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Abstract

Background: We developed a method to make Inference about Causation from

Examination of FAmiliaL CONfounding (ICE FALCON) using observational data for re-

lated individuals and considering changes in a pair of regression coefficients. ICE

FALCON has some similarities to Mendelian randomization (MR) but uses in effect all the

familial determinants of the exposure, not just those captured by measured genetic var-

iants, and does not require genetic data nor make strong assumptions. ICE FALCON can

assess tracking of a measure over time, an issue often difficult to assess using MR due to

lack of a valid instrumental variable.

Methods: We describe ICE FALCON and present two empirical applications with simula-

tions.

Results: We found evidence consistent with body mass index (BMI) having a causal ef-

fect on DNA methylation at the ABCG1 locus, the same conclusion as from MR analyses

but providing about 2.5 times more information per subject. We found evidence that

tracking of BMI is consistent with longitudinal causation, as well as familial confounding.

The simulations supported the validity of ICE FALCON.

Conclusions: There are conceptual similarities between ICE FALCON and MR, but empiri-

cally they are giving similar conclusions with possibly more information per subject from

ICE FALCON. ICE FALCON can be applied to circumstances in which MR cannot be applied,

such as when there is no a priori genetic knowledge and/or data available to create a valid

instrumental variable, or when the assumptions underlying MR analysis are suspect. ICE

FALCON could provide insights into causality for a wide range of public health questions.
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Background

Mendelian randomization (MR) uses measured genetic

variants as instrumental variables for exposures to make

inference about causation from observational data. The

methodology behind MR has developed substantially over

the past decade,1,2 and the increasing application of MR is

made possible by genome-wide association studies

(GWAS) and the greater open access of GWAS data to the

research community. It is notable that the instrumental

variables used in MR are familial, in that they are corre-

lated between blood relatives. This raises the prospect of

thinking about MR in the context of family designs, in-

cluding twin pairs.

Twin studies have special properties for understanding

the causes of variation of traits. Traditionally, twin studies

have been used to test hypotheses about unmeasured

causes. For example, comparing the similarity of monozy-

gotic (MZ) twin pairs with the similarity of dizygotic twin

pairs for a particular trait is a way of testing the null hy-

pothesis that genetic factors do not influence variation in

that trait. Under certain assumptions, these twin studies

can also be used to estimate the proportion of variation

due to genetic and shared non-genetic factors.

The within-twin pair designs, using pairs discordant for

outcome or exposure3 and the within-pair differences in

continuous traits,4,5 have been used to test causal hypothe-

ses about measured causes. The value of these designs is

that they control for potential confounders, including fa-

milial confounders. Given this strength, it is argued that an

observed association is more likely to be causal. However,

some possibilities cannot be ruled out, such as reverse cau-

sation when using cross-sectional data, and unmeasured

confounding even when using longitudinal data.

We have developed a new method, Inference about

Causation from Examination FAmiliaL CONfounding

(ICE FALCON), which applies to data for related individu-

als and enables an assessment of evidence for causality and

causal direction between measured factors—using statisti-

cal analysis to try to detect the signal from the noise. ICE

FALCON has been applied to try to understand the causes

of several traits including mammographic density,6,7

allergic conditions,8 psychological behaviours,9 bone ar-

chitecture10 and epigenetic modifications.11,12 In the latter

papers we compared our findings with those from MR,

and found they agreed. ICE FALCON has similarities and

differences to MR; see Discussion.

In this paper we describe the methodology of ICE

FALCON. To illustrate how it can be applied, we present

simulation studies and two examples.

For the first example, we considered the cross-sectional

association between body mass index (BMI) and blood

DNA methylation level at site cg06500161 of the ABCG1

locus. MR analyses have suggested that this association is

due to a causal effect of BMI on methylation: Wahl et al.13

reported that a BMI polygenic risk score (PRS) based on

29 variants was associated with methylation level

(P¼ 6.4� 10–5), by analysing data for 4034 individuals;

Mendelson et al.14 analysed data for 2170 individuals and

found that a BMI PRS based on 97 variants was associated

with methylation level (P¼ 7.1� 10–3).

