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Abstract: Hypertension (HTN) is one of the main cardiovascular risk factors and is considered a
major public health problem. Numerous approaches have been developed to lower blood pressure
(BP) in hypertensive patients, most of them involving pharmacological treatments. Within this
context, natural bioactive compounds have emerged as a promising alternative to drugs in HTN
prevention. This work reviews not only the mechanisms of BP regulation by these antihypertensive
compounds, but also their efficacy depending on consumption time. Although a plethora of studies
has investigated food-derived compounds, such as phenolic compounds or peptides and their impact
on BP, only a few addressed the relevance of time consumption. However, it is known that BP and
its main regulatory mechanisms show a 24-h oscillation. Moreover, evidence shows that phenolic
compounds can interact with clock genes, which regulate the biological rhythm followed by many
physiological processes. Therefore, further research might be carried out to completely elucidate the
interactions along the time–nutrition–hypertension axis within the framework of chrononutrition.

Keywords: blood pressure; biological rhythms; hypertension; peptides; phenolic compounds

1. Introduction

Hypertension (HTN) is defined as a long-term condition associated with persistent
high blood pressure (BP) levels. It is considered as a major cardiovascular disease (CVD)
risk factor and, therefore, a global public health challenge. Remarkably, as a matter of fact,
more than a half of the hypertensive population shows other CVD-related factors, such as
obesity, being overweight, diabetes, metabolic syndrome, hyperlipidemia, etc. [1].

Due to this, preventive and treatment-focused approaches to lower BP and slow down
HTN progression play a key role in the reduction of CVD risk by decreasing diastolic
BP (DBP) and systolic BP (SBP) at least 5 and 10 mm Hg, respectively [2]. Many of the
strategies involve the use of antihypertensive drugs but also natural bioactive compounds,
especially when HTN is still moderate. These compounds can exert their antihypertensive
activity through different pathways, including the renin–angiotensin–aldosterone system
(RAAS), endothelial function, oxidative stress or inflammatory response, particularly acting
as angiotensin-converting-enzyme (ACE) inhibitors or potent antioxidants [3–6]. Moreover,
recent studies with probiotics have revealed other BP mechanisms via gut microbiota
modulation [7,8], as hypertensive patients exhibit a gut microbiota dysbiosis [9].

Regarding the efficacy of the consumption of antihypertensive compounds, adminis-
tration time is a crucial factor that must be considered together with the dosage, source and
‘matrix effects’ that might affect bioaccessibility and bioavailability of the active molecules.
The relevance of the moment of the day when the antihypertensive compounds are admin-
istered is directly related to the influence of biological rhythms, not only in BP oscillations
but also in bioactive metabolization. Previous clinical studies and meta-analyses have
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demonstrated the high variability within the BP-lowering effects of food bioactives, such
as phenolic compounds, that were significantly effective in some trials [10–12] but did
not reduce BP in others [13–15]. These controversial results have also been noticed for
antihypertensive food peptides [16,17].

Once the main mechanisms of BP regulation by which natural bioactive compounds
exert their BP-lowering effect have been reviewed, the aim of this review is to collect
evidence about the efficacy of these natural antihypertensive molecules depending on
administration time and highlighting the involvement of biological rhythms.

2. Blood Pressure and Its Main Regulation Mechanisms

BP is defined as the force exerted by circulating blood against the walls of the large
arteries during heart contraction. It depends on the volume of blood ejected by the heart
contraction into the vessels, the elasticity of the walls of the arteries and the rate of blood
flow through the large vessels [18]. Two types of BP can be measured: SBP and DBP. The
first one is the maximum value of BP and corresponds to the ventricular contraction, the
systole. This depends on the cardiac output and elasticity of the large arteries, among
other factors. Regarding the second type, DBP is the minimum value of arterial BP and
corresponds to the cardiac relaxation and is an indicator of vascular resistance. Its value is
dependent on blood flow speed [19].

