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In Brief
Cancer immunotherapy is
ineffective in low TMB EGFR-
mutant lung adenocarcinoma. Qi
et al. performed a comprehensive
proteogenomic profiling of HLA
class I-presented
immunopeptides in high TMB
melanoma and low TMB EGFR-
mutant lung cancer. Similar
numbers of immunopeptides
were identified from both. Variant,
CG antigen, PTM, and lncRNA-
derived peptides were identified.
A novel strategy to identify
lncRNA-derived peptides was
developed. The direct
identification of class I-presented
immunopeptides will potentially
accelerate precision
immunotherapy for low TMB
tumors.

Highlights
• Proteogenomics identified ~35,000 class I-presented peptides.• CG antigen and PTM peptides identified in melanoma and lung cancer.• De novo search identified variant and lncRNA-derived peptides.• A new strategy to identify class I-presented lncRNA-derived peptides developed.
6
f American Socie
BY license (http:

.100136
ty for Biochemistry and Molecular Biology. This is
//creativecommons.org/licenses/by/4.0/).

mailto:andy.qi@nih.gov
mailto:udayan.guha@nih.gov
mailto:udayan.guha@nih.gov
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.mcpro.2021.100136
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mcpro.2021.100136&domain=pdf


RESEARCH Special Issue: Immunopeptidomics
Proteogenomic Analysis Unveils the HLA Class
I-Presented Immunopeptidome in Melanoma
and EGFR-Mutant Lung Adenocarcinoma
Yue A. Qi1,*, Tapan K. Maity1, Constance M. Cultraro1, Vikram Misra1, Xu Zhang1,
Catherine Ade2, Shaojian Gao1, David Milewski3, Khoa D. Nguyen1,
Mohammad H. Ebrahimabadi4,5, Ken-ichi Hanada2, Javed Khan3, Cenk Sahinalp4,
James C. Yang2, and Udayan Guha1,6,*
Immune checkpoint inhibitors and adoptive lymphocyte
transfer–based therapies have shown great therapeutic
potential in cancers with high tumor mutational burden
(TMB), such as melanoma, but not in cancers with low
TMB, such as mutant epidermal growth factor receptor
(EGFR)–driven lung adenocarcinoma. Precision immuno-
therapy is an unmet need for most cancers, particularly
for cancers that respond inadequately to immune check-
point inhibitors. Here, we employed large-scale MS-based
proteogenomic profiling to identify potential immunogenic
human leukocyte antigen (HLA) class I-presented pep-
tides in melanoma and EGFR-mutant lung adenocarci-
noma. Similar numbers of peptides were identified from
both tumor types. Cell line and patient-specific databases
(DBs) were constructed using variants identified from
whole-exome sequencing. A de novo search algorithm
was used to interrogate the HLA class I immunopepti-
dome MS data. We identified 12 variant peptides and
several classes of tumor-associated antigen-derived
peptides. We constructed a cancer germ line (CG) antigen
DB with 285 antigens. This allowed us to identify 40 class
I-presented CG antigen–derived peptides. The class I
immunopeptidome comprised more than 1000 post-
translationally modified (PTM) peptides representing 58
different PTMs, underscoring the critical role PTMs may
play in HLA binding. Finally, leveraging de novo search
algorithm and an annotated long noncoding RNA (lncRNA)
DB, we developed a novel lncRNA-encoded peptide dis-
covery pipeline to identify 44 lncRNA-derived peptides
that are presented by class I. We validated tandem MS
spectra of select variant, CG antigen, and lncRNA-derived
peptides using synthetic peptides and performed HLA
class I-binding assays to demonstrate binding to class I
proteins. In summary, we provide direct evidence of HLA
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class I presentation of a large number of variant and
tumor-associated peptides in both low and high TMB
cancer. These results can potentially be useful for preci-
sion immunotherapies, such as vaccine or adoptive cell
therapies in melanoma and EGFR-mutant lung cancers.

Cancer immunotherapy has become an essential compo-
nent of therapy for diverse cancers. The treatment outcome
and patient survival rate are positively correlated with their
tumor mutational burden (TMB) (1–3). Epidermal growth factor
receptor (EGFR)-mutant lung adenocarcinoma occurs pre-
dominantly in never smokers or oligosmokers and exhibits a
relatively low TMB (4). Immunotherapy has been less suc-
cessful in EGFR-mutant lung cancer, in part, because of its
low TMB (5, 6). In contrast, melanoma, a cancer with high TMB
because of UV exposure, responds well to current immune
checkpoint blockade immunotherapy (7). Consequently, the
use of immunotherapy to treat low TMB cancers has been an
unmet need. While classic immune checkpoint inhibition ac-
tivates the natural immune response against cancer, more
recently, there has been some success with adoptive T-cell
therapy (ACT) that creates a repertoire against “nonself”
neoantigens or tumor-associated antigens (e.g., cancer germ
line [CG] antigens) (8, 9). Thus, the identification of cancer-
specific or cancer-associated antigen-derived peptides is
important for the development of immunotherapeutic strate-
gies for the treatment of low TMB tumors.
Recently, MS-based proteomics has become a powerful

approach for large-scale profiling of the human leukocyte
antigen (HLA) class I-presented peptidome (10, 11). Unlike
traditional HLA-epitope prediction algorithms, MS sequencing
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Proteogenomic Profiling of HLA Class I Immunopeptidome
provides direct experimental evidence of the presented pep-
tides, and it allows for the relative quantification of cell surface
peptide presentation. This high-throughput method can be
used to profile thousands of in vivo HLA-associated immu-
nopeptides (12, 13). When combined with next-generation
sequencing (NGS), to reveal somatic mutations, this
approach is capable of detecting mutant peptides (14) and
noncanonical peptides derived from noncoding regions (15).
However, despite the fact that MS-based cancer antigen
discovery has been widely employed for directly assessing
antigen presentation, many previous studies only focused on
high TMB tumors. Here, our goal was to develop a compre-
hensive proteogenomic platform to identify potentially
targetable class I-presented peptides in both melanoma and
lung adenocarcinoma. We hypothesized that both low TMB-
associated EGFR-mutant lung tumors and high TMB-
associated melanoma present a repertoire of tumor-specific
or tumor-associated antigen-derived peptides on HLA class I.
To develop this method, we enriched the cell surface–

presented HLA class I-bound peptides in two primary mela-
noma cell lines, two EGFR-mutant lung adenocarcinoma cell
lines, and one primary tumor from an EGFR-mutant patient
who had undergone EGFR tyrosine kinase inhibitor therapy
and identified those peptides using high-resolution tandem
MS (MS/MS). Our datasets contain five major categories of
class I-presented peptides derived from (1) common driver
oncogenes; (2) mutated peptides derived from variants,
herein, referred to as variant peptides; (3) CG antigen–derived
peptides; (4) post-translationally modified (PTM) peptides; and
(5) long noncoding RNA (lncRNA)–derived peptides. We also
validated select class I-presented peptides utilizing synthetic
standard peptides and an HLA stability–binding assay.
EXPERIMENTAL PROCEDURES

Human subject and cell lines

Lung tumor specimen was obtained at rapid autopsy from left lower
lobe of the lung of osimertinib-treated patient NCI-RA007, a 70-year-
old male, with a primary EGFRL858R mutation. The tumor is a mixture of
tumor cells and surrounding immune cells and fibroblasts that
constitute the tumor microenvironment. The tumor specimen was
snap frozen in liquid nitrogen upon collection. The genomic alterations
in the tumor of this patient were described before (16). In accordance
with the Declaration of Helsinki, the patient was consented with Na-
tional Cancer Institute (NCI) Institutional Review Board–approved
protocol 13-C-0131 (NCT01851395) entitled “A pilot study of inpa-
tient hospice with procurement of tissue on expiration in thoracic
malignancies.” The patient was offered hospice treatment with life
expectancy less than 3 months at Center for Cancer Research (CCR),
NCI. The rapid autopsies were initiated within 3 h upon patient death
that resulted in good quality genomics and proteomics data from tu-
mor tissues as reported before (17). The two primary melanoma cell
lines, NCI-3784Mel and NCI-3795Mel, were obtained from patients
with melanoma treated at the NCI, under the protocol, NCT00068003.
NCI-3784Mel has been reported previously (18). The melanoma cells
were cultured in high glucose Dulbecco's modified Eagle's medium
supplemented with 20% fetal bovine serum (FBS). EGFR-mutant lung
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adenocarcinoma cell line H1975, was purchased from American Type
Culture Collection (ATCC) and PC9 cell line was obtained from the
Varmus Laboratory (MSKCC). The lung adenocarcinoma cells were
maintained in RPMI1640 cell growth medium supplemented with 10%
FBS. The T2 (174 × CEM.T2) cell line, purchased from ATCC, was
maintained in ATCC-formulated Iscove's modified Dulbecco's me-
dium supplemented with 10% FBS.

HLA class I-presented peptide enrichment and purification

For HLA class I-presented peptide enrichment of the melanoma and
lung adenocarcinoma cell lines, 2.0 × 108 cells per biological replicate
were harvested in 4 ml ice-cold lysis buffer (20 mM Tris–HCl, pH = 8.5,
100 mM NaCl, 1 mM EDTA, and 1% Triton X-100 supplemented with
Halt 1:100 protease inhibitor cocktail [catalog no. 78430; Thermo
Scientific]). After 30 min on ice, lysates were subjected to needle
sonication for 30 s. For the human tumor tissue from rapid autopsy,
30 mg snap-frozen lung tumor tissue per replicate was homogenized
in 4 ml ice-cold lysis buffer for 30 s at 4 ◦C using the Qiagen Tis-
sueLyser II. Cell/tissue lysates were centrifuged at 20,000g for 2 h at
4 ◦C, and the supernatant was used in subsequent experiments. HLA–
peptide complexes were isolated by immunoprecipitating with 0.5 mg
pan-HLA class I antibody clone W6/32 (BioXcell) precoupled with
200 μl slurry of protein A/G PLUS agarose resin (Santa Cruz
Biotechnology) overnight at 4 ◦C with constant rotation. Agarose
beads were then washed three times with ice-cold lysis buffer (without
Triton and protease inhibitors), followed by two washes in ice-cold
20 mM Tris–HCl (pH = 8.5), and then one wash in ice-cold HPLC
grade water. Complexes were eluted four times with 0.15% TFA in
water at room temperature and combined. To purify immunopeptides,
50 mg C18 desalting columns (Sigma Millipore) were activated by two
washes with 100% acetonitrile (ACN) and equilibrated by two washes
with 0.1% TFA in water. HLA–peptide complexes were loaded on the
preconditioned 50 mg C18 columns followed by three 0.1% TFA in
water washes. HLA peptides were eluted with 40% ACN in 0.1% TFA.
Purified peptides were lyophilized at −80 ◦C for 2 h followed by
desalting step using pierce C18 Spin tips (catalog no. 84850; Thermo
Scientific). The spin tips were activated using 20 μl of 80% ACN in
0.1% TFA and equilibrated using 20 μl of 0.1% TFA by centrifuging at
1000g for 1 min. We loaded the acidified HLA peptides (reconstituted
in 40 μl of 0.1% TFA) on to prepared spin tips, washed the peptides
twice with 0.1% TFA, and eluted the peptides in 20 μl of 80% ACN in
0.1% TFA. The resulting peptides were lyophilized and reconstituted
in 0.1% TFA and 2% ACN loading buffer for LC–MS/MS analysis.