For the second example, we considered the issue of cau-

sality between BMI measures repeated in time. This

addresses whether a correlation between BMI at two dif-

ferent time points is due to: (i) BMI at the earlier time hav-

ing a causal effect on BMI at the later time; (ii) familial

factors (genetic and/or non-genetic) that operate at both

time points; or (iii) non-familial factors that operate at

both time points. For MR to assess these explanations of

tracking with time, there would need to be genetic variants

associated with BMI at the earlier time which are not asso-

ciated with BMI at the later time. Genetic variants for

adulthood BMI found to date by GWAS appear to apply to

BMI across the whole of adulthood;15 there are as yet no

validated genetic variants associated with BMI at an earlier

Key Messages

• Inference about Causation from Examination of FAmiliaL CONfounding (ICE FALCON) uses observational data for re-

lated individuals, in particular twin pairs, to assess causality between measured variables.

• ICE FALCON has some similarities to Mendelian randomization (MR) but uses in effect all the familial determinants of

the exposure, not just those captured by measured genetic variants, and does not make strong assumptions. ICE

FALCON and MR empirically are giving similar conclusions with possibly more information per subject from ICE

FALCON.

• ICE FALCON does not require genetic data and can be applied to circumstances in which MR cannot be applied, such

as when there is no a priori genetic knowledge and/or data available to create a valid instrumental variable for the ex-

posure of interest, or when the assumptions underlying MR analysis are suspect.
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age which are not associated with BMI at a later age. Even

genetic variants found to be associated with childhood

BMI are associated with adulthood BMI.16

Methods

ICE FALCON

Suppose there are two traits, X and Y, measured for related

individuals. Here we assume, for simplicity of exposition

and the examples, that the related individuals are twin

pairs but other pairs of related individuals, such as sibling

pairs, could also be used. We consider here only one expo-

sure variable, but the extension to multiple exposures is

straightforward.

Without loss of generality, assume that X and Y are

positively associated within an individual. Figure 1 shows

some possible causal diagrams for X and Y, in which

circles are unmeasured causes and squares are measured

traits following the original convention.17 These diagrams

combine the original path analysis concept introduced by

Sewall Wright to study genetic and environmental causes

of variation17 with the directed acyclic graphs used in cur-

rent epidemiology.18 Let S denote all the combination of

unmeasured causes (genetic and/or non-genetic) that affect

both twins; SX represents those causes that influence X

only, SY those causes that influence Y only and SXY those

causes (familial confounders) that influence both X and Y.

Let U denote all the unmeasured individual-specific con-

founders between X and Y which are not shared by twins.

For the purposes of explanation, let ‘self’ refer to an indi-

vidual and ‘co-twin’ refer to the individual’s twin, but rec-

ognize that these labels can be swapped and both twins

within a pair are included in the analysis.

If a cross-twin cross-trait correlation (the correlation

between Yself and Xco-twin, or between Xself and Yco-twin)

exists, it might be due to the following: (i) the effects of fa-

milial confounders SXY (Figure 1a); (ii) causation between

X and Y, provided Xself and Xco-twin are correlated due to

SX and/or Yself and Yco-twin are correlated due to SY

(Figure 1b and c); or (iii) a mixture of familial confounding

and causation between X and Y (Figure 1d, e).

The trait X is assumed to be the predictor variable and

Y is assumed to be the outcome variable (the roles of X

and Y can be reversed in order to provide additional evi-

dence; see below). Three models are fitted:

Model 1 : EðYself Þ ¼ aþ bself Xself

Model 2 : EðYself Þ ¼ aþ bco�twinXco�twin

Model 3 : EðYself Þ ¼ aþ b0self Xself þ b0co�twinXco�twin

For the purpose of illustration, the models are simplified

without including any covariates, though covariates can be

easily included. Given that both twins within a pair are in-

cluded in the regression, the correlation in the outcome

variable between twins needs to be accounted for. This can

be handled by explicitly estimating the correlation, using

for example the package FISHER,19,20 or by applying a

random-effects model or a generalized estimating equa-

tions (GEE) model.

If there is familial confounding only (i.e. no direct cau-

sation) (Figure 1a), there will be associations between Yself

and Xself (bself, Model 1), and between Yself and Xco-twin

(bco-twin, Model 2). Adjusting for Xself (Model 3), there will

still be a conditional association between Yself and Xco-twin

(b’co-twin), but it will be attenuated towards the null com-

pared with bco-twin. Similarly, adjusting for Xco-twin (Model

3), the conditional association between Yself and Xself

(b’self) will be attenuated towards the null compared with

bself. Both the attenuations will be of a similar magnitude.