BP is meticulously regulated, as an increase or decrease in its value can induce HTN
and/or CVD. Too much fluid in the vessels results in an increase in the BP, whereas too little
bloodflow causes its drop, with the negative consequences that this produces [20]. Many
metabolic complexes and systems are involved in the regulation of BP, such as the total
body fluid volume, vascular system structure, autonomic nervous system and vasoactive
hormones [21]. In this sense, the neurohormonal system maintains the cardiovascular
homeostasis, mainly through the sympathetic nervous system and the RAAS. When the BP
suffers a sharp decrease in cardiopulmonary volume, it results in a proportional decrease
in the firing of afferent nerves to the brain; in response, the brainstem reduces the vagal
activity to the heart and increases the sympathetic activity to the heart and resistance
vessels. In these conditions, the suprarenal increases its release of epinephrine (and the
release of neuronal norepinephrine can also occur) which causes tachycardia; there is also
an increase in stroke volume and vasoconstriction of peripheral vessels and renal arteries,
which is the main trigger of RAAS overactivation [22,23].

2.1. Renin–angiotensin–aldosterone System

RAAS plays an important role in fluid homeostasis and cardiovascular function,
including maintenance of BP. In fact, several components of this system are the target for
different drugs aiming to treat several CVD, such as HTN. Thus, regulation of this system
is crucial to prevent these diseases. The first evidence of the existence of this system was
found by Tigerstedt and Bergman in 1898, who observed an increase in BP in healthy
rabbits injected with rabbit renal homogenates. This fact indicated the presence of a pressor
substance in the renal tissue, which was called renin, [24]. In 1934, Goldblatt et al. [25]
developed a model of HTN in dogs by producing renal artery stenosis in one of the two
kidneys (2K1C, a renin–angiotensin-system (RAS)-dependent model of HTN) and later, a
model in which one kidney was eliminated and a stenosis was produced in the renal artery,
resulting in the second model (1K1C; which is a volume-dependent HTN). A couple of years
later, and using these animal models, two research groups headed by E. Braun Menéndez
(Argentina) and I.H. Page (USA) independently identified a new vasoactive substance
in plasma. They postulated that this vasoconstrictor was obtained from the enzymatic
action of renin, which was the enzyme released into the venous circulation by the ischemic
kidney. This peptide was called hypertensin and angiotonin, which were mixed to create a
definitive and unique term, angiotensin (Ang). More details of the discovery of the RAS
can be consulted in Milei et al., 2010 and Basso and Terragno, 2001 [26,27].
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This peptide/hormone system is activated by different causes, such as a decrease in
blood volume due to dehydration, or hemorrhage or/and a decrease in Na+ levels (Figure 1).
This fact produces the activation of the juxtaglomerular cells, located in the kidney afferent
arterioles, producing the hydrolysis of prorenin, the precursor of renin [28]. Renin enters
the bloodstream and reaches the liver, where this aspartyl protease triggers the cleavage
of the angiotensinogen to form the decapeptide Ang I (Ang-(1-10)) [29]. This peptide is
hydrolyzed by the ACE, mainly when it goes through the lung capillaries [30]. ACE is
synthetized by the endothelial cells and its extracellular location in these cells helps the
enzyme to interact easily with its substrate. As a result of its activity, the octapeptide Ang
II (a potent vasoconstrictor) is formed [30]. In addition, ACE is also known to hydrolyze
bradykinin, a vasodilator peptide, producing its inactivation and contributing to a reduction
in the vasodilator factors [31]. It is worth noting that this enzyme is considered key in the BP
regulation. Ang II, also known as Ang-(1-8), can bind to two different receptors: Ang type
1 receptor (AT1R) and Ang type 2 receptor (AT2R). These two receptors exert antagonist
effects. The main actions of Ang II are associated with its binding to AT1R and are related
to the development of CVD. This pathway is known as the ACE–Ang II–AT1R axis [32].
Ang II triggers intracrine, autocrine and paracrine responses with different physiological
effects [28], as AT1R is located in most of organs and is coupled to different G proteins [33].
Ang II effects include producing vasoconstriction, acting directly on vascular smooth
muscle cells [33]. It also increases total peripheral resistance through its vasoconstrictor
effects on systemic arterioles [34]. This vasoconstrictor effect seems to be modulated by
the endothelium, as it has been reported that Ang II can stimulate the release of different
endothelial factors including the vasoconstrictor endothelin-1 (ET-1) [33] or reactive oxygen
species (ROS) [35]. Moreover, Ang II stimulates the zona glomerulosa of the adrenal cortex
to secrete aldosterone [28] and its release increases water and sodium reabsorption and
potassium excretion in the distal tubule and collecting duct of the nephron [36]. It also
activates the early proximal tubule (Na+–H+ antiporter) to Na+ reabsorption and regulates
the glomerular filtration rate by the contraction of the efferent and afferent glomerular
arterioles [37]. Furthermore, Ang II also acts in the hypothalamic level, firstly stimulating
the sensation of thirst and consequently, promoting the intake of water. In addition, Ang II
stimulates the release of the antidiuretic hormone (ADH, vasopressin) in response to the
thirst in the posterior pituitary gland. This ADH acts on the collecting ducts of the nephron,
increasing water reabsorption in this area, thus reducing urinary loss [28]. Altogether, these
processes contribute to an increase in BP (Figure 1).

