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Abstract: Amaranth is one of the synthetic azo colorants used to improve the appearance and to
increase the appeal of some foods and soft drinks. The excessive consumption of amaranth can be
associated with health side effects, emphasizing the need to monitor this food dye. Accordingly, the
present study aimed to introduce an electrochemical sensor of glassy carbon electrode (GCE) modified
with N-doped reduced graphene oxide (N-rGO), N-rGO/GCE, to detect the amaranth sensitively
and rapidly. Several electrochemical techniques such as differential pulse voltammetry (DPV), linear
sweep voltammetry (LSV), chronoamperometry (CHA), and cyclic voltammetry (CV) are exploited
for the evaluation of the efficiency of the developed electrode for the detection of amaranth. We
found that N-rGO/GCE enhanced amaranth oxidation, thus significantly elevating the current signal.
Amaranth showed that calibration curves ranged from 0.1 to 600.0 µM, and the limit of detection
(LOD) (S/N = 3) was 0.03 µM. Finally, the developed sensor was effectively applied for real samples
(tap water, apple juice, and orange juice) with acceptable recovery values from 96.0 to 104.3%.

Keywords: reduced graphene oxide; electrochemical sensor; amaranth; N-doped reduced graphene
oxide; glassy carbon electrode

1. Introduction

3-hydroxy-4-[(4-sulfo-1-naphthalenyl)azo]-2,7-naphthalenedisulfonic acid trisodium
salt, amaranth, belongs to synthetic pyrazolone colorants [1]. Some characteristics such
as persistent stability and low cost made it an appropriate candidate to form red color in
several sweets, drinks, and syrups [2,3]. Despite the presence of the azo functional group
and structure of aromaticity, the excessive consumption of amaranth can be associated
with human health side effects, including anxiety, allergies, dizziness, and even cancer.
Accordingly, the United States have recognized the ban on the use of amaranth in food, and
China has allowed the use of this colorant with a maximum acceptable range of 0.05 g/kg in
soft drinks [4,5]. In fact, it should be concluded that achieving a fast and sensitive analytical
approach is a basic need in the detection of amaranth in different food products.

Amaranth has been detected by different techniques, including thin layer chromatogra-
phy (TCL) [6], high-performance liquid chromatography (HPLC) [7], liquid chromatography-
mass spectrometry (HPLC-MS) [8], spectrophotometery [9,10], capillary electrophoresis
(CE) [11], and electrochemical methods [12–14]. Some specific problems of these methods
including the time-consuming extraction processes and expensive instrumentation, com-
plex analysis processes, and the presence of interferences have limited their applications.
Electrochemical methods are gaining popularity due to their special properties, including
simplicity, rapid response, simple equipment, ease of use, and cost-effectiveness compared
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with certain analytical techniques [15–21]. In addition, the reason for the increasing atten-
tion toward the modification of such electrodes can be attributed to the poor function of
common electrodes in the detection of analytes [22–31]. The findings documented that the
electron transfer rate can be increased and the overpotential can be significantly reduced
through electrode surface modification.

Recently, nanomaterials have been widely used in various fields due to their excep-
tional properties [32–39]. The use of nanomaterials improves electrocatalytic properties and
increases electrochemically active surface areas [40–48]. Graphene is a 2D nanostructure
containing one or more sheets composed of carbon atoms. Therefore, it is one of the ap-
propriate candidates to fabricate sensitive and selective sensors because of special features,
including great electrical conductivity, high mechanical and thermal properties, and high
specific surface area [49]. According to exceptional electronic potentials, graphene-based
electrodes are able to enhance the electron transfer rate, suggesting a novel approach to
develop electrochemical biosensors and sensors [50–52].

More recently, semiconductor-like properties can be achieved by chemically doped
graphene, and charge conductivity and chemical reactivity can be enhanced by N-/P-doped
graphene [53]. Nitrogen is one of the dopants with unique properties such as atomic radius
close to that of carbon [54]. The electronic band structure can be controlled by doped N
atoms. Moreover, mechanical strength, greater chemical stability, and special electronic
properties have been reported for the N-doped graphene sheets [55] as a new material with
various electrochemical purposes, such as the fabrication of sensors [56–59].

Thus, in this work, we developed a new electrochemical sensor to detect amaranth, in
which a GCE was modified with N-rGO. The proposed method has advantages such as
high linear dynamic range, high sensitivity, and a low limit of detection. Furthermore, this
sensor successfully detected amaranth in real samples.

2. Experimental Section
2.1. Instruments and Chemicals

All electrochemical determinations were recorded by means of an Autolab potentio-
stat/galvanostat (PGSTAT-302N, Eco Chemie, Utrecht, The Netherlands). We exploited a
single component three-electrode cell with a platinum auxiliary electrode and an Ag/AgCl
(3 M KCl) reference electrode to perform the measurements. We used N-rGO/GCE as
the working electrode while a Metrohm 827 pH meter (Metrohm AG, Herisau, Switzer-
land) was exploited to control the pH of the solutions. Analytical grade chemicals such as
amaranth and other reagents were from Sigma-Aldrich and used as received.