If there is a causal effect from X to Y only (Figure 1b),

there will be an association between Yself and Xself (bself,

Model 1). In Model 2, Yself and Xco-twin are associated

through two paths: the confounder SX, and conditioning

on the collider Yco-twin (accounting for the correlation in Y

between twins in effect conditions on Yco-twin).

Conditioning on Yco-twin induces a negative correlation be-

tween Xco-twin and Yself, so that bco-twin depends on the

within-pair correlations in X (qX) and in Y (qY): if qX>qY,

bco-twin is expected to be positive; otherwise to be negative.

Conditioning on Xself (Model 3), both paths are closed

and the conditional association between Yself and Xco-twin

(b’co-twin) will be null, and therefore attenuated compared

with bco-twin. However, conditioning on Xco-twin (Model

3), the association between Yself and Xself (b’self) will be

similar to bself.

If there is a causal effect from Y to X only (Figure 1c),

there will be an association between Yself and Xself (bself).

In Model 2, there is no open path between Yself and

Xco-twin—the path through Xself is closed due to Xself being

a collider, and the path through SY is closed due to the fact

that Yco-twin is conditioned on, so bco-twin is null.

Conditioning on Xself (Model 3), both paths are open and

there will be a conditional association between Yself and

Xco-twin (b’co-twin), which depends on qX and qY: if qX>qY,

b’co-twin is expected to be negative; otherwise to be

positive.

The mathematical formulae for the theoretical argu-

ments above can be found in the Supplementary data,

available at IJE online.
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If there is both familial confounding and causation

(Figures 1d and e), the results will be a mixture of the

results mentioned above. The changes in the pair of regres-

sion coefficients from comparing Model 3 with Models 1

and 2 will apply, allowing assessment of evidence for cau-

sality still to be made. Of course, the possibility that these

changes are consistent with chance needs to be assessed by

applying formal statistical inference, and this can be

achieved using bootstrapping (see Statistical Methods) or

simulation studies.

In summary, for the different causal diagrams

showed by Figure 1, distinct patterns of changes in re-

gression coefficients are expected (Table 1). Therefore,

formal hypothesis testing of the changes in the pair of

regression coefficients can be used to assess the

strength, and the statistical significance, of the evidence

Figure 1 Possible causal diagrams for two measured traits X and Y for twins.
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for one or more causal diagrams being consistent with

the data.

To provide additional evidence, X and Y can be re-

versed, i.e. let Y be the predictor variable and X be the out-

come variable and fit the same three regression models.

For Figure 1a, the same results as those when using X as

the predictor variable are expected. For Figure 1b, the

results are expected to be the same as those for Figure 1c

when using X as the predictor variable; similarly, the

results for Figure 1c are expected to the same as those for

Figure 1b when using X as the predictor variable.

Therefore, if there is a causal association, the results from

the analyses using Y as the predictor variable are expected

to differ in distinct ways from those from the analyses us-

ing X as the predictor variable.

Note that, ICE FALCON does not model the within-

pair correlations in X or Y, as in a classic twin model that

assumes no casual effect between X and Y. ICE FALCON

investigates the changes in regression coefficients under

different causal scenarios, and thereby has the potential to

uncover novel information about the source of the data

than could be found from fitting a model based only on

correlations.

Simulation studies

To test the validity of ICE FALCON in general, we simu-

lated two causal scenarios: (i) X has a causal effect on Y;

(ii) Y has a causal effect on X. For each scenario, we simu-

lated X and Y to have various within-pair correlations,

from 0.1 to 0.9 with a step of 0.1, and applied ICE

FALCON. Details can be found in the Supplementary

data, available at IJE online.

To show how the simulation studies can be used to

help make inference about causation, for each of the

two examples above we simulated three different causal

scenarios, each based on the observed correlational

structure of the data, and applied ICE FALCON. For

Example 1, we simulated data consistent with BMI and

DNA methylation level being associated due to: (i) fa-

milial confounding; (ii) BMI having a causal effect on

DNA methylation level; and (iii) DNA methylation level

having a causal effect on BMI. For Example 2, we simu-

lated data being consistent with longitudinal BMI meas-

ures being associated due to: (i) familial confounding;(ii)

the baseline measure having a causal effect on the

follow-up measure; and (iii) a mixture of (i) and (ii),

with weights of 36% and 64% as suggested by the

emprical data analysis, respectively. We created a test

statistic for each scenario based on the observed changes

in regression coefficient estimates with those expected

based on the simulations, taking into account the

expected variation in estimates, and thereby derived em-

pirical tests of fit with statistical significance. Null hy-

pothesis of the test is that the simulated scenario is

consistent with the observed results from empirical data

analysis. Details can be found in the Supplementary

data, available at IJE online.