The half-life of Ang II in plasma is short (1–2 min) and it is degraded in its N-terminal
position by aminopeptidase A, releasing another active peptide called Ang III (Ang-(2-
8)) [33]. This peptide exerts agonistic effects to those shown by Ang II, including release
of aldosterone, pressor and dipsogenic effects or stimulation of Na+ intake. It also binds
to AT1R and AT2R to exert its effects [38–40]. Ang III is further metabolized to Ang IV
(Ang-(3-8)) by the aminopeptidase N, which also exerts central pressor effects via AT1R,
although Ang III can also bind to AT4R or insulin-regulated aminopeptidase (IRAP) [41].
Moreover, Ang II can also be hydrolyzed by other enzymes, including ACE 2 or pro-
lylcarboxypeptidase, producing the peptide Ang-(1-7). Ang-(1-7) can be also produced
by the degradation of Ang-(1-9) by ACE, previously obtained by the action of ACE 2
on Ang I [40]. This pathway is called the ACE2–Ang-(1-7)–Mas receptor (MasR) axis.
It has been reported that Ang-(1-7) exerts nitric oxide (NO)–dependent vasodilatation,
and antihypertensive, anti-inflammatory, antifibrotic and antiangiogenic effects via the
G-protein–coupled MasR [42].

In addition to CVD, the role of RAS components in other diseases was recently revealed.
For example, the role of ACE 2 in COVID-19 as SARS-CoV2 uses this enzyme to enter the
mucosa and also modulates its gene expression [43]. ACE and Ang II also play a role in
Alzheimer’s disease [44]: brain ACE expression was related to Alzheimer’s disease severity
and amyloid-beta (Aβ) load and Ang II is responsible for the development of neurovascular
damage and dysfunction via the AT1R pathway [45–47]. Moreover, agonists of brain AT2R



Nutrients 2022, 14, 1920 4 of 24

and AT4R were suggested as potential drug candidates for the treatment of Alzheimer’s
disease [44,48]. Thus, the RAS system continues to be of interest in the search for new
treatments for different diseases.
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Figure 1. Schematic representation of the components of the renin–angiotensin–aldosterone system
(RAAS) and some of their main effects, modulating blood pressure (BP). RAAS is activated when
the blood volume decreases, plasma Na+ levels are low or a renal artery stenosis is suffered (2K1C
experimental animal model). Juxtaglomerular cells (kidney) are activated to produce renin from prorenin,
which is released to the bloodstream. Renin degrades hepatic angiotensinogen to form the angiotensin I
(Ang I). Then, Ang I is hydrolyzed by the endothelial angiotensin-converting enzyme (ACE), mainly
when it goes through the lung capillaries, releasing Ang II. Ang II produces vasoconstriction, acting
directly on vascular smooth muscle cells after it binds to Ang type 1 receptor (AT1R). In addition, it
also induces an increase in BP, stimulating (i) the production of reactive oxygen species (ROS) in the
endothelium, (ii) the release of endothelin-1 (ET-1; an endothelial vasoconstrictor factor), (iii) the release
of antidiuretic hormone (ADH) by the posterior pituitary gland, which produces reabsorption of water
in the nephrons and (iv) the release of aldosterone by the suprarenal glands, which also produces
reabsorption of water and Na+ and excretion of K+. Ang II also stimulates nephrons to Na+ reabsorption
and regulates glomerular filtration rate (GFR). Ang II can also bind to AT2R, producing vasodilatation
effects. Ang II is quickly degraded by aminopeptidase A (APA), releasing Ang III, which can bind to
AT1R and AT2R producing the same effects described for Ang II. Ang III is further metabolized to Ang
IV by the aminopeptidase N (APN), which also exerts central pressor effects via AT1R. Moreover, Ang
II can also be hydrolyzed by ACE 2 or prolylcarboxypeptidase (PCP), producing Ang-(1-7). Ang-(1-7)
can be also produced by the degradation of Ang-(1-9) by ACE. Ang-(1-9) is produced from Ang I
after being hydrolyzed by ACE 2. Ang-(1-7) exerts nitric oxide (NO)–dependent vasodilatation via the
G-protein–coupled Mas receptor (MasR).