Sample preparation of whole-cell proteomic profiling

The sample preparation protocol of H1975 whole-cell proteome
profiling has been described previously (19). Briefly, three of 10-cm
cell culture plates of H1975 (n = 3) were harvested using the same
lysis buffer as for HLA peptide purification. About 1 mg protein was
reduced by 5 mM Tris (2-carboxyethyl) phosphine hydrochloride at 50
◦C for 30 min and was alkylated by 10 mM iodoacetamide in dark for
30 min followed by MS grade trypsin/lysC digestion (Promega) for 16 h
at 37 ◦C. The resulting tryptic peptides were fractionated by an off-line
high-pH (pH = 8.5) reverse-phase LC into a 96-well deep plate and
were further pooled into 12 fractions. The LC mobile phase A was
10 mM triethylammonium bicarbonate in water, and the LC mobile
phase B was 10 mM triethylammonium bicarbonate in ACN. The
lyophilized tryptic peptides were reconstituted in phase A and sepa-
rated with a 30 min LC gradient (10–35% solvent B) on an XBridge
C18, 100 × 2.1 mm analytical column (Waters) using a flow rate at
0.25 ml/min. A total of 96 fractions were collected and acidified to
0.5% TFA and pooled into 12 final fractions immediately. The frac-
tionated peptides were lyophilized and desalted by Pierce C18 Spin
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tips according to the described protocol for HLA peptides desalting.
Purified peptides were reconstituted in 0.1% TFA and 2% ACN buffer,
and peptide concentration was evaluated by NanoDrop at an absor-
bance at 215 nm. About 500 ng per fraction was subjected for LC–MS/
MS analysis.

MS/MS analyses

For the HLA immunopeptidome profiling, the purified and desalted
HLA peptides were loaded to a 2 cm nano Acclaim trap column
(catalog no. 164535) followed by separation on a 25 cm EASY-spray
reverse phase column (catalog no. ES802A) for 90 min effective
gradient with 4 to 35% 0.1% formic acid in ACN on an Ultimate 3000
Nano LC instrument (Thermo Scientific). The separated peptides were
analyzed on an Orbitrap Q-Exactive HF mass spectrometer (Thermo
Scientific) with discovery mode for data acquisition. The MS1 full scan
(375–1650 m/z) was set to 120,000 resolution, and top 15 most
abundant peptides per cycle were subsequently fragmentated by
high-energy collision dissociation. To identify only nontryptic-digested
neutral HLA class I-presented peptides (e.g., without either lysine or
arginine), typically containing 8 to 14 amino acid residues, we also
included single charged ions resulting in charge state 1 to 4 for MS2
peak picking. The MS2 sequencing scans acquired the peptide frag-
ments at 30,000 resolution and 200 ms maximum injection time win-
dow. Since enriched HLA peptidome is commonly less complex than
whole-cell proteome, we used dynamic exclusion at 20 s to collect
more MS1 data points, allowing better peak area–based quantitation.
For the whole-cell proteome, H1975 tryptic peptides from each frac-
tion were separated by the same LC method described previously for
the HLA peptidome profiling. The MS1 analysis was set at 60,000
resolution, and top 20 most abundant peaks were selected for MS/MS
analysis in which we used 15,000 resolution and 32 ms maximum
injection window. We included charge state 2 to 6 for MS2 fragmen-
tation, and dynamic exclusion was set at 30 s. In addition, we vali-
dated select variant peptides, CG antigen and lncRNA-derived
peptides. Select variant peptides and lncRNA-derived peptides were
in vitro synthesized by GenScript. Select melanoma CG antigen–
derived peptides were in vitro synthesized by the Peptide Synthesis
and Antigen Discovery Core, Surgery Branch, NCI. Synthetic peptides
were serial diluted to 1 pmol/μl in 0.1% TFA and 2% ACN in water. The
diluted synthetic peptides were pooled, and 5 μl of the pool was
subjected to MS/MS analysis using the same LC–MS/MS instrument
method for HLA peptidome profiling. To correct potential retention
time (RT) shifting using different batches of the nanoLC columns,
Pierce Peptide Retention Time Calibration Mixture (Thermo Fisher;
catalog no. 88321) containing 15 heavy-labeled peptides (1 pmol/μl)
was used for the RT correction.

Database and de novo search of MS raw files

Patient- and cell line–specific protein sequence databases (DBs)
were first generated. The alignedwhole-exome sequencing (WES) BAM
files frompatient blood (germ line) or tumor tissue/cell lineswere used to
retrieve the variant call format (VCF) files using HaplotypeCaller (Broad
Institute) (20), and the intermediate VCF files were further annotated by
SnpEff (Microsoft Genomics) (21), which filtered out only non-
synonymous variants on exome regions including single nucleotide
variants (SNVs) and small insertions and deletions (INDELs). Similarly,
BBduk (v35.2) (DOE Joint Genome Institute) was used to remove
adapter sequences and low-quality reads from paired-end FASTQ files,
which were then used as input for STAR-Fusion (version 1.6.0) (https://
github.com/STAR-Fusion/STAR-Fusion/) (22). The final VCF files were
in silico translated to sample-specificprotein sequence libraries (FASTA
files) using QUILTS (http://openslice.fenyolab.org/cgi-bin/pyquilts_cgi.
pl) (23), which were merged with refseq hg38 converted human prote-
omeDB (v20130727). Herein, we generated specific FASTA file for each
patient and cell line. To avoid using hypercomplex DB, which may in-
crease the false-positive rate, DB search for variant peptide discovery
was carried out for individual tumor or cell line separately. For the
identification of nonvariant peptides (i.e., CG antigen and PTMs), DB
search was conducted with all MS raw files using UniProt human pro-
teome DB (v20170207). The DB search of MS raw files was carried out
by PEAKS studio (version 8.5) (24) (Bioinformatics Solutions) using the
patient-/cell line–specific DBs or standard human proteome DB
describedpreviously. In thePEAKSsearchengine, noenzymedigestion
was selected because HLA peptides are natural peptides without arti-
ficial enzyme digestion. Importantly, the unique PEAKS built-in func-
tions, pan-PTMs including 650 different variable modifications and de
novo search algorithm, were used. The precursor mass tolerance was
set to 15ppm, and the fragment ion tolerancewas set to 0.05Da. For the
DB search, the false discovery rate (FDR) of peptide identification,
estimated by decoy-fusion DB, was chosen at 0.01. For the de novo
search, the average local confidence (ALC%) score of eachpeptidewas
chosen to be >50%. MS1 peak area–based label-free quantitation
method was used for peptide quantification. The direct output peptide
intensity from PEAKS was log2 transformed for further statistical anal-
ysis. For the whole-cell proteome, 12 fractions from each sample were
pooled, and DB was searched by MaxQuant (version 1.5.7.4) (Max
Planck Institute) using UniProt human proteome DB (v20170207) that
contains 70,948 entries including isoforms. The mass tolerance for
precursor ionswasset to 4.5 ppm, andmass tolerance for fragment ions
was set to 20 ppm. Trypsin and lysC were selected as digestion en-
zymes, maximum missed cleavage was set to 4, and methionine
oxidation and N-terminal acetylation were selected as variable modifi-
cations. Both FDRs at peptide and protein levels were set to 0.01. The
proteins were quantified by label-free quantification method.
HLA class I typing

First, HLA typing (six digits) of the patient donors of the two primary
melanoma cell lines was performed using sequence-specific primer
(SSP) and Sanger sequencing technologies by the Department of
Transfusion Medicine of Clinical Center at National Institutes of Health
(NIH). In addition, our laboratory conducted four-digit HLA class I
calling from the WES data of these two melanoma cells using
Seq2HLA package (25) and demonstrated consistent results with the
SSP-Seq (supplemental Fig. S1G) Therefore, we performed Seq2HLA-
based informatic HLA typing from the WES results of all samples.