Subjects and materials

For the two examples, we used data from the Australian

Mammographic Density Twins and Sisters Study, a twin

and family cohort.21 Between 1995 and 1999 (baseline),

female twins aged between 40 and 70 years were

recruited and surveyed.22 Between 2004 and 2009 (follow-

up), the twins were asked to participate again, and their

sisters were also invited to participate. Participants at

follow-up completed a survey and donated blood sam-

ples.21 Blood DNA methylation was measured using the

Infinium HumanMethylation450 BeadChip array.23

For Example 1, we used follow-up data for 65 MZ pairs

whose average age was 55.4 (standard deviation: 8.3)

years, average BMI was 26.3 (5.4) kg/m2 and average

methylation beta-value at cg06500161 was 0.62 (0.03).

We used the residuals in BMI after adjusting for age and

smoking status, and residuals in methylation level after

adjusting for age, smoking status and cell proportions in

analysis. The within-pair correlations in BMI and in meth-

ylation level residuals were 0.79 [95% confidence interval

(CI): 0.77, 0.82] and 0.37 (95% CI: 0.19, 0.53),

respectively.

For Example 2, we used baseline and follow-up data for

250 MZ pairs whose average age was 49.6 (standard devi-

ation: 7.4) years and average BMI was 24.8 (4.2) kg/m2 at

baseline, and whose average age was 57.3 (7.3) years and

average BMI was 25.6 (4.3) kg/m2 at follow-up. We used

the residuals in the two BMI measures after adjusting for

age in analysis.

Statistical methods

The regression analyses were conducted using the GEE

model with the exchangeable correlation structure.

Standard error for the change in regression coefficient esti-

mates between models was estimated using a nonparamet-

ric bootstrap method, in which the included twin pairs

were randomly sampled with replacement to generate

1000 new datasets with the same sample size as the origi-

nal dataset. ICE FALCON was then applied to each data-

set to calculate the change in regression coefficient for that

dataset. The standard error was the standard deviation of

the change across the 1000 datasets.
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Results

Simulation study

Under the scenario of X having a causal effect on Y

(Supplementary Table S1, available as Supplementary data

at IJE online), Xself was associated with Yself in Model 1.

Xco-twin was associated with Yself in Model 2, and the esti-

mate of bco-twin was positive when qX > qY, and negative

when qX < qY. Conditioning on Xself (Model 3), Xco-twin

was not associated with Yself, and the estimate of b’co-twin

was close to null, regardless of qX or qY. That is, there

was a marginal association between Xco-twin and Yself,

and the association attenuated to the null after condition-

ing on Xself.

Under the scenario of Y having a causal effect on X

(Supplementary Table S2, available as Supplementary data

at IJE online), Xself was associated with Yself in Model 1.

Xco-twin was not associated with Yself in Model 2, and the

estimate of bco-twin was close to the null, regardless of qX

or qY. Conditioning on Xco-twin (Model 3), Xco-twin was as-

sociated with Yself, and the estimate of b’co-twin was nega-

tive when qX > qY, and positive when qX < qY. That is,

there was no marginal association between Xco-twin and

Yself, but there was an association after conditioning on

Xself.

Therefore, this simulation study showed that ICE

FALCON gives distinct patterns of regression coefficients

consistent with our theoretical arguments and the mathe-

matical expressions.

Example 1

Table 2 shows the results using BMI as the predictor

variable and methylation level as the outcome variable.

A woman’s methylation level was associated with her

own BMI (Model 1; bself ¼ 0.13, 95% CI: 0.05, 0.22)

and with her co-twin’s BMI (Model 2; bco-twin ¼ 0.09,

95% CI: 0.01, 0.17). Conditioning on her co-twin’s

BMI (Model 3), the association between her methyla-

tion level and her own BMI remained unchanged

(P¼ 0.49). On the other hand, conditioning on her own

BMI (Model 3), the association between her methyla-

tion level and her co-twin’s BMI attenuated by 97% to

become null (b’co-twin ¼ 0.003, 95% CI: �0.11, 0.12).

This attenuation was marginally significant (P¼ 0.08).

The findings that there was an association between a

woman’s methylation level and her co-twin’s BMI in

Model 2, and that the association disappeared after

conditioning on her own BMI, are consistent with the

expectation of Figure 1b.

