 (0.10) 0.63 (0.10) 0.8 (0.04) 0.8 (0.04)
MG-GBLUP 0.6 (0.10) 0.62 (0.10) 0.79 (0.04) 0.79 (0.04)

Fruit over-color WPP 0.79 (0.05) 0.78 (0.05) 0.69 (0.06) 0.64 (0.06)
APP 0.73 (0.05) 0.69 (0.06) 0.56 (0.09) 0.52 (0.09)
Comb 0.81 (0.05) 0.80 (0.05) 0.73 (0.05) 0.68 (0.06)
MG-GBLUP 0.82 (0.05) 0.81 (0.05) 0.73 (0.05) 0.68 (0.06)

Fruit weight WPP 0.52 (0.09) 0.52 (0.09) 0.57 (0.08) 0.58 (0.08)
APP 0.29 (0.11) 0.3 (0.11) 0.19 (0.10) 0.2 (0.10)
Comb 0.54 (0.10) 0.55 (0.09) 0.59 (0.08) 0.61 (0.07)
MG-GBLUP 0.54 (0.09) 0.54 (0.09) 0.59 (0.08) 0.6 (0.08)

Fruit number WPP 0.48 (0.08) 0.46 (0.08) 0.5 (0.11) 0.51 (0.11)
APP 0.27 (0.12) 0.24 (0.03) 0.27 (0.11) 0.29 (0.11)
Comb 0.49 (0.08) 0.47 (0.09) 0.52 (0.12) 0.54 (0.11)
MG-GBLUP 0.47 (0.08) 0.45 (0.09) 0.51 (0.11) 0.52 (0.11)

The standard deviation of the predictive abilities is shown between brackets. Bold values represent the highest predictive ability value for a given trait at a given
marker density.
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the FBo-Hi dataset, CDstrat outperformed Kinship except for the
extreme proportions (i.e., TS constituted of only one of the two
populations), the highest increases in predictive ability being
again measured for small training set sizes. With the REFPOP
dataset, CDstrat outperformed Kinship only until a TS size of 100
genotypes, and the two methods gave similar results for larger TS
sizes. For all the tested TS sizes, most genotypes included in the
TS with the CDstrat method were selected at least 15 times out of
the 20 repetitions (data not shown).

The predictive abilities based on the CDstrat method rapidly
reached a plateau for harvest date. The maximum predictive
ability of 0.85 could be reached with 100 genotypes from the FBo-
Hi dataset at medium density, and the maximum predictive abil-
ity was reached with 50 genotypes from the REFPOP dataset for
both densities. For fruit over-color, a bigger TS size resulted in
higher predictive abilities with the FBo-Hi dataset for all but the
0/1 and 1/0 proportions. The increase in TS size also led to an in-
crease in predictive ability only for some proportions for fruit
over-color with the REFPOP dataset: increasing the TS from 50 to
250 genotypes allowed an increase in predictive ability for propor-
tions 0.4/0.6 to 1/0 (with increase between 0.02 for the 0.4/0.6 pro-
portion and 0.43 for the 0.8/0.2 proportion) but the predictive
ability decreased for the 0/1 and 0.2/0.8 proportions. A similar

pattern was observed for fruit weight: when increasing the TS
size, predictive abilities also increased for proportions 0.6/0.4 to
1/0 but decreased for proportion 0.2/0.8 and 0/1 beyond respec-
tively 150 and 100 genotypes in the TS. The predictive abilities for
fruit number increased when the TS size increased for all the
tested proportions, but the gains were smaller than for the other
traits (maximum increase from 0.16 to 0.26 when increasing the
TS size from 50 to 250 genotypes). In all the studied traits, the
standard errors of the predictive abilities also decreased when
the TS size increased.