2.2. Synthesis of N-rGO Sheets

The N-rGO sheets were prepared by a simple hydrothermal method. Firstly, exfoliated
GO (100 mg) was dispersed by ultrasonication in deionized water (100 mL), and the pH
of the above solution was adjusted to pH = 10 by dropwise adding ammonia solution
(NH3·H2O (wt. 30%)). Next, urea (6.0 gr) was added and ultrasonicated for three hours.
Then, the prepared solution was kept in an autoclave reactor at 180 ◦C for 12 h. After the
autoclave reached ambient temperatures (25 ◦C), the samples were separated by centrifuge,
washed several times by using deionized water, and its pH was adjusted to neutral. At last,
the products (N-rGO sheets) were freeze-dried.

2.3. Preparing the Electrode

The synthesized N-rGO sheets were used for the modification of a GCE to prepare
N-rGO/GCE. For this purpose, N-rGO suspension (1 mg/mL) in deionized water was
prepared, and 4 µL of the N-rGO suspension was drop casted onto the GCE surface and
allowed to dry completely in ambient conditions.
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3. Result and Discussion
3.1. Characterization of N-rGO Sheets

A comparison of the FT-IR spectrum of GO and N-rGO is given in Figure 1. In
the characteristic spectrum of GO, various functional groups in the structure include the
vibration modes of O-H (3428 cm−1), C=O (1720 cm−1), C=C (1577 cm−1), phenolic C-O
(1381 cm−1), and epoxy C-O-C (1038 cm−1). These index peaks indicate that there are
several oxygen-containing functional groups (hydroxyl, epoxy, and carboxyl) on the surface
of GO. Moreover, for N-rGO, the absence of absorption peaks of oxygen groups indicated
that GO has been effectively reduced during the hydrothermal treatment. In addition, there
are two peaks at 1562 cm−1 and 1184 cm−1, which can be attributed to C=N (sometimes
C=C and C=N bonds can stretch at the same wavelength) and C-N. This result confirmed
that Gr was successfully N-doped. The FT-IR spectrum of the as-prepared sample was
consistent with previous reports [60–62].
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GO and N-rGO were characterized by XRD (Figure 2). The XRD pattern of GO depicts
a sharp absorption peak at 2θ = 11.5, with an inter-planer space of 7.69 Å. GO possesses a
larger inter-planer space compared to graphite due to the presence of H2O molecules and
various oxygen groups on its surface. In comparison, the XRD pattern of N-rGO confirmed
the high reduction degree, as depicted in Figure 2. After hydrothermal process and in
addition to the nitrogen-doping process, the peak at 2θ = 11.5 disappeared, pointing to the
successful reduction of GO. However, a broad absorption peak at around 24.7◦ appeared in
N-rGO pattern [63], which can be attributed to an inter-planar distance of 3.602 Å, proving
the existence of π–π stacking between Gr layers [64].

The FE-SEM image of N-rGO, presented in (Figure 3) showed that N-rGO still maintain
the 2D ultrathin flexible structure of the pristine Gr. Moreover, rGO sheets showed a wave
structure that was similar to a thin, wrinkled paper. These results demonstrated the efficient
N-doped process for the Gr. The FE-SEM image of as-prepared sample was consistent with
previous reports [63,65,66].

3.2. Electrochemical Behaviour of Amaranth at the Various Surface of Electrodes

The obtained results indicate that amaranth electro-oxidation occurred through elec-
tron and proton exchange. Furthermore, the optimization of the pH value in detecting the
analyte was necessary. We used the DPV technique to explore the electrochemical response
of amaranth on the N-rGO/GCE surface in phosphate buffer solution (PBS, 0.1 M) for pH
ranging from 2 to 9. What is noteworthy is that the amaranth electro-oxidation on the
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N-rGO/GCE surface, in neutral conditions, was higher than in alkaline or acidic medium.
Accordingly, the value of 7.0 was chosen as the optimal pH for amaranth electro-oxidation
on the N-rGO/GCE’s surface.

The electrochemical performance of N-rGO/GCE in comparison with bare GCE was
studied by the CV technique at exposure to 100.0 µM of amaranth at 50 mV/s in PBS
(0.1 M). The CVs of all as-fabricated electrodes in this study can be observed in Figure 5.
The N-rGO/GCE voltammetric behavior (curve b) exhibited the relatively strongest and
most characteristic anodic peak at 560 mV, sequentially. The bare GCE voltammetric
behaviour (curve b) exhibited a relatively weak oxidation peak with less intensity at 860 mV,
sequentially. Consequently, N-rGO/GCE has obviously better electrocatalytic behaviour
than the bare GCE towards the amaranth with the relatively strong current response.
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We exploited energy dispersive X-ray spectroscopy (EDS) techniques for the analysis
of elemental compositions (Figure 4). The EDS analysis showed that N-rGO sheets contain
C, N, and O elements. This result demonstrated that the efficient N-doped process for rGO.
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3.3. The Effects of the Scan Rate