We reversed BMI and methylation level, i.e. methyla-

tion level became the predictor variable and BMI was the

outcome variable, and fitted the same three regression

models (Table 2). A women’s BMI was associated with her

own methylation level (Model 1; bself ¼ 26.6, 95% CI: 0.1,

51.1), but not with her co-twin’s methylation level (Model

2; bco-twin ¼ 0.6, 95% CI: �23.1, 24.3). However, after

conditioning on her own methylation level, there was a

marginally significant association between her own BMI

and her co-twin’s methylation level (Model 3; b’co-twin ¼
24.4, 95% CI: �4.2, 53.0, P¼ 0.1), and there was a signifi-

cant change (P¼ 1.4� 10–3) when comparing b’co-twin with

bco-twin. Given there was no association between a wom-

an’s BMI and her co-twin’s methylation level in Model 2,

but a change in association from conditioning on her own

methylation level, these results are inconsistent with the ex-

pectation of Figure 1b, but consistent with the expectation

of Figure 1c.

Therefore, the data are inconsistent with methylation

level having a causal effect on BMI, but consistent with

BMI having a causal effect on methylation level.

This inference is also supported by the simulation study;

no evidence was found that the scenario in which BMI has

a causal effect on DNA methylation level was inconsistent

with the observed results (P¼ 0.74), whereas the other two

scenarios were inconsistent with the observed results (both

Table 1. The expected results from ICE FALCON analysis of regressing Y on X for different causal scenarios

Model Coefficient Familial confounding X causing Y Y causing X

Model 1 bself Association Association Association

Model 2 bco-twin Association Association No association

Model 3 b’self Association; attenuated towards

the null compared

with bself of Model 1

Association; the same

as bself of Model 1

Association

b’co-twin Association; attenuated towards

the null compared

with bco-twin of Model 2, to the

same extent as the attenuation

of b’self compared with bself

No association; attenuated

to the null compared

with bco-twin of Model 2

Association; negative

if qX >qY, otherwise

positive
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P<0.05) (Supplementary Table S3 and Figure S1, available

as Supplementary data at IJE online).

Example 2

Table 3 shows that a woman’s follow-up BMI was associ-

ated with her own baseline BMI (Model 1; bself ¼ 0.81,

95% CI: 0.72, 0.90), and with her co-twin’s baseline BMI

(Model 2; bco-twin ¼ 0.73, 95% CI: 0.65, 0.81). In Model

3, there remained a strong association between a woman’s

follow-up BMI with her own baseline BMI (b’self ¼ 0.73,

95% CI: 0.63, 0.83), and a weak association with her co-

twin’s baseline BMI (b’co-twin ¼ 0.15, 95% CI: 0.06, 0.23).

Both the associations attenuated compared with the esti-

mates from Models 1 and 2, but to different extents

(P¼ 1.8� 10–14), being 9.8% (P¼ 0.02) and 79.9%

(P¼ 1.5� 10–30), respectively.

The findings that there were associations for both a

woman’s baseline BMI and her co-twin’s baseline BMI in

Model 3, and that both the associations attenuated from

comparing with Models 1 and 2 but to different extents,

are consistent with the expectations of Figure 1d, i.e. a

mixture of causation and familial confounding. We, there-

fore, interpret these results as being consistent with a longi-

tudinal causation, as well as a small amount of familial

confounding, underlying the association between the two

longitudinal BMI measures.

This inference is also supported by the simulation study;

no evidence was found that the scenario in which longitu-

dinal BMI measures are associated due to a mixture of fa-

milial confounding and longitudinal causation was

inconsistent with the observed results (P¼ 0.35), whereas

the other two scenarios were highly inconsistent with the

observed results (both P¼ 0) (Supplementary Table S4 and

Figure S2, available as Supplementary data at IJE online).

Discussion

We found from Example 1 that the ICE FALCON ap-

proach gave the same conclusion as from previous MR

analyses, i.e. BMI has a causal effect on the blood DNA

methylation level at the ABCG1 locus. Our previous appli-

cations of ICE FALCON to data on exposures and blood

DNA methylation also gave the same conclusion as from

MR analyses.11,12

One measure of the amount of information on causality

assessment from MR can be derived from consideration of

the test statistic (ZMR) for the association between PRS and

outcome, in proportion to the square root of the sample

size (n). Similar for ICE FALCON, a measure of the

amount of information comes from the test statistic (ZIF)

for change in cross-trait cross-pair regression coefficient.