With the Kinship method, the largest increases in predictive
ability were measured for harvest date predicted with the FBo-Hi
dataset, especially for the 0.8/0.2 and 1/0 proportions at medium
marker density (respectively from �0.01 and �0.05 with a TS size
of 50 genotypes to 0.84 and 0.72 with a TS size of 500 genotypes)
but not in the REFPOP dataset: the predictions with 50 genotypes
in the TS led to better predictive abilities than a TS with 250 geno-
types, except for the 0.8/0.2 and 0/1 proportions. The increase in
TS size also led to higher predictive abilities for all the tested pro-
portions for fruit number, with larger gains than for the CDstrat
method (with a maximum increase from 0.13 to 0.29 when in-
creasing the TS size from 50 to 250 genotypes). The predictive
ability also increased for fruit weight and fruit over-color for all
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the tested proportions, except for the 0/1 proportion for fruit
weight and the 0.8/0.2 proportion for fruit over-color when pre-
dicted with the REFPOP dataset, the maximum predictive ability
being observed with a TS size of 50 genotypes in both cases.

For each trait, the proportion allowing the highest predictive
ability depended on the TS size and the method used to select the
genotypes of the TS. For the three methods, the worst predictive
abilities were obtained when only one population was present in
the TS, with predictive abilities lower than the ones obtained
from random sampling in the two populations: the 0/1 proportion
led to the lowest predictive abilities for fruit weight, fruit number
and fruit over-color when predicted with the FBo-Hi dataset while
for harvest date, the predictions with the 1/0 proportion gave the
lowest predictive abilities. Note that for fruit weight and fruit
over-color, the 1/0 proportion also led to predictive abilities lower
than the predictive abilities obtained with the Random method.

As was observed in the within and across-population predic-
tions, the effect of the marker density on predictive ability
depended on the trait: harvest date generally benefited from the
higher marker density in the two datasets, especially when the
TS size increased. Interestingly, predictive abilities at high
marker density with the 1/0 proportion were lower than with me-
dium marker density for small TS sizes when predicting with the
FBo-Hi dataset, while the increase in predictive ability due to
higher marker density was the highest for the 1/0 proportion
when predicting with the REFPOP dataset, with increases ranging
from 0.08 to 0.15 with the CDstrat method. Predictive abilities for

fruit weight were higher at high density only for TS sizes up to
100 genotypes and medium density led to higher predictive abili-
ties for larger TS sizes with the CDstrat method, except for the 0/
1 proportion, in which case high density always gave better
results (with increases in predictive ability ranging from 0.04 and
0.13). Predictive abilities measured from high marker density
data for fruit over-color and fruit number were slightly lower
than when using medium marker density for every method and
every tested proportion, except for the 1/0 proportion for fruit
over-color predicted with the REFPOP dataset with the Kinship
method which allowed slightly higher predictive abilities until a
TS size of 200 genotypes.

Discussion
One possible limitation to the implementation of genomic se-
lection in fruit tree crops is the establishment of a training set
large enough to allow accurate prediction of selection candi-
dates because of the possible costs of maintaining and pheno-
typing trees. In this study, we first evaluated the potential of
combining two different apple populations to increase the size
of the training set by estimating the predictive ability in this
case. We then investigated the effect of using subsets of the
two populations to predict hybrids resulting from crosses be-
tween genetic resource and elite material. In each case, we
compared the predictive abilities obtained using either me-
dium or high SNP marker density.
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Figure 4 Predictive abilities for harvest date and fruit over-color in the dataset of hybrids with medium and high marker density when the training set
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Predictive abilities within and across populations
When predicting within-population, the measured predictive
abilities were moderate to high, ranging from 0.33 for fruit crisp-
ness to 0.83 for harvest date. These values were overall in line
with previous studies in apple that predicted the same traits. For
example, harvest date was well predicted in other studies per-
formed on apple (Migicovsky et al. 2016; McClure et al. 2018; Jung
et al. 2020; Minamikawa et al. 2021) with predictive ability values
between 0.6 and 0.8, while prediction accuracies for fruit weight
and fruit quality traits were generally low to moderate (Kumar
et al. 2015; Migicovsky et al. 2016; McClure et al. 2018;
Minamikawa et al. 2021), with predictive abilities not exceeding
0.5. An exception was the study from Kumar et al. (2012b) that
reported predictive ability values over 0.7 for traits related to fruit
quality, in a case where genotypes from seven full-sib families
derived from a 4 � 2 factorial design were randomly used for
cross-validation, leading to a higher relatedness between training
and population set than in our study.