Nutrients 2022, 14, 1920 5 of 24

2.2. Endothelial Function

In addition to RAAS, it is important to highlight the role of the endothelium in BP.
The vascular endothelium is a tissue formed of a monolayer of endothelial cells, located
between the bloodstream and the vascular smooth wall of the vessels [49]. It forms a highly
selective impermeable barrier, which also secretes vasoactive compounds, in response to
haemodynamic mechanical forces and hormones. These compounds act paracrinally to
produce contraction and dilation of the vascular tissue, regulate vascular tone, vascular
smooth muscle cell functionality, inflammation and immune response and maintain blood
fluidity [50,51]. Figure 2 summarizes the main vasodilator and vasoconstrictor factors
produced by the endothelium.
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Figure 2. Schematic representation of the main vasodilator and vasoconstrictor factors produced by
the endothelium. Cell (A) Phospholipase A2 (PLA2) releases arachidonic acid (AA) from membrane
glycerophospholipids. AA is transformed into prostaglandin (PG) G2, which is further reduced to
PGH2 by the cyclooxygenase 1 (COX-1). Finally, prostacyclin synthase (PGIS) converts PGH2 into
PGI2, which exerts vasodilation of vascular smooth muscle binding to prostacyclin receptors (IPR) and
peroxisome proliferator-activated receptor (PPAR) β/δ. (B) Nitric oxide (NO) is the main endothelial
vasodilator factor which is synthesized through the oxidation of L-arginine (L-Arg) to L-citrulline
(L-Citr) by the endothelial NO synthase (eNOS). eNOS expression is stimulated by Kruppel-like-factor
2 (KLF2), and eNOS is activated by sirtuin 1 (SIRT-1), which deacetylates it. Furthermore, SIRT-1
stimulates eNos transcription. NO diffuses into vascular smooth cells and produces vasodilatation
by the activation of guanylate cyclase (GC), which converts GTP to cGMP. (C) eNOS can also
produce ROS (superoxide anions) when it is uncoupled. These anions can scavenge NO, generating
peroxynitrites (ONOO−), reducing NO bioavailability and NO-dependent vasodilatation. (D) ROS is
produced by other enzymes, such as the NADPH oxidase 4 (NOX-4), which catalyzes the transfer of
electrons from NADPH to molecular oxygen. NOX-4 activity is stimulated by angiotensin (Ang) II
and peroxynitrite. (E) Ang II is formed from Ang I by the action of angiotensin-converting enzyme
(ACE). Ang II produces the constriction of vascular smooth cells via Ang type 1 receptor (AT1R).
Endothelin 1 (ET-1) is produced by the action of endothelin-converting enzyme 1 (ECE-1) on the
big ET-1. ET-1 vasoconstrictor effects are mediated by its interaction with ETA receptors (ETAr),
located in the vascular smooth cells. ET-1 synthesis or release is favored by Ang II and ROS. ET-1 can
stimulate the vascular Nox expression. Green lines indicate stimulation/modulation.