The study by Wahl et al.13 had n¼ 4034 and ZMR ¼ 4.00,

the study by Mendelson et al.14 had n¼ 2170 and ZMR ¼

Table 2. Results from the ICE FALCON analysis for BMI and blood DNA methylation level at site cg06500161 of the ABCG1 locus

Predictor Coefficient Model 1 Model 2 Model 3 Changeb

Est (SE) P Est (SE) P Est (SE) P Est (SE) P

BMIa bself 0.13 (0.04) 2.1 � 10�3 0.13 (0.06) 0.03 �0.001 (0.06) 0.49

bco-twin 0.09 (0.04) 4.9 � 10�2 0.003 (0.06) 0.96 �0.08 (0.06) 0.08

DNA methylation level bself 26.6 (13.0) 4.8 � 10�2 39.8 (16.3) 0.02 14.2 (7.0) 0.02

bco-twin 0.6 (12.1) 0.96 24.4 (14.6) 0.10 23.8 (7.9) 1.4 � 10�3

ICE FALCON, Inference about Causation through Examination of FAmiliaL CONfounding; BMI, body mass index; Est, estimate; SE, standard error.
aRegression results were reported as the change in percentage methylation per one unit increase in BMI.
bOne-sided P-value.

Table 3. Results from the ICE FALCON analysis for longitudinal BMI measures

Coefficient Model 1 Model 2 Model 3 Changea

Est (SE) P Est (SE) P Est (SE) P Est (SE) P

bself 0.81 (0.04) <2.0 � 10�16 0.73 (0.05) <2.0 � 10�16 �0.08 (0.04) 0.02

bco-twin 0.73 (0.04) <2.0 � 10�16 0.15 (0.04) 1.0 � 10�3 �0.59 (0.05) <2.0 � 10�16

ICE FALCON, Inference about Causation through Examination of FAmiliaL CONfounding; BMI, body mass index; Est, estimate; SE, standard error.
aOne-sided P-value.
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2.69 and our ICE FALCON analysis had n¼130 and ZIF

¼ 1.75. Therefore, ZMR/n1/2 ¼ 0.063 and 0.058 respec-

tively when using MR, whereas ZIF/n1/2 ¼ 0.153 when us-

ing ICE FALCON. That is, in this example ICE FALCON

appears to be extracting about 2.5 times more information

on causality per subject than MR. Given these Z scores

capture the main driver of decision making for each

method, we think Z/n1/2 is a good starting point for com-

paring the power per subject between the two methods,

and this is an issue for further research.

We found from Example 2 that the longitudinal track-

ing in BMI is mostly consistent with a causal effect of BMI

on its future values, as well as a smaller component of fa-

milial confounding. This implies that most of the reason

why BMI is correlated in MZ pairs in later life is because

they were correlated in earlier life. That is, the genetic and

non-genetic factors relevant to BMI, which are shared by

individuals in earlier life, have a lingering effect on BMI

into their later life due to their BMI in earlier life having a

causal effect on their future BMI. It also implies that BMI

intervention studies can be effective, contrary to what

would have been the implication had we found no evidence

of longitudinal causation. Therefore, intervention studies

on BMI may not necessarily be doomed to failure due to a

deterministic interpretation of the effects of a person’s un-

derlying genetic and other familial factors, as would be the

conclusion had there been no evidence for longitudinal

causation.

Comparison of ICE FALCON and MR

ICE FALCON is analogous in some ways to MR. Consider

the scenario in which X has a causal effect on Y

(Figure 1b); SX is an instrumental variable for Xself, the ex-

posure, and includes all the familial determinants of X, not

just the proportion captured by measured genetic variants.

SX is not measured, but in this scenario a proxy measure is

Xco-twin. ICE FALCON studies the association between the

proxy instrumental variable and the outcome, Yself. MR

uses measured genetic variants within Sx as an instrumen-

tal variable. When the roles of X and Y are additionally re-

versed, ICE FALCON is analogous to a bidirectional MR

analysis—the association between the proxy instrumental

variable (Yco-twin) for outcome (Yself) and the exposure

(Xself) is also investigated.