Across-population predictions always resulted in predictive
abilities lower than within-population predictions. This is an
expected result as linkage disequilibrium, allele effects, and allele
frequencies are generally different between populations. In our
case, the LD decay was indeed more rapid in the genetic resour-
ces than in the elite material. The allele frequencies were similar
along the 17 chromosomes but differed for some genomic
regions, which could be due to selection, thus leading to different
allele effects estimates as discussed in further. For some traits
like fruit crispness or juiciness, the different phenotypic distribu-
tion in the two populations could also explain the poor predictive
abilities in across-population prediction (Supplementary Figures
S4–S6). Roth et al. (2020) reported a similar result when predicting
apple fruit texture of full-sib families using a germplasm collec-
tion. The high genomic correlations between the two populations
could have suggested that across-population predictions could
perform as well as within-population prediction, which was not
the case in our study. Similar results were observed by Lyra et al.
(2018) and Rio et al. (2019), who hypothesized that this apparently
contradictory observation could be explained by population-
specific allele frequencies at the causal QTL. Such differences are
expected in our case because of selection (see below). The moder-
ate to high predictive abilities observed for some traits like har-
vest date and fruit over-color and the high genomic correlations
between the two populations nevertheless suggest that marker
effects are conserved to a certain extent between genetic resour-
ces and elite material. In the case of the FBo-Hi dataset, the lower
predictive abilities observed in the across-population predictions
could also be due to G�E interactions since the trees of the two
populations were phenotyped by different assessors in different
sites and years. Combining genotypes that were phenotyped in
environments that differ from the environments of the VS is not
always detrimental for genomic predictions (Jarquin et al. 2016)
but when updating the training set, such genotypes should be
discarded and replaced by genotypes from the same environment
when it becomes possible to do so.

Potential of combining populations
Combining datasets can help increase predictive abilities in geno-
mic prediction by allowing larger training populations, which is a
key parameter for accurate predictions. However, the marker
effects may be different between the combined populations, in
which case the addition of new genotypes to the training set is
not expected to improve predictive abilities (Lund et al. 2016). For

instance, several studies in livestock found no increase in predic-
tive ability when combining breeds (Hayes et al. 2009; Erbe et al.
2012) and adding genetically distinct individuals to the training
population can even result in lower predictive abilities (Lorenz
and Smith 2015). Multi-population genomic prediction models
combining populations that have diverged for a few generations
are then expected to lead to higher predictive abilities (de Roos
et al. 2009; Wientjes et al. 2016) and the choice of the populations
to combine should be based on knowledge about the genetic dis-
tance between the populations.

Several studies showed evidence of selection during apple do-
mestication, e.g., for fruit size (Yao et al. 2015; Duan et al. 2017),
fruit quality traits (Wedger et al. 2021), metabolite content (Khan
et al. 2014) or disease-related genes (Singh et al. 2019). However,
little information is available about the genomic consequences of
the more recent apple improvement and the resulting genetic dif-
ferences between genetic resources and modern cultivars.
Supplementary Figure S4 shows that the genotypes from the elite
material are less acid, juicier and crispier than genetic resources,
which can be a consequence of breeders’ choices since these fruit
quality traits have been targeted for decades in apple breeding
programs (Janick and Moore 1975; Liao et al. 2021). On average,
elite material is also harvested later than genetic resources, most
probably because fruits with a later ripening are more firm
(Migicovsky et al. 2016) and can be stored longer (Nybom et al.
2008). Modern varieties also have a lower phenolic content than
genetic resources in general (Ceci et al. 2021; Watts et al. 2021). A
recent pedigree reconstruction study showed that the two popu-
lations are separated by approximately 5–10 generations
(Muranty et al. 2020), which could result in the persistence of
marker phase and effects across populations.