T-cell epitopes/HLA-binding prediction, motif analysis, and
hydrophobicity index prediction

All peptides except PTM peptides in each cell/tissue sample were
used for T-cell epitope and HLA-binding prediction using Immune
Epitope Database and Analysis Resource (IEDB) (26) and/or
NetMHCpan-4.0 (http://www.cbs.dtu.dk/services/NetMHCpan-4.0/)
(27). To generate reviewed monoallelic epitope datasheets using
IEDB (supplemental Fig. S1F), we applied stringent filters for those
epitopes: (1) “Homo sapiens” as antigen organism; (2) “Humans” as
host; and (3) specific HLA class I subtype (e.g., HLA-A*02). The
resulting known epitopes from IEDB DB were subject to motif analysis
using iceLogo (https://iomics.ugent.be/icelogoserver/) (28), where we
used H. sapiens SwissProt composition as the reference set, and start
position was set to 1. The percent difference in frequency of the amino
acid at given locations was chosen as the readout of motif analysis. To
compare the motifs from those reported epitopes and MS-detected
HLA immunopeptides, we performed similar motif analyses of our
peptide datasets. The hydrophobicity index (HI) prediction of select de
novo peptides was performed in SSRCalc (version Q) where 100 Å
C18 column, 0.1% formic acid (2015), and HI(Best) were selected (29).
Mol Cell Proteomics (2021) 20 100136 3

https://github.com/STAR-Fusion/STAR-Fusion/
https://github.com/STAR-Fusion/STAR-Fusion/
http://openslice.fenyolab.org/cgi-bin/pyquilts_cgi.pl
http://openslice.fenyolab.org/cgi-bin/pyquilts_cgi.pl
http://www.cbs.dtu.dk/services/NetMHCpan-4.0/
https://iomics.ugent.be/icelogoserver/


Proteogenomic Profiling of HLA Class I Immunopeptidome
Whole exome and total RNA-Seq

WES and total RNA-Seq were performed as described previously
(17). Briefly, the genomic DNA and total RNA of the cell lines and
tumor were extracted and sent to the NGS core facility at NCI Fred-
erick National Laboratory. The samples were sequenced as 2 × 126 nt
paired end reads with Illumina HiSeq2500 sequencers with >100
million reads per sample. The raw FASTQ files were aligned to hg38 by
TopHat (version 2.0.13) (https://github.com/infphilo/tophat) (30); the
aligned BAM files were used for downstream variant calling. For the
samples with a corresponding germ line specimen, Strelka (version
1.0.10) was used for somatic variant calling (31). The total RNA-Seq of
H1975 (n = 3) was normalized and quantified using DESeq2 (version
1.30.0) (32).

Generation of CG antigen DB

We compiled a CG antigen DB using existing antigens reported in
CT DB (http://www.cta.lncc.br/), Human Protein Atlas (https://www.
proteinatlas.org/), and Cancer Antigenic Peptide DB (https://caped.
icp.ucl.ac.be/).

Immunoblotting of HLA class I antigens

One million cells from each cell line were lyzed in ice-cold modified
radioimmunoprecipitation buffer for 30 min. The cell lysate was spun
down at 20,000g for 15 min at 4 ◦C, and supernatant protein con-
centration was determined by the bicinchoninic acid protein assay.
About 10 μg of protein from each cell line underwent SDS-PAGE.
Subsequently, separated proteins were transferred to polyvinylidene
fluoride membrane and incubated with primary anti-HLA class I mouse
horseradish peroxidase monoclonal antibody at 1:5000 dilution
(EMR8-5; Funakoshi) overnight at 4 ◦C, and then briefly incubated with
SuperSignal horseradish peroxidase substrates (Thermo Scientific)
before imaging. The membranes were exposed for 5 s, and images
were acquired by Odyssey Fc imager (LI-COR Biosciences).

Flow cytometry analyses for HLA class I expression

One million cells were collected in 100 μl fluorescence-activated cell
sorting buffer (PBS + 5% FBS). After 30 min of blocking, half of the
cells were incubated with FITC anti-HLA class I, W6/32 (catalog no.
311404; BioLegend) for 30 min at 4 ◦C, and washed twice with
fluorescence-activated cell sorting buffer. Flow cytometry was carried
out on CytoFLEX platform (Beckman), and 20,000 events were
collected per sample. The postanalyses and statistics were conducted
by FlowJo (version 10.6.2) (BD Biosciences).

HLA-binding affinity T2 cell assay

The antigen peptide transporter (transporter associated with antigen
processing [TAP])–deficient HLA-A2 only expressing T2 cells presents
lower affinity peptides because of TAP1 deficiency and allow for an
efficient exchange of high-affinity peptides. We suspended T2 cells at
1.0million/ml in growthmediumand plated them in 6-well tissue culture
plates (2 ml/well). The synthetic peptides for validation and NY-ESO-1
peptide (positive control) were reconstituted in dimethyl sulfoxide
(DMSO) and diluted to a final concentration of 10 μM with growth me-
dium and incubated with T2 cells at 37 ◦C with 5% CO2 for 12 h. Each
testing peptide and positive control was performed in triplicate and
negative control (DMSO) in duplicate. The cells were incubated with
FITC anti-HLA class I, W6/32 (catalog no. 311404; BioLegend) for
30 min at 4 ◦C followed by two washes. Flow cytometry was performed
to detect the cell surface total HLA class I protein expression. Data
analysis was conducted by FlowJo (version 10.6.2), and geometric
mean fluorescence intensity was used for quantification.
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Identification of HLA-presented lncRNA-derived peptides

To identify lncRNA-coded peptides, we generated an lncRNA-
translated protein sequence DB, which was in silico 6 frame trans-
lated from a high-confident lncRNA DB, LNCipedia (www.lncipedia.
org), containing 107,039 lncRNA transcripts from 49,372 annotated
distinct lncRNAs (version 5.2) (33). This resulted in 642,234 lncRNA-
encoded protein sequence entries. The de novo–only identified 8- to
14-mer peptides that did not match the normal Uniprot human DB
(70,948 entries including isoforms) from all five samples were queried
against this lncRNA DB-derived six-frame translated protein sequence
DB. Furthermore, we only kept the peptides predicted to be an HLA
binder (%Rank <2.0) to at least one HLA allele in respective samples.
To ensure those matched lncRNA-derived peptides were truly
expressed at RNA level, we generated intersect BED files between
each sample's total transcriptome and LNCipedia. Briefly, for the
genomic data processing, quality control was done on total RNA-Seq
FASTQ files by first assessing read quality using FASTQC (version
0.11.8) followed by removing adapter sequences and low-quality
reads using BBduk, part of the BBTools package (version 38.42).
The resulting FASTQ files were aligned against the RefSeq human
genome version hg38 using STAR (version 1.3.4) (34) and sorted using
the Samtools mappings sorter (version 1.1.1) (35). Duplicate reads
were then removed using Picard MarkDuplicates (version 2.1.1). These
alignments, sorting, and deduplication steps were run on the DNA-
Nexus platform. The resulting BAM file was converted to BED format
using the bamtobed tool from the BEDTools suite (version 2.29.0) (36).
The BEDTools intersect tool was used to find the intersection between
the tumor or cell-line BED file and the LNCipedia BED file (version 5.2).
The resulting BED files contained matched expressed lncRNA genes
in the sample transcriptome. Because of the possible misannotated
lncRNAs in LNCipedia DB, we further visualized each individual
matched lncRNA using the intersect BED files in Integrative Genomics
Viewer (IGV; version 2.5.3) (https://software.broadinstitute.org/
software/igv/) (37). Furthermore, each peptide-coding region was
identified using BLAST-like Alignment Tool (BLAT) in IGV. Any peptide
whose corresponding matched lncRNA also matched to the non-
coding region or intron region, but not the coding exon region of the
human genome, was kept as potential lncRNA-derived peptides. For
the ribosome sequencing, we utilized a well-recognized ribo-seq
genome browser (https://gwips.ucc.ie/index.html), which compiles 46
ribosome profiles (38). The lncRNA containing ORFs were manually
searched on the Genome-Wide Information on Protein Synthesis
(GWIPS) to confirm the lncRNA-derived peptide-coding regions RNAs
were bound to ribosome.

For the empirical p value evaluation, 50,000 nonoverlapping
genomic segments, each of length 2000 nucleotides (the mean length
of lncRNAs in the LNCipeida DB), were sampled uniformly at random
from the human reference genome sequence. These random genomic
segments, similar in size to LNCipedia, were used as a “mock”/decoy
lncRNA DB. Subsequently, an in silico translation of these mock/
decoy lncRNA sequences was performed in silico, using each of the
six possible reading frames, to generate a mock/decoy protein
sequence DB. Of the entire set of peptides identified by the PEAKS de
novo algorithm within class I immunopeptidome, 66 had a match in
this mock/decoy protein DB. For obtaining a match, the translation of
each of the six potential reading frames for every mock/decoy lncRNA
sequence was considered. For obtaining a rather pessimistic estimate
(i.e., larger than the correct value) on the p value for the actual number
of matches between the peptides identified by the PEAKs de novo
algorithm and the LNCipedia DB, we set the probability of a chance
match of a peptide (which, on average, has 11 amino acids, coded by
33 nucleotides) to p = 66 matches/(50,000 transcripts × 6 reading

https://github.com/infphilo/tophat
http://www.cta.lncc.br/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://caped.icp.ucl.ac.be/
https://caped.icp.ucl.ac.be/
http://www.lncipedia.org
http://www.lncipedia.org
https://software.broadinstitute.org/software/igv/
https://software.broadinstitute.org/software/igv/
https://gwips.ucc.ie/index.html
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frames × 2000 nucleotides per transcript/33 nucleotides per pep-
tide) = 3.63e−6 (this forms the null assumption). LNCipedia DB includes
107,039 lncRNA transcripts from 49,371 distinct lncRNAs. The num-
ber of de novo peptides identified by the PEAKS de novo algorithm
within class I immunopeptidome, which had a match in the LNCipedia
DB, was 195. The probability of obtaining exactly k matches among
107,039 lncRNA transcripts in the LNCipedia DB, each giving rise to
(6 × 2000)/33 potential peptides can be calculated using the afore-
mentioned null assumption as

qk = (nk )pk(1−p)(n−k) (1)

where n = (107,038 × 120,000)/33. The empirical p value for
having 195 matches for class I immunopeptidome among the
LNCipedia DB entries can thus be calculated as:

p value= ∑k=n
k=195

qk (2)

The lncRNA-derived immunopeptidome bioinformatics analysis
was performed on the Biowulf Linux cluster at the NIH (https://hpc.nih.
gov/docs/userguide.html). The “mock/decoy” DBs, empirical p value
calculation method, and the original Python scripts of the identification
of HLA-presented lncRNA-derived peptides can be found at Github
(https://github.com/YueAndyQi/lncRNA_immunopeptidome_Scripts).

Functional annotation of source proteins of HLA
immunopeptidome

We unitized ingenuity pathway analysis (IPA) to determine the
subcellular localization/molecular function and cell signaling pathway
analysis of the source protein of identified HLA peptides (39).
Furthermore, we identified the upstream transcriptional modulators of
those source proteins using the unique upstream regulator analysis
feature in IPA.