Although sharing some similarities, a major differentiat-

ing point is that ICE FALCON does not rely on the strong

assumptions of MR, and it makes inference based on

changes in a pair of regression estimates, rather than esti-

mation of a single parameter alone. MR makes the essen-

tial assumption that the measured genetic variants

associated with X are all within SX, and that none are

within SXY. ICE FALCON allows for SXY to exist. MR

tests for causality by fitting a single parameter, whereas

ICE FALCON considers a pair of parameters and how

their estimates change between whether the parameters are

estimated together or alone.

ICE FALCON, therefore, does not assume inference can

be made based on a single ‘causal parameter’ related to a

(genetic, and therefore familial) variable that is designated

to be ‘instrumental’ by making strong assumptions which

presume biological knowledge. Instead, ICE FALCON

uses the existence of the familial similarity of an exposure

to make causal inference using a new approach to hypothe-

sis testing based on changes in pairs of regression coeffi-

cients. It is not even necessary to know the causes of the

familial similarity of the exposure or decompose the

expsoure’s variance into genetic and/or non-genetic com-

ponents, though the potential for obtaining new knowl-

edge by doing so will be explored in future publications.

ICE FALCON is based on regression, so the method

can be applied to continuous and binary outcomes using

ordinary and logistic regression, respectively, and poten-

tially to survival data using Cox regression. There are no

restrictions on the measurement scale of exposures. ICE

FALCON can also be used to assess the causes of tracking

in a trait over time, as in Example 2, an issue that cannot

be easily assessed using MR due to the difficulty of finding

a valid instrumental variable.

The validity of an MR analysis is subject to three key

assumptions.1 Table 4 summarizes a comparison between

MR and ICE FALCON for each of these assumptions, and

shows that ICE FALCON could have some advantages

over MR.

Regarding the relevance assumption, MR requires the

exposure to have been extensively studied, and measured,

for genetic determinants. ICE FALCON, however, does

not explicitly require genetic data and can be applied to all

measured exposures of interest. There is a weak instrumen-

tal variable bias in MR estimates if the studied genetic var-

iants do not explain a substantial variation in the

exposure. By contrast, SX includes all causes of familial

correlation in X that are specific to X, which is theoreti-

cally stronger than a limited number of genetic variants, so

ICE FALCON will not be giving biased results in the way

MR can.

Regarding the independence assumption, Xco-twin is

unrelated to Uself, the individual-specific confounders of

the relationship between Xself and Yself. Any relationship

with unmeasured confounders shared between twins is

captured by SXY. Should Xco-twin be related to SXY, as in

the scenario showed by Figure 1d, ICE FALCON should

still work — the association between Xco-twin and Yself is

still expected to attenuate towards the null after adjusting
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for Xself, given that the path Xco-twin SX !Xself !Yself is

closed. Example 2 shows the validity of ICE FALCON in

this scenario.

Similarly, regarding the exclusion restriction assump-

tion, if Xco-twin has directional pleiotropy, i.e. is related to

Yself not through Xself only but also through a shared medi-

ator between twins, a change in the association between

Xco-twin and Yself is still expected after adjusting for Xself.

There are, nonetheless, limitations in the usage of ICE

FALCON. It requires data for related individuals with

both members of the same pair having been measured in

the same way for the variables of interest. ICE FALCON

uses measured variables which can be subject to measure-

ment error, whereas the genetic data used in MR typically

have little measurement error.

Note that the measured exposure variables in ICE

FALCON could also include measured genetic variants, so

in principle ICE FALCON could be used to address the

causality of polygenic risk scores and in theory even indi-

vidual genetic variants. ICE FALCON and MR analyses

could also be combined given a suitable dataset. The

combination could be used to test the validity of some MR

assumptions, such as whether the genetic variants for the

exposure have directional pleiotropy. Methodology for the

combination needs to be developed.

Interpretation of results

As with MR analyses, results from ICE FALCON should

of course be interpreted appropriately, given that they are

both statistical modelling approaches which allow consid-

eration of the extent to which the analysed data are consis-

tent with different causal models. Neither approach can

prove that a consistent model is a true representation of na-

ture, and we are not proposing that ICE FALCON can

‘prove causality’. All that can be said is whether or not the

data ‘are consistent with’ a particular causal hypothesis.