In this study, combining elite material and genetic resources
generally led to small increases in predictive ability compared to
within-population predictions. For some traits, the combination
allowed to obtain slightly higher predictive abilities in the FBo-Hi
dataset, in spite of the genotypes from the two populations being
evaluated at different sites and years. This suggests that the po-
tential adverse effect of GxE interactions on predictive ability was
counterbalanced by the large increase in population size. The ad-
dition of genotypes from the complementary population did not
decrease the predictive abilities when combining data, but we
can hypothesize that selecting subsets of the two populations to
combine closer genotypes into a training set could be advanta-
geous. The approaches proposed in the Prop_hybrids scenario
could thus be used for the Comb scenario. Supplementary
Figures S16–20 show that the small increase in predictive ability
when combining populations could be due to the initial large
population sizes for some of the studied traits, in which case the
marker effects would already be accurately estimated.
Combining populations may thus be of particular interest when
one of the two populations is small and the complementary pop-
ulation is large. To further increase the size of the training set in
such a case, historical data from trees that only have pedigree in-
formation could also be used in a single-step GBLUP model that
uses both genotyped and nongenotyped individuals at the same
time (Sood et al. 2020).

Toward improvements of the predictive abilities
For all the studied traits, the MG-GBLUP model, which allows dif-
ferent but correlated effects between populations, did not per-
form better than the standard GBLUP model. This result can be
explained in the light of the genomic correlations between the
two populations: when the genomic correlation between the
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combined populations is equal to one, the MG-GBLUP is equiva-
lent to the standard GBLUP. Therefore, the MG-GBLUP and stan-
dard GBLUP were expected to yield similar results since the
genomic correlation between the genetic resources and elite ma-
terial was high for most traits. The GEBV obtained from the
GBLUP and MG-GBLUP model were almost the same even when
the correlation between elite material and genetic resources was
moderate (Supplementary Figures S21 and S22). Lehermeier et al.
(2015) point out that MG-GBLUP is expected to perform better
than GBLUP when population used for within-population predic-
tion is small because borrowing information from the combined
population could improve marker effect estimation in this case.
In this study, the populations used for genomic prediction were
large, which could explain why the GBLUP and MG-GBLUP per-
formed similarly even when the genomic correlation between the
combined populations was moderate. In addition, the MG-GBLUP
shows limitations when dealing with genotypes that cannot
clearly be assigned to a given population (Lehermeier et al. 2015),
which is sometimes the case with the elite material and genetic
resources (Figure 2 and Supplementary Figure S23). In this case,
genomic prediction models that account for admixture could be
better adapted (Rio et al. 2020).

Ibánez-Escriche et al. (2009) suggested that models that fit
population-specific marker effects may not be necessary at high
marker density because a density high enough could allow the
marker-QTL association to be the same in the combined popula-
tions. In this study, we observed limited increases in predictive
abilities when using high-density marker data. Other studies also
reported that predictive abilities could reach a plateau after a
given number of markers (Hickey et al. 2014; Jung et al. 2020) and
that high marker density was not always needed to obtain high
predictive abilities. Considering the rapid linkage disequilibrium
decay in the genetic resources, we could have expected the pre-
dictive abilities to be lower at medium than at high density when
the marker effects are estimated from such a population.
However, the increases in predictive ability when using high-den-
sity marker data were generally small for all the datasets. This
could imply that even at medium density, some markers are in
high linkage disequilibrium with the most important causal QTLs
and that increasing marker density does not better capture their
variation in this case. In the REFPOP dataset, Jung et al. found
that predictive ability was the same for harvest date and floral
emergence at medium or high density and that as few as 5000
markers could be sufficient to reach a similar predictive ability.
In the case of the elite material, imputation errors could also ex-
plain the absence of predictive ability improvement when using
high-density marker data. However, we obtained very similar pre-
dictive abilities for all the traits when we removed markers with
an AR2 value under 0.7 (data not shown).