Experimental design and statistical rationale

Two EGFR-mutant lung adenocarcinoma cell lines, PC9 and H1975,
harboring EGFRDel E746–A750 and EGFRL858R/T790M, respectively, were
used for this study representing low TMB tumors. To apply the
comprehensive HLA immunopeptidome discovery pipeline in human
tumor tissue, a lung tumor harboring EGFRL858R that was procured at
rapid autopsy from a patient (NCI-RA007) treated with the third-
generation EGFR tyrosine kinase inhibitor, osimertinib, was selected.
In addition, two melanoma cell lines, NCI-3784Mel and NCI-3795Mel,
generated from tumors of patients with melanoma treated at the NIH
Clinical Center, which represent tumors with high TMB. We identified
somatic mutations by WES of tumor or tumor-derived cell lines and
corresponding germ line DNA from patients NCI-RA007, NCI-
3784Mel, and NCI-3795Mel. Expressed somatic mutations were also
identified by RNA-Seq of the cell lines and tumor. PC9 and H1975 lung
adenocarcinoma cell lines did not have corresponding germ line DNA;
hence, all mutations identified by WES and RNA-Seq were included
for our data analyses. The identified mutations included SNVs, small
INDELs, and fusions. The pan-HLA class I antibody was used to
immunoprecipitate class I proteins along with their presented peptides
that were sequenced by high-resolution MS/MS. The MS data were
searched against cell line– or tumor-specific peptides created by
adding all corresponding mutant peptides to the normal human DB.
The MS data were also searched using the de novo search algorithm
in PEAKS studio. To assess experimental reproducibility and perform
statistical tests, three biological replicates were performed for PC9,
H1975, and NCI-3795Mel and four biological replicates for NCI-
3784Mel and NCI-RA007. Each biological cell line replicate was initi-
ated from the same cell passage number but cultured in separated
dishes. Four biological replicates of the tumor specimen NCI-RA007
were obtained by sampling four regions of the tumor obtained at
rapid autopsy. The two-way t test and ANOVA test were applied to
two-group comparison or more than two-group comparisons,
respectively. Finally, since conventional decoy protein sequence–
based FDR assessment is not applicable for the PEAKS de novo
search results, we calculated empirical p value by creating a mock
lncRNA DB to control the random matches and false positives for our
lncRNA-derived peptide identification.
RESULTS

Identification and characteristics of the HLA class I-
presented immunopeptidome and HLA class I expression

in melanoma and lung adenocarcinoma

We identified 35,233 HLA class I-presented peptides con-
taining 8 to 14 amino acid residues empolying various experi-
mental and informatic tools including pan-HLA class I
immunoprecipitation, elution of the class I-presented peptides,
high-resolutionMS-based peptide sequencing, NGSof genomic
DNA/RNA to create patient- and cell line–specific DBs incorpo-
rating variant peptides, and computational algorithms (Fig. 1A).
These include 14,876DB-searchedpeptides and 20,357denovo
sequencing algorithm–searched peptides (supplemental
Fig. S1A and supplemental Table S1). We performed three to
four biological replicates of HLA class I pull-down experiments
and MS analyses of associated peptides from each cell line/tu-
mor. Pairwise correlation coefficients of peptide intensities from
three representative biological replicates from PC9 cells show
relatively high correlation between replicates (supplemental
Fig. S1B). We identified 2385 to 4401 DB-matched peptides in
each sample. Interestingly, the number of HLA class I-presented
peptides identified in melanoma and EGFR-mutant lung cancer
was roughly similar (Fig. 1B). More peptides were identified from
the lung adenocarcinoma cell lines, PC9 and H1975, compared
with the EGFR-mutant tumor, NCI-RA007, and the melanoma
patient–derivedcell lines. Amajority of enriched immunopeptides
were 9-mer (Fig. 1C), consistent with the length of HLA class I-
bound immunopeptidomes reported previously (13, 40). We
further analyzed our dataset using NetMHCpan by which we
determined weak and strong binding using %Rank <2.0 and
<0.5, respectively. A majority of the enriched peptides were
predicted tobebinders; nonetheless, 9-mer and10-merpeptides
had lower scores and hence predicted stronger binding (Fig. 1D).
The predicted HLA binders were assigned to the expressed HLA
alleles in each sample (Fig. 1E). Somatic mutations were identi-
fied usingWESof tumor and germ line DNA; as expected, EGFR-
mutant lung adenocarcinoma patient NCI-RA007 had much
fewer somatic mutations (289) compared with the melanoma
patient–derived cell lines, NCI-3784Mel and NCI-3795Mel (2678
and 2031, respectively) (supplemental Fig. S1C and
supplemental Table S2). The differences in abundance of class I-
presentedpeptidesmaybe a result of theexpression level ofHLA
class I proteins. The total HLA class I protein expressiondetected
Mol Cell Proteomics (2021) 20 100136 5
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FIG. 1. Overview of HLA class I-presented immunopeptides identified from EGFR-mutant lung cancer and melanoma patient–derived
cell lines by MS. A, strategic plan of proteogenomic analysis pipeline for HLA class I immunopeptidome using MS-based proteomics and next-
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TABLE 1
HLA typing of cancer cell lines and lung adenocarcinoma tumor

Cell line/tumor Origin HLA-A HLA-B HLA-C

NCI-3784Mel Melanoma A*01:01 A*03:01 B*07:02 C*07:02
NCI-3795Mel Melanoma A*01:22 A*02:01 B*08:01 B*27:05 C*01:02 C*07:01
PC9 Lung tumor A*02:06 A*24:02 B*39:01 B*55:02 C*07:02 C*03:03
H1975 Lung tumor A*01:01 A*03:01 B*41:01 C*17:01
NCI-RA007 Lung tumor A*11:01 A*24:02 B*40:06 B*48:01 C*08:01

Proteogenomic Profiling of HLA Class I Immunopeptidome
by immunoblotting (supplemental Fig. S1D) was consistent with
cell surface HLA class I presentation analyzed by flow cytometry
(supplemental Fig. S1E) and was approximately similar between
themelanomaand the lungadenocarcinomacell lines.SinceHLA
proteins are highly polymorphic and the peptides presented are
HLA allele restrictive (41, 42), HLA typing is important to further
characterize the HLA class I-presented peptides identified. Tu-
mors and cell lines were HLA typed using seq2HLA analysis (25)
of the WES data (Table 1), and our data suggest that seq2HLA
produced consistent results with conventional HLA typing using
SSP sequencing in the two melanoma cell lines (supplemental
Fig. S1F). It is interesting to note that NCI-3784, H1975, and
NCI-RA007 had loss of heterozygosity of HLA-B and/or HLA-C
alleles. HLA loss of heterozygosity, often caused by genetic al-
terations of chromosome 6p (43), has been suggested as a
mechanism of immune escape (44). Furthermore, we validated
our peptidome using previous reported and/or experimentally
validated binding peptidome from the IEDB. Since 9-mer is the
most common length for peptides in the HLA class I immuno-
peptidome, we visualized the 9-mer peptide–binding motifs of
our enriched HLA class I peptidome from tumor cell lines/tissue
and their corresponding monoallelic datasheets from IEDB. For
example, HLA–peptide binding motifs of four major HLA-typed
alleles in PC9 cells are the main components of endogenous
enriched PC9 immunopeptide by overlaying the four-individual
monoallelic binding motifs (supplemental Fig. S1G). Computa-
tional HLA-binding epitope prediction algorithms have been
widely recognized as a powerful tool to estimate HLA-ligand
binding affinity and tumor neoantigen prediction (45). Notably,
althoughA*01:01 andA*03:01were both present inNCI-3784mel
and H1975, they barely share any binding peptides, suggesting
the possibility of different HLA ligand processing and presenta-
tion machinery and/or different source protein expression levels
inmelanomaand lungcancer (supplemental Fig.S2,AandB).We
observed a similar phenomenon in HLA-A*24:02 (typed in PC9
and NCI-RA007) and Cw*07 (typed in PC9, NCI-3784Mel, and
NCI-3795Mel) (supplemental Fig. S2, C and D).
generation sequencing. B, total number of peptides identified in the HLA
mutant lung cancer cell lines and tumor. C, the peptide length distribution
4.0 prediction algorithm-based scoring of each MS-identified peptide an
panel shows the distribution of total identified peptides, binders (%Rank
panel shows box plots of the lowest NetMHCPan predicted %Rank for
identified for various peptide lengths. E, number of predicted binders (%
its corresponding HLA class I alleles. EGFR, epidermal growth factor rec
To annotate the source proteins of all class I-presented
immunopeptides, we classified them based on their subcel-
lular localization and molecular function (supplemental
Fig. S3, A and B). A large majority of peptides identified
were from cytoplasmic proteins and enzymes. Pathway
analysis of identified parent proteins identified key pathway
proteins contributing to class I immunopeptidome, such as
eukaryotic initiation factor 2 (EIF2) signaling, protein ubiq-
uitination pathway, EIF4 and p70S6K signaling, and others
(supplemental Fig. S3C). IPA upstream regulator analysis
showed tumor suppressor TP53 and proto-oncogenes MYC,
KRAS, ESR1, ERBB2, EGFR, and MTOR to be among the top
upstream potential regulators of the parent proteins identified
(supplemental Fig. S3D). Network analysis confirmed that
tumor suppressors (e.g., TP53, BRCA1) and oncogenes (e.g.,
EGFR, KRAS, MYC) were components of the network of
parent proteins represented by the identified class I-pre-
sented peptides (supplemental Fig. S3E). To further supple-
ment the bioinformatics analyses, we identified HLA class I-
presented peptides from common proto-oncogenes, such as
KRAS, EGFR, MYC, JUN, and tumor suppressors, such as
TP53, RB1, and BRCA2. We identified 17 common cancer
driver gene–derived wildtype peptides presented by HLA
class I in lung adenocarcinoma cell lines/tumor and two
peptides in primary tumor–derived melanoma cells; six of
which are novel peptides not previously reported. In addition,
we used NetMHCpan to predict the HLA class I restriction of
the identified peptides from cancer drivers. We found that,
though some peptides have been predicted to be binders for
multiple respective HLA alleles (e.g., KQFEGTVEI derived
from BRCA2), their MS intensity is not significantly higher
than that of the peptides predicted to be monoallelic binders
(e.g., KLISEEDLLRK derived from MYC) (supplemental
Fig. S3F and supplemental Table S3). Taken together, our
analyses identified 19 high-confidence oncogene/tumor
suppressor–derived peptides that were presented by HLA
class I.
class I immunopeptidomes from patient-derived melanoma and EGFR-
within the class I immunopeptidome from all samples. D, NetMHCpan
d distribution of binding scores among 8- to 14-mer peptides. Upper
<2.0), and strong binders (%Rank <0.5) for each peptide length. Lower
binding among the corresponding HLA class I alleles for each peptide
Rank <2.0) assigned to different HLA alleles for each sample based on
eptor; HLA, human leukocyte antigen.
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Discovery of variant class I-presented peptides in lung
adenocarcinoma