The results of these observational analyses should be con-

sidered with other evidence as well when making interpre-

tations, as pointed out by the guidelines (not criteria)

developed by Bradford Hill for addressing causation based

on assuming that a factor is causal and thinking through

Table 4. Comparison between MR and ICE FALCON with respect to the three key assumptions of MR

Assumptions (Ref.1) MR ICE FALCON

Relevance assumption: instrumental vari-

able is strongly associated with the

exposure

• Measured genetic variants associated

with exposure act as presumed instru-

mental variable

• Plausibility assessment: F-statistic, risk

difference or using genetic variants

found by large-scale GWAS to be asso-

ciated with the exposure

• Weak instrumental variable bias

• All unmeasured familial causes specific

to the exposure act as instrumental var-

iable; co-twin’s exposure variable used

as a proxy

• Plausibility assessment: within-pair cor-

relation in the exposure

• All familial causes specific to the expo-

sure are stronger than a finite number

of genetic variants associated with the

exposure

Independence assumption: instrumental

variable is independent of any con-

founder of the relationship between ex-

posure and outcome

• Validity assessment: biological knowl-

edge, test between genetic variants and

confounders, evidence from GWAS of

confounders

• Approaches for invalidity: removing in-

valid genetic variants, adjusting for

population stratification, adjusting for

potential confounders

• Xco-twin is theoretically unrelated to

unmeasured confounders specific to an

individual only; any relation with

unmeasured confounders shared be-

tween twins is captured by the familial

confounder, SXY

• Still works even if Xco-twin is also asso-

ciated with Yself through SXY; inference

on causation based on the changes in

regression coefficients still apply

Exclusion restriction assumption: the as-

sociation between the instrumental var-

iable and the outcome is mediated

through the exposure variable only

• Validity assessment: biological knowl-

edge, test between genetic variants and

potential alternative mediators, evi-

dence from GWAS of the outcome or

potential alternative mediators

• Approaches for invalidity: removing in-

valid genetic variants, statistical meth-

ods such MR-Egger regression and

Weighted Median Estimator

• Xco-twin is theoretically not related to

Yself through potential alternative path-

ways in which Xself is uninvolved

• Still works even if Xco-twin is also asso-

ciated with Yself through a mediator

shared between twins; inference on cau-

sation based on the changes in regres-

sion coefficients still apply
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the consequences.24 ICE FALCON and MR are in effect

doing the same thing, though more sophisticatedly than

the usual approach of estimating associations from obser-

vational studies.

Nonetheless, statistical modelling is an attempt to iden-

tify the plausible and implausible explanations of data.

ICE FALCON can be used to test hypotheses and thereby

has the potential to falsify model(s). For example, classic

bivariate twin models assume there are no causal effects

between variables of interest. Attempts have been made to

include causation,25 but those models do not consider cau-

sation and familial confounding together (i.e. they assume

SXY does not exist). They also only use marginal correla-

tions to make inference. Our analyses show that this as-

sumption is not substantiated in either Example 1 or 2,

because the observed regression coefficients clearly differ

from those expected under the classical twin model. This

calls into question the results of multivariate twin analyses

that assume that the only reason why variables are corre-

lated within pairs is due to shared familial factors, in effect

excluding the potential for intervention studies.

Further developments

Several issues need to be investigated to further develop

ICE FALCON: (i) the statistical power of ICE FALCON;

(ii) the change in regression coefficient in relation to the

within-pair correlations in X and Y; (iii) quantifying the

causal effect (ICE FALCON currently focuses on consider-

ing evidence for causality); and (iv) as mentioned above,

how to combine ICE FALCON with MR.

To conclude: we have developed ICE FALCON, a sta-

tistical modelling approach to observational data for re-

lated individuals, to assess causality between measured

variables of interest. There are some conceptual similarities

and differences between ICE FALCON and MR, and em-

pirically they are giving similar conclusions, with possibly

more information per subject from ICE FALCON. ICE

FALCON can be applied to circumstances in which MR

cannot be applied, such as when there is no a priori genetic

knowledge and/or data available to create a valid instru-

mental variable for the exposure of interest, or when the

assumptions underlying MR analysis are suspect. ICE

FALCON can also be used as an independent method to

replicate the findings from MR analysis, and vice versa. By

providing causality evidence in multiple ways, ICE

FALCON, perhaps together with other causality assessing

methods, should be useful in deciding, for example,

whether to pursue intervention studies of the measured fac-

tor in relation to influencing the trait in question. Given

ICE FALCON does not rely on genetic knowledge or mea-

surement of those genetic factors, but instead uses the

almost universal fact that siblings (and especially twins)

are correlated in exposures, it could provide insights into

causality for a wide range of public health questions.

Supplementary data

Supplementary data are available at IJE online.
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