We investigated the effect of the scan rate on the amaranth oxidation peak to analyze
the electrode processes. We recorded the linear sweep voltammograms (LSVs) for 100.0 µM
of amaranth in PBS (0.1 M) at different scan rates. We found a linear dependence of the
anodic peak currents on the square root of the scan rate (Figure 6). Such a finding led us to
identify the diffusion-controlled process as the process responsible for amaranth oxidation
on N-rGO/GCE.
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exposure to 100.0 µM of amaranth at various scan rates; (1): 10, (2): 30, (3): 70, (4): 100, (5): 300, and
(6): 500 mV/s, sequentially; inset: changes in anodic peak currents against ν1/2.

3.4. Chronoamperometric Measurements

Chronoamperometric analysis (Figure 7) is applied to calculate the diffusion coefficient
of amaranth. As displayed in Figure 7 (A), the I vs. t−1/2 plots have been utilized for the
optimal fits of different amaranth contents in PBS (0.1 M). Using various amaranth contents
on N-rGO/GCE, we performed chronoamperometric measurements with the working
electrode at the potential of 0.6 V. The slopes of the obtained straight lines versus amaranth
contents were drawn to exploit the Cottrell equation below:

I = nFAD1/2Cbπ
−1/2t−1/2

where D (cm2/s) is the diffusion coefficient and Cb (mol/cm3) indicates the bulk content.
There was a linearity for the I plots against t−1/2 under diffusion control over various
amaranth contents. We used the slope vs. amaranth content plot (Figure 7 (B)) to extract
the mean D value for amaranth, obtaining 2.5 × 10−5 cm2/s.
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3.5. Calibration Plot and LOD

Amaranth content was measured by the DPV technique. The DPVs captured for
N-rGO/GCE at various amaranth contents in PBS (0.1 M) are shown in Figure 8. There was
a stepwise enhancement in the amaranth oxidation current by gradually increasing ama-
ranth contents, meaning the applicability of N-rGO/GCE for electrochemically sensing the
amaranth. Figure 8 (inset) represents the alterations in the oxidation signal on N-rGO/GCE
as a function of various amaranth contents (0.1–600.0 µM), having a low LOD of 0.03 µM.
In addition, Table 1 shows that the N-rGO/GCE can compete with other sensors for the
determination of amaranth.

Table 1. Linear range and LOD obtained at the N-rGO/GCE for the determination of amaranth
compared with other sensors.

Electrochemical Sensor Method Linear Range LOD Ref.

Fe3O4@reduced graphene
oxide/GCE DPV 0.05–50 ìM 50 nM [2]

Ordered mesoporous
carbon/GCE DPV 1.0 × 10−7–3.0 ×

10−6 M 3.2 × 10−8 M [3]

Single-walled carbon
nanotube-titanium nitride

nanocomposite/GCE
DPV 0.1–100 ìM 40 nM [67]

Multi-wall carbon nanotube
thin film/GCE DPV 40 nM–0.8 ìM 35 nM [68]

Co3O4-CeO2/graphene
nanocomposite modified

electrode
DPV 2–96 µM 0.1591 µM [69]

N-rGO/GCE DPV 0.1–600.0 µM 0.03 µM This Work
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3.6. Analysing the Real Sample

The ability of N-rGO/GCE for sensor applications in the detection of amaranth was
determined in real specimens of tap water, apple juice, and orange juice according to the
standard addition method, as seen in Table 2. The recorded recovery rates ranged from
96.0% to 104.3%, thereby highlighting the appreciable applicability of N-rGO/GCE in
sensing amaranth in real specimens.

Table 2. The application of N-rGO/GCE for the determination of amaranth in tap water, apple juice,
and orange juice. (n = 5).

Sample Spiked (µM) Found (µM) Recovery (%) R.S.D. (%)

Tap Water

0 - - -

5.0 4.9 98.0 3.2

6.0 6.2 103.3 1.7

7.0 7.1 101.4 2.4

8.0 7.8 97.5 2.6

Apple Juice

0 - - -

4 4.1 102.5 1.7

6 5.8 96.7 3.5

8 8.1 101.2 2.6

10 9.9 99.0 2.7

Orange Juice

0 - - -

5 4.8 96.0 3.6

7.0 7.3 104.3 2.8

9.0 9.1 101.1 3.0

11.0 10.9 99.1 1.9
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4. Conclusions

In this study, we developed a novel sensitive electrochemical sensor, based on N-
rGO sheets, for the detection of amaranth. The proposed sensor exhibits remarkable
electrocatalytic activity and excellent sensitivity toward amaranth detection with a linear
response over a wide concentration range (0.1–600.0 µM) and a low detection limit (0.03 µM).
Moreover, the applicability of N-rGO modified GCE was tested in real samples with good
accuracy and satisfying recovery.
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