Variant peptides derived from somatic mutations in tumors,
if presented by MHC class I, have the potential to engage
cytotoxic T cells to promote tumor immunity. Hence, the
identification of variant peptides presented by the cognate
class I proteins is of paramount importance. To identify mutant
FIG. 2. Identification of class I-presented variant peptides in lung
using germ line (peripheral blood mononuclear cells) and tumor cell lin
fusions and construction of tumor cell line–/tumor tissue–specific databa
12 variant peptides, with the mutation underlined, predicted HLA restric
search ALC score. C, tumor tissue distribution of five COSMIC-reported s
show peptide intensity of wildtype and mutant peptides in all biological r
endogenous and its synthetic counterpart for RIF1-G836S-derived p
RIF1p.G836S-derived peptide (SITSIISSV) bounding and stabilizing HLA
expression (log2 geometric mean of counts) in T2 cells incubated with R
derived peptide compared with those incubated with DMSO (p < 0.00
Mutations in Cancer; DMSO, dimethyl sulfoxide; HLA, human leukocyte
WES, whole-exome sequencing.
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peptides, we first constructed cell line– and patient-specific
DBs by adding all somatic variants identified by NGS (RNA-
Seq and WES) to normal human DB used for searching MS
data when germ line DNA was available for sequencing (NCI-
3784Mel, NCI-3795Mel, and NCI-RA007) (Fig. 2A). For PC9
and H1975 cells, which do not have available germ line DNA,
all variants identified by exome sequencing were used. We
identified 12 peptides harboring SNVs in the two lung
adenocarcinoma. A, workflow of integrated proteogenomic analysis
e/tissue WES and RNA-Seq datasets to identify SNVs, INDELs, and
ses to interrogate the MS data of class I-associated peptides. B, list of
tion, dbSNP ID, synthetic peptide validation, and de novo sequencing
omatic mutations in the identified variant peptides. D and E, box plots
eplicates from C, H1975 and D, PC9 cells. F, matched MS2 spectra of
eptide SITSIISSV. G, T2 cell-based HLA stability assay showing
-A*02. H, box plot shows statistically significant increase of HLA
IF1p.G836S-derived peptide (SITSIISSV) and positive control NY-ESO1-
5). ALC, average local confidence; COSMIC, Catalogue of Somatic
antigen; INDEL, insertion and deletion; SNV, single nucleotide variant;
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adenocarcinoma cell lines but no INDELs and fusions. Indeed,
further analyses of these variant peptides using NetMHCpan
predicted all to be binders for at least one HLA allele in their
corresponding cell line (Fig. 2B). We leveraged dbSNP and
Catalogue Of Somatic Mutations in Cancer (COSMIC) DBs to
classify whether the peptides were derived from normal
polymorphism or somatic mutations. We identified five mu-
tations that were reported in COSMIC DB, and three of them
have a minor allele frequency <0.05, confirming they are rare
mutations. Next, we interrogated the tumor types in which the
five variants have been identified. Indeed, proline-rich coiled-
coil 2C (PRRC2C)p.M2171I and secernin 2 (SCRN2)p.M323V were
exclusively discovered in lung cancer; importantly, cellular
inhibitor of PP2A (CIP2A)p.R229Q (legacy identifier:
COSM3759596) has been confirmed as a somatic mutation in
multiple cancers (i.e., lung, blood, pancreas, and colon) ac-
cording to COSMIC DB (Fig. 2C). Therefore, peptide FHAQ-
NIHQTF derived from somatic mutation CIP2Ap.R229Q might be
a potential CD8 T-cell target to a variety of cancer patients
carrying this somatic mutation and corresponding HLA alleles
(e.g., A*24:02 and/or B*39:01).
We compared the MS intensities of the 12 variant peptides

and nonmutated class I-presented peptides and found no sig-
nificant difference in median peptide intensities between the
two groups for both the H1975 and PC9 cell lines (Fig. 2, D and
E), suggesting that individual variant peptides are presented to
similar extent as wildtype peptides. In addition, to validate the
peptide sequences identified in our class I pull-down experi-
ments, we synthesized a subset of the identified peptides and
utilized LC MS/MS to compare the MS2 spectra identified for
the synthesized and endogenous peptides. MS2 spectra and
RT of ten of 12 synthetic peptides and their corresponding
endogenous peptides werematched (Fig. 2F and supplemental
Fig. S4, A–I). Next, we confirmed the binding of the peptides to
specific predicted HLA alleles. Peptide SITSIISSV, derived from
RIF1p.G836S, binds strongly toHLA-A*02:06with%Rank at 0.23.
To assay cell surface HLA stabilization, we pulsed this peptide
overnight to a TAP-deficient T2 cell line that expresses only
HLA-A*02 (46) and used HLA-A*02 binding peptide
SLLMWITQC from NY-ESO-1 as a positive control in parallel.
Both peptides significantly stabilized HLA to the cell surface in
comparison to the DMSO control (Fig. 2, G and H). Taken
together, we identified 12 variant peptides in lung adenocarci-
noma cell lines; notably, five of these were derived from re-
ported somatic mutations. With spectra and HLA-binding
validations, our results suggest that these variant peptides are
potential targets for cancer immunotherapy.

CG antigen–derived peptides presented by HLA class I in
melanoma and lung adenocarcinoma

CG or tumor testis antigens hold great potential for gener-
ating tumor-specific antigens for T-cell–based therapy (47).
CG antigens are exclusively expressed or overexpressed in
tumor and germ cells. These peptide antigens are rarely
presented to immune cells because of the relatively low HLA
expression in testis and germ line tissues (48, 49). In order to
search for these CG antigens in our MS data for class I-pre-
sented peptides, we established a customized CG antigen li-
brary by compiling 285 CG antigens from various cancer testis
antigen and tumor-associated antigen DBs (Fig. 3A and
supplemental Table S4). We identified a total of 40 CG antigen
peptides derived from 14 CG antigen proteins. Of the 40 CG
antigen–derived peptides, 27 are from melanoma and 13 from
lung adenocarcinoma, and of these, seven were novel and, to
our knowledge, have not been reported previously (Fig. 3B
and supplemental Table S5). We selected 16 synthetic pep-
tides for further validation and confirmed seven of these
peptides from the melanoma patient–derived cell lines and
one from the lung adenocarcinoma patient tumor (Fig. 3C and
supplemental Fig. S5, A–H). We identified 15 melanocyte
protein PMEL (GP100)-derived epitopes in the 3784Mel cell
line derived from the tumor of a patient whose tumor-
infiltrating CD8+ lymphocytes have been previously shown to
recognize the GP100 antigen (18). Although CG antigens have
been extensively studied in melanoma, we identified one novel
peptide, VTPVEVHIGT, derived from sperm-associated anti-
gen 17. In contrast, and of particular interest, we identified four
novel peptides in the H1975 lung adenocarcinoma cell line.
These include peptides mapping to testis-expressed protein
15 (50) and lactate dehydrogenase C (LDHC) (51)
(supplemental Fig. S5I). Next, we verified whether the genes
for these proteins were expressed at the transcript (mRNA)
and protein levels in H1975 cells where the total RNA and
whole-cell proteome were profiled separately (supplemental
Table S6). Interestingly, expression of testis-expressed pro-
tein 15 and LDHC RNA was lower, and protein was not
detected, underscoring the possibility that class I presentation
can occur for genes expressed at low levels (Fig. 3D). We also
ranked CG antigen gene and protein expression in H1975 cells
and found representation of class I-associated peptides for
genes with protein levels undetectable by MS but detectable
at the transcript level (Fig. 3E). Therefore, our data support the
phenomenon that immunopeptidome lacked association with
gene/protein expression, which has been demonstrated pre-
viously using dynamic stable isotope labeling by/with amino
acids in cell culture approach (52, 53).

In vivo PTM peptides are presented by HLA class I and are
potential neoantigens

PTMs may alter the binding affinity of class I-presented
peptides. Prior studies have identified PTMs in class I-pre-
sented immunopeptides (12, 14). To identify the in vivo PTM
peptides, we used PEAKS studio with the pan-PTMs selected
(over 650 variable modifications) to detect all possible PTMs.
Peptide modification artifacts induced by sample preparation
(e.g., urea, reducing, and alkylating reagents) and electrospray
ionization are the major concerns for in vivo PTM identification
(54). OurHLAclass I-presented peptidomeenrichment protocol
Mol Cell Proteomics (2021) 20 100136 9