For some traits, the predictive abilities were even lower with
high than with medium marker density. Two of these traits,
namely fruit over-color and acidity, are controlled by an oligo-
genic determinism with a few known major genes (Chagn�e et al.
2016; Verma et al. 2019). As the GBLUP and MG-GBLUP models
make the hypothesis that all the marker effects are drawn from
the same normal distribution and do not allow marker effects to
be null, a high marker density could overshrink the marker
effects and poorly capture the effect of the large QTLs, as sug-
gested by Daetwyler et al. (2010). Similar to our case, Erbe
et al.(2012) found that predictive abilities were lower with a
GBLUP model and 800K markers than with the same model with
50K markers and suggested that the number of effects to esti-
mate was too important compared to the number of phenotypic

records. In their case, models that allow marker effects to be set
to zero or models resulting in a selection of a subset of markers
led to higher predictive abilities. Bayesian models could thus re-
sult in higher predictive abilities for traits with an oligogenic ge-
netic architecture (Hayes et al. 2009). If major QTLs are known,
they could also be considered as fixed effects (Bernardo, 2014;
Sarinelli et al. 2019) or be weighted accordingly in the GRM (Tiezzi
and Maltecca 2015; Raymond et al. 2018). Since genomic predic-
tions are generally used for traits with a polygenic determinism,
high marker density should give better results than lower marker
densities in general. Moreover, DoVale et al. (2021) showed that,
in outbred crops, genomic prediction models should be updated
more regularly when high marker densities are not used. Using
high marker density for genomic selection could thus still prove
useful when combining populations, especially if a high-quality
imputation step can be implemented to reduce the costs of geno-
typing (Song et al. 2019).

Optimization of the training set composition
When predicting the hybrids, we never observed a particular pro-
portion of the two combined populations that would allow higher
predictive abilities. However, using only one of the two popula-
tions was detrimental for each studied trait, regardless of the
training set size or the method used to choose the genotypes.
This point highlights the need to use at least some genotypes
from both populations in the training set in order to achieve high
enough predictive abilities. This observation can have at least
two explanations. First, we observed in our data that the pheno-
typic variation in the hybrids is larger than the variation of the
two populations taken separately. When using only one of the
two populations in the training set, the range of phenotypic val-
ues of the chosen population can by consequence not be large
enough to accurately estimate the marker effects. Second, if
some alleles linked to the desired trait are in low frequency in
one population and segregate in the other population, using only
the population with the low-frequency alleles as the training set
will lead to incorrect marker effect estimations. For example,
Migicovsky et al. (2021) showed that the NAC18.1 gene marker,
which is linked to harvest date and fruit firmness, is homozygous
for the favorable allele in the nine most marketed varieties in the
United States, and several marker alleles detected by GWAS in
the REFPOP panel are fixed in the elite population whereas they
segregate in the genetic resources (Jung et al., 2021). As expected
in this case, the prediction for harvest date in the hybrids when
using only the elite material in the training set led to predictive
abilities lower than when using both populations. Another such
example would be the Rvi6 gene that confers resistance to apple
scab and all QTLs in the associated introgressed segment: the fa-
vorable allele at Rvi6 segregates in elite material (Jung et al. 2021)
but is absent in old varieties, because the gene introgression from
the wild relative M. floribunda is recent (Gessler and Pertot 2012).

When the training set size is a limitation for the implementa-
tion of genomic selection, methods to optimize the choice of the
genotypes in the TS when genomic data are already available can
be advantageous. In this study, we observed that for three out of
four traits the hybrids were better predicted when the TS was
chosen based on the CDpop criterion compared to a choice based
on kinship or genotypes sampled randomly, especially for small
training set sizes. The CD algorithm has been implemented in or-
der to better sample the genetic diversity than algorithms based
on kinship alone (Rincent et al. 2012), which could explain the
better performance of the CDstrat method, since it is probably
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necessary to use a training set with a large diversity to predict the
hybrids, as discussed above.

Note that we applied the CD algorithm to each population sep-
arately in order to simultaneously study the effect of the propor-
tion of the two populations on predictive abilities. One way to
further optimize the composition of the training set could be to
use the CDpop criterion with genotypes of the elite material and
genetic resources in a single step, letting the algorithm choose
the proportion of the two populations to be used. However, using
the optimization procedure based on the CDpop criterion is com-
putationally demanding for large populations, as the computa-
tion of the criterion requires to calculate the inverse of the GRM
of the genotypes in the training and VSs (Rincent et al. 2017),
which could not be achieved in our case when considering both
populations at the same time. It would also be interesting to eval-
uate the effect of the optimization methods proposed in this
study in a case where the hybrids would be predicted by a train-
ing set also composed of hybrids. This situation should lead to
the highest predictive abilities, and while the combination of pop-
ulations proposed in this study is a suitable approach to initiate
the prediction of hybrids, a training set composed of hybrids only
should be envisioned as soon as enough phenotypic and geno-
typic data for the hybrids are available. Such a training set can be
built gradually, by replacing a part of the genotypes of the two
populations by newly phenotyped and genotyped hybrids
(Fritsche-Neto et al. 2021).