FIG. 3. Identification of cancer germ line antigen–derived peptides. A, overall strategy of CG antigen identification using customized library
integrating previously reported immunogenic CG antigens; a total of 285 CG antigens were included in this custom database. B, the number of
novel and reported CG antigen–derived peptides. C, summary chart of select peptides validated in NCI-3784Mel, NCI-3795Mel, H1975, and
NCI-RA007 using synthetic peptide spectra match. D, log2 median peptide intensity of four immunopeptides identified in H1975 (top panel);
gene expression (middle panel), and protein expression (lower panel) of three source antigen proteins. E, rank of transcript and protein
expression of CG antigens identified in H1975 using RNA-Seq and MS, respectively. Red dots indicate CG antigens from which at least one
class I-presented peptide was identified by MS. Blue dots indicate the CG antigens that were expressed in H1975 cells, but no class I-presented
peptide was identified by MS. CG, cancer germ line.
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did not involve the use of urea buffer, protein reduction, and
alkylation or enzyme digestion. Electrospray ionization artifacts
could be excluded by examining the RT of modified
peptides and their unmodified counterparts. Since the artifact
modifications are only added during the ionization process,
thesemodifiedpeptidesmust be coelutedwith their unmodified
counterparts; yet we did not observe coeluted peptides with
and without modifications. We identified 1389 modified and
11,841 unmodified 8- to 14-mer peptides.We did not detect the
corresponding unmodified form for 804 of the modified pep-
tides. These groups of peptides are defined as “modified only.”
On the other hand, for 411 of the unmodified peptides, we
identified 527 modified counterparts this is a group of peptides
defined as “modified and unmodified,” suggesting the exis-
tence of multiple PTMs for some peptides (Fig. 4A and
supplemental Table S7). Approximately 10% of the total pep-
tides identified had at least one PTM, and we identified 58
different PTMs making this the largest HLA PTM immuno-
peptidome identified to date. The heat map shows the median
intensity of each PTM in each sample whereby methionine
oxidation (639 peptides), deamidation (151 peptides), acetyla-
tion (144 peptides), and methylation (78 peptides) were the
most abundant modifications seen (Fig. 4B) in agreement with
previous reports (12, 13). Interestingly, among the 9-mer pep-
tides identified, the N-terminal amino acid wasmost commonly
modified; the first amino acid was modified in 102/293 9-mer
PTM peptides (Fig. 4C). PTM HLA peptides were previously
shown to bemore abundant than their unmodified counterparts
(12). However, in our dataset, pan-PTM peptides were signifi-
cantly less abundant (as measured by peptide intensity) than
unmodified peptides (p = 5.4E-16) (supplemental Fig. S6A).
Similarly, MS intensity was lower for deamidated and methyl-
ated peptides than unmodified peptides (supplemental Fig. S6,
B and C). However, the median intensity of glutamate- to
pyroglutamate (pyroGlu)-modified peptides was similar to that
of their unmodified counterparts (supplemental Fig. S6D). The
pyroGlu modification occurred on glutamate at N-terminal po-
sition 1, which does not significantly affect the peptide
conformation and binding affinity (55).
To validate the data quality and verify that the modifications

were generated in vivo and not experimental artifacts, we
selectively examined the tandem mass spectra of the modified
peptides. A deamidated and a methylated form of peptide
TNQELQEINR, derived fromannexin A2, hadanRTof 28.51 and
32.61 min, respectively, whereas the unmodified peptide had
an RT of 28.20 min (Fig. 4D). We manually verified the RT of
methionine-oxidized peptides and their unaffected counter-
parts and determined that they did not coelute during LC,
suggesting that these PTM peptides likely were generated
in vivo and were not ionization artifacts. Next, we determined
whether the PTMs may alter the binding affinity to HLA class I.
There are no HLA-binding prediction algorithms commercially
available that accounts for PTMpeptides. Using the unmodified
forms of the peptides identified for NetMHCpan analysis of
tumor tissue from NCI-RA007, 637 of 782 PTM peptides were
considered to be nonbinders (%Rank >2.0), suggesting that
specific modifications of these peptides may have been critical
for HLA binding. Notably, the percentage of predicted binders
for peptides with both modified and unmodified counterparts
was nearly twice (26.46%) that of solely modified (14.67%).
Also, the percentage of modified-only peptides among pre-
dicted binders (53.1%) was much lower than for nonbinders
(70.33%) (Fig. 4E). We plotted peptide length distribution of the
binders and nonbinders and found that they had a similar
pattern although more nonbinders were longer peptides (>10-
mer) (Fig. 4F). This further suggests that PTM peptides may
have nonconventional length distribution for HLA class I bind-
ing; importantly, the unmodified forms of these peptides are
more likely to be predicted as “nonbinders.” Collectively, our
findings suggest that PTMs may play a crucial role for gener-
ating a subset of HLA class I-binding peptides with unique
binding motifs for antigen presentation.

De novo sequencing provides reliable immunopeptide
identification

De novo search of MS spectra from large-scale MS data
has been employed by various algorithms, including PEAKS
studio. The impressive prediction accuracy of this approach
has been extensively reported (24, 56, 57). We searched our
entire class I-presented immunopeptidome MS data using the
PEAKS studio de novo search algorithm. First, to evaluate the
data quality of the peptides identified by de novo sequencing,
we manually inspected the MS2 spectra. We then employed
the NetMHCpan prediction to evaluate the binding capacity of
our de novo–only peptides (not including DB-searched pep-
tides). We determined that while an average of ~55% of the
DB-searched peptides were predicted to be specific HLA
allele binders for their corresponding cell line/tissue, an
average of ~33% of de novo peptides were predicted to be a
strong binder of at least one HLA allele in the respective
sample (Fig. 5, A and B), the distribution of %Rank of DB and
de novo search peptides in each sample is shown in
supplemental Fig. S7A. The predicted HI and RT of 9-mer
peptides identified by DB and de novo search showed sig-
nificant correlations while, as predicted, the HI and RT of the
tryptic peptides showed even higher correlation
(supplemental Fig. S7, B and D). We employed a similar
approach to evaluate the HLA-binding affinity of 8- to 14-mer
peptides identified by DB search (Fig. 1D) by predicting the
binding affinity and assigning each peptide to its highest
predicted HLA allele and showing the distribution of 8- to 14-
mer peptides according to their lowest %Rank. We observed
the same trend with respect to binding score distribution of 8-
to 14-mer peptides when comparing de novo to DB-identified
peptides. The 9-mer peptides have the lowest binding scores
and hence highest binding affinity to the best predicted HLA-
binding allele (Fig. 5C). To further confirm the validity of the
peptide identities from the de novo sequencing analysis, we
Mol Cell Proteomics (2021) 20 100136 11



FIG. 4. Characterization of post-translationally modified (PTM) HLA class I-associated immunopeptides. A, schema of PTM immu-
nopeptidome profiling pipeline. B, heat map shows the median log2 intensity of all identified class I-presented PTM peptides; left bar graph
displays the molecular weight shift of each PTM; right bar graph shows the total number of peptides identified in each PTM group. C, PTM amino
acid position distribution of the 9-mer PTM peptides. D, MS/MS spectra of one representative peptide with multiple PTMs. ANXA2-derived
peptide TNQELQEINR, identified as unmodified (top panel), deamidated (middle panel), and methylated (lower panel). E, NetMHCpan anal-
ysis of 782 PTM peptides identified in sample NCI-RA007 where peptides with %Rank <2.0 are considered binders. The table shows the
percentage of predicted “binders” in the “unmodified and modified” and “modified-only” peptides; it also shows the percentage of “modified-
only” peptides in the “binders” and “nonbinders” peptides. F, peptide length distribution of predicted binder and nonbinder PTM peptides
identified in NCI-RA007. HLA, human leukocyte antigen.
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compared the predicted DB and de novo 9-mer HLA-binding
peptide motifs. Interestingly, the peptide motifs were very
similar between the two groups, reinforcing the validity of the
de novo–identified peptides generated from all five samples
(Fig. 5, D–H). We next aligned the de novo and DB search
spectra for four representative endogenous variant peptides
identified in H1975. The b and y ions of the spectra from the
12 Mol Cell Proteomics (2021) 20 100136
endogenous variant EIF3Bp.S64P peptide (AEAGPEPEV)
(Fig. 5I) as well as three additional variant peptides
(supplemental Fig. S7, E–G) perfectly aligned with the spectra
from corresponding synthetic peptides. Furthermore, the
predicted HI and RT of these four de novo peptides identified
in H1975 were well correlated with r2 = 0.99 (supplemental
Fig. S7H). We further validated our de novo sequencing



FIG. 5. De novo search of MS data to identify class I-associated immunopeptides. A and B, fraction of class I-associated peptides
predicted to be HLA binders (NetMHCpan %Rank <2.0) or nonbinders (%Rank >2.0) by A, database (DB) search and B, de novo sequencing. C,
NetMHCPan predicted %Rank distribution of total number of de novo sequencing–searched 8- to 14-mer peptides; HLA binders (%Rank <2.0)
and strong binders (%Rank <0.5) (upper panel). Distribution of HLA-binding affinity (%Rank) of de novo sequencing–searched 8- to 14-mer
peptides (lower panel). 9-mer peptides have the lowest predicted %Rank, suggesting the strongest binding. D–H, comparison of 9-mer
peptide-binding motifs (binders only, NetMHCPan %Rank <2.0) identified by DB search (left) versus de novo search (right) in D, NCI-
3784Mel, E, NCI-3795Mel, F, PC9, G, H1975, and H, NCI-RA007. I, matched MS2 spectra and RT of one representative endogenous variant
peptide, EIF3Bp.S64P (AEAGPEPEV), identified by de novo search (upper panel), proteogenomic DB search (middle panel), and direct injection of
its synthetic peptide (lower panel). J, bar charts show that variant peptides identified by proteogenomic analysis were also retrieved in the de
novo–only search. HLA, human leukocyte antigen; RT, retention time.

Proteogenomic Profiling of HLA Class I Immunopeptidome
pipeline-identified variant peptides from the lung adenocar-
cinoma cell lines by comparison to those identified using cell
line–specific DB search. Indeed, we found four of seven and
two of five mutant peptides in H1975 and PC9 cells with
relatively high confident ALC%, respectively (Fig. 5J). In
summary, we present strong evidence that this is a robust
and reliable de novo sequencing pipeline for MS identification
of the immunopeptidome.
Mol Cell Proteomics (2021) 20 100136 13
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Identification of lnc-RNA–derived peptides using de novo
sequencing

Noncoding regions in the genome are the most unexplored;
yet they are rich sources of neoantigens. Previous studies
have profiled the noncoding immunopeptidome using the
traditional proteogenomic approach of searching the MS raw
files against sample-specific library generated from RNA-Seq
data (58, 59), which always resulted in extremely massive
customized noncoding sequence libraries because 99% of the
human genome is noncoding (60), a majority of which are
unannotated. We developed a pipeline to profile potential
lncRNA-derived peptides by taking advantage of deep de
novo analysis of MS data without using a predefined DB and
then matching the MS-identified peptides with hypothetical
peptides generated by six-frame translation of all lncRNAs
from an available lncRNA DB, LNCipedia, containing 49,372
lncRNAs from the high-confidence genome assembly (33).
The 8- to 14-mer de novo peptides were queried against all six
potential reading frames of the translated LNCipedia-derived
protein DB. We also confirmed the transcript expression of
the lncRNAs coding the identified peptides in RNA-Seq gene
expression data from the patient-derived cell lines. IGV was
used to visualize peptide coding regions of these lncRNAs.
We finally validated the endogenous peptides derived from the
lncRNAs with synthetic peptide-based spectra matching and
T2 cell–based HLA stability assay for binding to specific HLA
alleles (Fig. 6A and supplemental Fig. S8A). A total of 195
distinct de novo sequencing–identified peptides matched to
the six-frame translated lncRNAs in the LNCipedia DB, of
which, 71 were predicted to be binders (%Rank <2.0) for at
least one HLA allele in their corresponding cell line/tumor. We
further analyzed the RNA-Seq data and found that the source
RNAs of 53 peptides were transcribed. The feature counts of
these transcribed lncRNAs were displayed in a heat map
(supplemental Fig. S8B). We then confirmed 44 peptides had
their specific coding regions transcribed and did not overlap
with any protein-coding region using the BLAT in IGV (Fig. 6B
and supplemental Table S8). Two representative examples of
the data visualization using IGV for the peptides identified from
lnc-JAM3-3:12 and lnc-LRP5-1:11 are shown (supplemental
Fig. S8, C and D). Notably, we did not observe any peptide
presented in more than one sample, implying that lncRNA-
derived peptides may be tumor cell line specific and patient
specific. To assess the significance of our findings, we
generated a mock lncRNA pool from randomly sampled
~50,000 genomic sequences. We rejected the null hypothesis
that our identified lncRNA-derived peptides randomly
matched to a six-frame–translated LNCipedia-derived DB, as
we obtained a significant empirical p value (1.1e−5) upon
comparing to the random matches against the mock lncRNA
pool-derived six-frame translated DB.
Next, we asked whether lncRNA-derived class I-presented

peptides had low abundance. We found that lncRNA-derived
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peptides were equally presented on class I as all other DB
and de novo sequencing–derived peptides (Fig. 6C). Based on
LNCipedia classification, the source lncRNAs matched to 20
antisense genes, 12 sense intronic genes, and 12 lncRNA
genes (Fig. 6D). Furthermore, BLAT analysis revealed that 23
lncRNA-coding regions had no overlap with any coding region
on hg38; five lnRNAs matched to the introns of coding genes,
and 16 matched to novel ORFs because of the frameshift that
intersected with exons of known protein-coding genes, but
with different start codons (Fig. 6E). Frameshifted new ORFs
have been suggested to be a rich source of neoantigens (61).
It remains unclear whether lncRNA can be translated to

protein products (e.g., full-length/truncated proteins, peptides),
and importantly, presented to cell surface by HLA class I. For
in-depth illustration of our computational strategy, we analyzed
further the lncRNA oncogene, PVT1-derived 9-mer peptide,
FLLSSSLTL, identified in PC9 cells (Fig. 6F). RNA-Seq BAM
files were converted to BED files for all five samples. The DNA
coding sequence of the identified peptide, FLLSSSLTL, was
retrieved from the PVT1 nucleotide sequence in LNCipedia. The
BLAT results of this 27-base pair sequence (i.e., TTC … CTT)
were in silico transcribed to RNA sequence (i.e., UUC … CUU)
and further translated to peptide sequence FLLSSSLTL. Inter-
estingly, we found that the source lncRNA was transcribed in all
five samples, but a truncated version was transcribed in NCI-
3795Mel. However, the peptide was only identified in PC9
cells, suggesting that translation of lncRNA-derived peptides
may be cell specific and context specific, or the presentation of
lnc-RNA–derived peptides by class I is cell line specific or tu-
mor specific. We reasoned that the specificity to PC9 cells
could be a result of the lack of specific HLA allele to present this
A*02 restricted peptide (%Rank = 0.11). Only PC9 and NCI-
3795Mel express HLA-A*02, and NCI-3795Mel expresses a
truncated version of FLLSSSLTL; this may explain why we only
observed this peptide presented by class I in PC9 cells. We
further confirmed that the ORF containing this peptide coding
sequence has been reported in the ribosome profiling data
based on deep sequencing of ribosome protected mRNA
fragments that can be visualized using GWIPS-viz (38). We
further confirmed our MS identification of these lncRNA-derived
peptides that are presented by HLA class I. We used synthetic
peptides and performed LC-MS/MS to compare the MS2
spectra of synthetic peptides with those of the endogenous
peptides (Fig. 7, A and B). Finally, we used the T2 cell–based
HLA stability assay to confirm that three lncRNA-derived pep-
tides from the lncRNAs, PVT1, Lnc-SYT2-4, and RC3H1-It1,
were truly HLA-A*02 binders (Fig. 7C). Taken together, we
report a novel MS-based class I-associated peptidome profiling
platform for identification of lncRNA-derived peptides that are
presented by HLA class I.

DISCUSSION

Neoantigens or cancer-associated antigens are attractive
immunotherapeutic targets because they specifically engage



FIG. 6. Identification of lncRNA-derived peptides by proteogenomic and de novo sequencing analyses. A, schema showing the
workflow used to identify lncRNA-derived peptides enriched from cancer cells and tumors. The de novo–only sequencing-searched class I-
presented peptide pool was queried against a database (DB) generated using six-frame translated lncRNAs compiled in LNCipedia DB (right
workflow). The statistical significance of our algorithm was determined by potential matching of the de novo–searched peptides against a
“mock” DB created by the randomly picked gene blocks (~50,000 transcripts) from hg38, which resulted in an empirical p value <1.0e−5 (left
workflow). B, 44 lncRNA-derived peptides identified using our algorithm with their predicted HLA alleles and binding affinity. C, comparison of
log2 peptide intensities of DB searched, de novo searched, and lncRNA-derived peptides. D, the classification of source lncRNAs for the
identified lncRNA-derived peptides into antisense, sense intronic, and classic lncRNAs. E, lncRNA-derived peptides that match new ORF, in-
trons of coding genes, and noncoding region. F, top panel displays a snapshot of IGV showing lncRNA PVT1-derived peptide FLLSSSLTL,
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FIG. 7. Validation of lncRNA-derived peptides using synthetic peptides and T2 binding assay. A and B, MS2 spectra matching of two
lncRNA-derived peptides and their synthetic counterparts, YSFPELTHL and MEHVSPALP. C, T2 cell-based HLA stability assay showing the
three lncRNA peptides predicted to be HLA-A*02 binders, FLLSSSLTL, QEEAALKAL, and SLHASLSTV, and the NY-ESO-1-derived positive
control peptide binding and stabilizing the HLA allele. HLA, human leukocyte antigen; lncRNA, long noncoding RNA.
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T-cell receptors in T cells that promote an immune response
against the tumor tissue while sparing nearby healthy tissues.
Emerging evidence obtained from breast cancer (62), bladder
cancer (63), melanoma (64), and lung cancer (65) studies
suggests that cancer neoantigens and cancer-associated an-
tigens may be ideal targets for ACT and therapeutic cancer
vaccines. MS-based peptide sequencing technology provides
direct experimental evidence for a large number of HLA-
presented peptides. As such, this approach has become a
robust and quick method of neoantigen discovery (10, 13, 66).
Nevertheless, a majority of studies have focused on tumor
types with high TMB, such as melanoma (14, 67). EGFR-
mutant lung cancer, with low TMB, and tumors with loss of
neoantigen expression while on immunotherapy are relatively
resistant to immune checkpoint therapy (68–70). In this study, it
was our intent to leverage discovery proteomics and infor-
matics to identify HLA class I-presented peptide antigens,
including common driver oncogenes, variant peptides, CG
antigen peptides, PTM peptides, and lncRNA-translated pep-
tides for immunotherapy in EGFR-mutant lung adenocarci-
noma, a tumor type that is historically less responsive to
immune checkpoint inhibitor therapy for variety of reasons,
including low TMB. Moreover, we utilized spectra matching
between in vivo peptides and synthetic peptides as well as
HLA-binding assays to further validate our identification of
class I-presented peptides. We acknowledge that this study
identified in PC9, with chromosomal location alignment of RNA-Seq of al
searching results from GWIPS; the lower panel shows the predicted bindi
cells. BLAT, BLAST-like Alignment Tool; GWIPS, Genome-Wide Informa
grative Genomics Viewer; lncRNA, long noncoding RNA.
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contains relatively small sample size; nonetheless, it readily
represented two cancer types, melanoma and lung cancer, and
two types of specimen, cancer cell line and tumor tissue. To
our knowledge, such a large-scale study has not been per-
formed in EGFR-mutant lung cancer which does not respond
to traditional checkpoint inhibitor therapy. Some of the identi-
fied peptides derived from tumor-specific antigens or tumor-
associated antigens may be further validated and be candi-
dates for developing precision immunotherapy.
To confirm the validity of the class I immunopeptidome

identified in this study, we first verified the quality of our DB-
searched HLA class I-presented peptides by confirming that
a majority of the peptides have high binding scores against
their cognate HLA alleles expressed in the source tumors and
cell lines. This is consistent with previous large-scale mono-
allelic HLA class I epitope profiling studies (13, 71). The
NetMHCpan-predicted binding scores of the identified pep-
tides favor 9- and 10-mer peptides that are of the optimal
length for class I presentation (Fig. 1D). Combining SNVs,
INDELs, and fusion variants, our customized search algorithm
was able to identify five COSMIC-reported mutation-contain-
ing peptides, of which, FHAQNIHQTF, derived from somatic
mutation CIP2Ap.R229Q has been associated with several solid
cancers, including lung adenocarcinoma, colon cancer, and
pancreatic cancer (Fig. 2C). No significant correlation was
observed between total mutation burden and HLA
l five samples and peptide BLAT; the middle panel shows the ribo-seq
ng affinity of this peptide to HLA-A*02:06 that is expressed only in PC9
tion on Protein Synthesis; HLA, human leukocyte antigen; IGV, Inte-