Conclusion
We showed in this study that combining genetic resources and
elite material into a unique training set could be beneficial for
genomic predictions. First, larger training populations can be
obtained with this approach, leading to slightly higher predictive
abilities in return. Second, using both populations in the train-
ing set appeared necessary to predict “genetic resources � elite”
hybrids. Combining populations could thus be an effective way
to initiate pre-breeding programs that incorporate genomic pre-
diction when a large training population is too costly. Genotypic
and phenotypic data from ongoing breeding programs can be
used to generate the training set, or historical data can be used
to further reduce the costs of phenotyping. The training set
composition can be further optimized to reduce the number of
genotypes to include, which can be of particular interest for
traits that are hard or long to phenotype, like biennial fruit bear-
ing or abiotic stress tolerance. The proposed approach can be
used in other fruit tree species provided that the genetic differ-
ences of the combined populations are taken into account when
necessary.

Data availability
All SNP genotypic data generated with the 480K array used in
this study have been deposited in the INRAe dataset archive
(https://data.inrae.fr/) at https://doi.org/10.15454/IOPGYF. The
SNP genotypic data of the REFPOP elite material generated with
the 20K array and used in this study have been deposited in the
INRAe dataset archive at https://doi.org/10.15454/1ERHGX. The
SNP genotypic data of the elite material of the FBo-Hi panel gen-
erated using the 20K array and used in this study have been de-
posited at https://doi.org/10.15454/PMVCFI. The SNP genotypic
data of the hybrids generated using the 20K array in this study
have been deposited at https://doi.org/10.15454/SB2JSB. The raw

phenotypic data of the REFPOP panel have been deposited at
https://doi.org/10.15454/VARJYJ. The raw phenotypic data of the
genetic resources of the FBo-Hi dataset have been deposited at
https://doi.org/10.15454/KNECMS, the BLUPs of clonal values of
the elite material of the FBo-Hi dataset have been deposited at
https://doi.org/10.15454/UJPCOV, the raw phenotypic data of
the hybrids have been deposited at https://doi.org/10.15454/
H6PXRX. The scripts used to obtain the results presented in this
manuscript are available at https://sourcesup.renater.fr/proj
ects/apple-gensel.

Supplementary material is available at G3 online.
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Lehermeier C, Krämer N, Bauer E, Bauland C, Camisan C, et al. 2014.

Usefulness of multiparental populations of maize (Zea mays L.)

for genome-based prediction. Genetics. 198:3–16. doi:10.1534/ge-

netics.114.161943.

Lehermeier C, Schön C-C, de los Campos G. 2015. Assessment of ge-

netic heterogeneity in structured plant populations using multi-

variate whole-genome regression models. Genetics. 201:323–337.

doi:10.1534/genetics.115.177394.

Lenth RV. 2021. emmeans: estimated Marginal Means, aka Least-

Squares Means. R package version 1.6.0.

Liao L, Zhang W, Zhang B, Fang T, Wang X-F, et al. 2021. Unraveling a

genetic roadmap for improved taste in the domesticated apple.

Mol Plant. 14:1454–1471. doi:10.1016/j.molp.2021.05.018.

Lorenz AJ, Smith KP. 2015. Adding genetically distant individuals to

training populations reduces genomic prediction accuracy in bar-

ley. Crop Sci. 55:2657–2667. doi:10.2135/cropsci2014.12.0827.

Lund MS, van den Berg I, Ma P, Brøndum RF, Su G. 2016. Review: how

to improve genomic predictions in small dairy cattle populations.

Animal. 10:1042–1049. doi:10.1017/S1751731115003031.
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