Proteogenomic Profiling of HLA Class I Immunopeptidome
presentation in the low and high TMB cancers. Similar iden-
tification of modestly large HLA peptidome that was reported
in a low TMB cancer, such as renal cell carcinoma, supports
our findings (72). One possible interpretation is that total
number of identified class I-presented immunopeptides more
directly relates to the purified amounts of HLA proteins and its
allotype diversity, and that is similar between our chosen
patient-derived cell lines (Table 1 and supplemental Fig. S1D).
Some of the mutated peptides may not be presented by HLA
class I; rather, specific variant peptides are still presented in
low TMB cancers, and identification of those by direct MS will
be beneficial for designing precision immunotherapies. We
acknowledge that class I- and class II-presented peptides
harboring the truncal mutations in common oncogenes, such
as EGFR and KRAS, may be the most attractive targets for
ACT (8, 65). We have reported the identification of somatic
mutated peptides by MS from the proteome of patients with
lung cancer, including a novel somatic mutated CDK12p.G879V

peptide using similar methodology (19). Although we identified
19 peptide epitopes derived from common oncogenes, none
of them contained somatic mutations (supplemental Fig. S3F).
Possible explanation of the identification of relatively few
mutant peptides from known oncogene mutations include the
absence of the cognate class I allele and limitations of the
data-dependent acquisition methodology for MS-based
sequencing of peptides when the mutated peptides are just
a minor fraction of the total wildtype peptides presented by
HLA class I. However, interestingly, the median MS intensity of
the few neoantigens we identified is very similar to that of
wildtype peptides (p value > 0.05), indicating that select
neoantigens are robustly presented by class I.
We have generated the most comprehensive CG antigen

DB to date by leveraging the human proteome atlas and
multiple peer-reviewed CG antigen DBs. This is a valuable
resource that can be used to query CG antigens from other
large cohort immunopeptidome studies. For instance, we
identified LDHC (supplemental Fig. S5I) which, prior to this
study, was almost exclusively observed in testis, and an as-
sociation with lung adenocarcinoma had only been suggested
(51). Given that CG antigens have been extensively investi-
gated in melanoma (73, 74), we have now described the CG
antigen landscape in EGFR-mutant lung cancer, unveiling
novel class I-presented peptides reported in our study. As
previously reported, our results also showed that CG antigen–
derived peptide levels are not significantly correlated with
mRNA and source protein expression (40, 75, 76).
One of the advantages of a PEAKS DB search is its pan-

PTM search engine, which unveils all PTMs in one search,
requiring no prior knowledge of the potential types of modifi-
cations expected. PeaksPTM uses the sequence-tag
approach to identify PTMs without generating an extremely
large sequence library containing variable modifications (77,
78). This allows identification of many PTMs in one search. To
our knowledge, this study provides the deepest coverage of
the PTM HLA class I immunopeptidome, to date. Compared
with previous profiling of PTM immunopeptides (12, 14), we,
for the first time, systematically quantified the largest number
of endogenous PTMs of class I-presented peptides in EGFR-
mutant lung adenocarcinoma. We demonstrated that un-
modified peptides were significantly more abundant than their
deamidated or methylated counterparts. However, this does
not apply to the conversion of glutamate to pyroGlu, where a
modification could lead to protein misfolding (55). Generally,
low peptide abundance or presentation in antigen-presenting
cells may hinder T-cell recognition. It is possible that more
abundant peptides are more likely represented as T-cell epi-
topes. Although phosphorylation is the most dominant PTM
known to modulate cellular function, we identified only a minor
fraction of class I-presented peptides phosphorylated; this
could be due to the relatively large phosphate group, which
may not easily fit into the HLA-binding groove. The binding of
only around two thousand unique phosphopeptides to 72 HLA
alleles has been reported (79). The transient reversible PTM
phosphorylation generates less-stable peptides that are less
likely to be good targets for HLA class I presentation. This is in
contrast to irreversible PTMs such as deamidation, which are
more likely to generate neoepitopes. We identified 20 deami-
dated peptides with a NX(S/T) motif, which supports the po-
tential mechanism of asparagine deamidation that
deamidated immunopeptides are derived from deglycosyla-
tion (80). We discovered that a single peptide could have
multiple PTMs concurrently (Fig. 4D). Position 1 was the most
frequently modified (Fig. 4C), which implies that small modi-
fications on a nonanchor position may not dramatically affect
binding affinity. We compared the predicted binding score of
the modified-only peptides with the peptides that were iden-
tified as both modified and unmodified versions. The
modified-only peptides have lower binding scores using
NetMHCpan prediction (Fig. 4, E and F), indicating these
peptides may possess a unique HLA-binding domain struc-
ture that is modification dependent and cannot be analyzed by
available prediction algorithms. However, we acknowledge
that a limited fraction of PTM peptides may occur spontane-
ously in vitro, although the sample preparation was conducted
at 4 ◦C. For example, deamidated peptides with an NG motif
have been reported as in vitro artifacts (81). Taken together,
our results demonstrate that the PTM peptides that are not
predicted by any bioinformatics algorithm for HLA binding can
be identified using MS and these peptides may be a rich
source of potential neoepitopes.
Deep learning–based de novo search algorithm embedded

in PEAKS provided high accuracy to detect peptides that
normally are missed in a DB search. Our pipeline evaluates in-
depth the de novo–only peptides in class I immunopeptidome
context. The validity of this approach for HLA peptidome
profiling and variant peptide identification is underscored by
several findings in this study. Although the identified de novo–
only peptides may constitute many spuriously identified
Mol Cell Proteomics (2021) 20 100136 17
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peptides, which are not predicted to be binding to any HLA
allele in respective samples, we believe that PEAKS de novo
search unveiled reasonable fraction of true HLA class I-pre-
sented peptides considering no decoy DB is available to
control the FDR (Fig. 5, A and B). We acknowledge that the
correlation of SSRCalc-predicted HI and RT of tryptic peptides
is higher than that of immunopeptides (supplemental Fig. S7,
B–D). This indicated potential higher FDR in de novo search
for HLA peptides. The lower correlation could also be a result
of inaccurate prediction of HI by SSRCalc for nontryptic
peptides, such as the HLA class I-presented 9-mer immuno-
peptides. SSRCalc was originally designed for tryptic pep-
tides, which end with either lysine or arginine and always has
been reduced and alkylated before LC–MS/MS analysis (82).
Also, nontryptic HLA peptides usually have shorter length
(8- to 12-mer) than tryptic peptides (8- to 25-mer). PEKAS
overcomes this high FDR problem by using ALC scoring for
peptide identification (83). The binding motif of the 9-mer de
novo–only peptides was very similar to the DB-searched
peptides (Fig. 5, D–H). MS/MS sequencing spectra of select
variant peptides in H1975 identified from the de novo search
and proteogenomic DB search were a perfect match to the
corresponding synthetic peptides (Fig. 5I and supplemental
Fig. S7, E–G). Half of the de novo–only searched variant
peptides from H1975 and PC9 identified by the proteoge-
nomic pipeline were also identified using our customized hu-
man proteome DB (Fig. 5J). We further validated the variant
peptides identified by de novo search algorithm by matching
the predicted HI and RT of the select four variant peptides
from H1975 that were also validated by spectra matching with
synthetic peptides. Further confirmation and validation of the
variant and PTM peptides identified by de novo sequencing by
the PEAKS search algorithm can be obtained by spiking
synthetic heavy-labeled peptides and demonstrating coelution
of endogenously identified peptides with the heavy-labeled
synthetic peptides. Overall, our results suggest that de novo
search by PEAKS identifies high-quality class I-presented
peptides and is a powerful tool to identify noncanonical pep-
tides/proteins for proteogenomic profiling.
Noncoding RNA is recognized as a rich resource for neo-

antigens (84), and MS-based proteogenomic platforms have
been implemented to discover noncanonical peptides (15,
57). Laumont et al. (58) suggested that noncoding regions are
the main source of neoantigens. In contrast to previous
studies where MS spectra were mapped in silico to all po-
tential reading frames of FASTA-derived RNA-Seq data, we
leveraged deep learning methodology of de novo sequencing
of peptides in PEAKS studio to query against the largest
annotated lncRNA DB. Our approach extends the previous
studies in many ways. One of the challenges in proteoge-
nomic field is that the addition of genomic sequencing in
silico–translated DB can result in a higher chance of false
identifications (85). Since LNCipedia DB consolidates many
datasets from a variety of sources and contains bidirectional
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lncRNAs in which transcription can be initiated from both
ends (33), we constructed a six-frame–translated DB derived
from the lncRNA DB and interrogated potentially matched de
novo–only searched peptides from the PEAKS search en-
gine. As has been reviewed before, false-positive matched
peptides increase upon interrogation of such large DBs (86).
However, the highly significant p values obtained by our
empirical p value calculation, similar to a permutation test, on
the mock lncRNA DB, performed exactly the same way
considering all six reading frames for a potential peptide
match reduces the possibility that there are significant false
positives in the identified lncRNA-derived immunopeptides.
In addition, we visualized and manually verified that the
lncRNA-derived peptide coding regions do not overlap with
any protein-coding regions, introns of known protein-coding
genes, or could result from a frameshift. We also selectively
validated the presence of the source lncRNAs in the ribo-
some profiling data searching the GWIPS DB, suggesting
that these lncRNAs are indeed translated on the ribosome
machinery. To further ensure that the identified lncRNA-
derived peptides were indeed not a part of a known
expressed protein, we manually checked and visualized that
the source lncRNA of each of these novel peptides was
indeed present in the total RNA-Seq data from the same cell
line and tumor and did not overlap with any coding region or
was not because of a frameshift. Synthetic peptide validation
and T2 cell HLA-binding assays further confirmed that the
identified lncRNA-derived peptides were indeed presented
and had high affinity to the HLA proteins. Taken together, our
results show that lncRNA-derived immunopeptides are pre-
sented by HLA class I in tumors with both high and low TMB.
The pipeline we developed in this study could be readily
applied to any type of cancer to identify lncRNA-derived
peptides presented by HLA class I.
Taken together, we report the largest characterization of

potential cancer-associated class I immunopeptidome in
EGFR-mutant lung adenocarcinoma to date. The combina-
tion of genomics, proteomics, and informatics allows us to
develop this in-depth immunopeptidome-based cancer
epitope profiling pipeline. Our results suggest that low TMB
tumors possess as many potential immunotherapy-
targetable epitopes as high TMB tumors, the identification
of which needs in-depth analysis of MS data. We provide a
valuable resource of EGFR-mutant lung cancer–specific
neoepitopes as well as tumor-associated immunopeptides
for possible design of precision immunotherapy and cancer
vaccines.
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fier PXD022949. All annotated MS/MS spectra of MaxQuant
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searched results can be found on MS-viewer (https://
msviewer.ucsf.edu/prospector/cgi-bin/msform.cgi?
form=msviewer) using search key “yqns2kpjew.”
The genomic and transcriptomic data have been published

by our group, and the original files can be accessed via our
previous publications (16, 18).
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