NO, initially called endothelium-derived relaxing factor, is the main endothelial va-
sodilator factor. It diffuses into vascular smooth cells, stimulating the conversion of
guanosine triphosphate to cyclic guanosine monophosphate through the activation of
the guanylate cyclase [52]. NO is also involved in angiogenesis, immune responses, in-
flammation (exerting anti-inflammatory effects in a normal healthy state) and inhibits
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white cell activation and platelet aggregation, among other effects [50,53,54]. In the en-
dothelium, NO is synthesized through the oxidation of L-arginine to L-citrulline, in a
reaction catalyzed by the constitutive isoform of the enzyme NO synthase (eNOS or NOS
III), using as co-substrates nicotinamide-adenine-dinucleotide phosphate and oxygen [55].
This monomeric enzyme contains two domains (the reductase and oxygenase domains)
that form dimers, which are considered the active form of the enzyme [54]. In the plasma
cell membrane, this enzyme is found attached to caveolin-1, which acts by inhibiting the
enzyme [56]. eNOS activation is produced in response to shear stress, vascular endothelial
growth factor, HDL and intracellular Ca2+ levels [57]. It is a Ca2+-dependent activation,
although eNOS can be also activated in its absence [58]. Moreover, eNOS activity depends
on different cofactors (flavin adenine dinucleotide, flavin mononucleotide and (6R-)5,6,7,8-
tetrahydrobiopterin (BH4)), the phosphorylation of different amino acids, post-translational
lipid modifications [54,55] and the SIRT-1 activity, which deacetylates it. Furthermore,
SIRT-1 stimulates eNOS transcription [59,60] and Kruppel-like-factor 2 (KLF2) stimulates
eNOS expression [61].

Instead of NO, eNOS can also produce superoxide anions. This process is called
“eNOS uncoupling”. It can happen when L-arginine or BH4 levels are low (BH4 stabilizes
the eNOS dimer), or asymmetric dimethylarginine (an endogenous eNOS inhibitor) levels
increase [62]. For example, reduction in BH4 levels can be produced by a decrease in
BH4 production or by an increase in its oxidation due to excessive ROS levels, namely
peroxynitrite [63,64]. Consequently, it generates a reduction in NO bioavailability and
an increase in ROS levels, altering the endothelial function. This is associated with HTN
and other CVD. Moreover, NO availability can also be reduced by superoxide anions,
which can scavenge NO, generating peroxynitrites and avoiding NO-dependent vasodi-
latation [65]. Moreover, peroxynitrite can oxidize low-density lipoproteins which increase
arginase activity, producing a reduction in L-arginine levels and also stimulating NADPH
oxidases (NOX) and xanthine oxidase to produce ROS [62]; consequently, peroxynitrite
and its ROS-induced production contribute to eNOS uncoupling. In addition to eNOS
in its uncoupled state, endothelial cells produce ROS in the mitochondrial respiration
and by means of xanthine oxidoreductase and NOX (mainly NOX-4 in these cells) [66,67].
Moreover, endothelial ROS production can be increased by different factors, such as Ang
II action, as it can stimulate NOX-4 activity [68,69]. In the homeostatic state, the gener-
ated free radical is counter-balanced by endogenous antioxidant mechanisms, which can
be enzymes, such as superoxide dismutase (SOD) or catalase (CAT), or non-enzymatic
compounds, such as reduced glutathione (GSH) or ascorbate. An unbalance between ROS
production and degradation results in oxidative stress, representing the main cause of
endothelial dysfunction [51].

Prostaglandin (PG) or prostacyclin I2 (PGI2) is another important vasodilator factor
produced by the endothelium, mainly in response to shear stress [49]. However, it is
considered that it plays a secondary role in vasodilation, exerting its effect mainly when
the levels of NO are not high enough [70]. This factor is synthesized by a multi-step
enzyme-catalyzed reaction [71]. Firstly, phospholipase A2 releases arachidonic acid from
membrane glycerophospholipids, whose activation depends on Ca2+ levels [72]. Secondly,
the free arachidonic acid is transformed in PGG2, which is further reduced to PGH2 by
the action of the cyclooxygenase (COX). This enzyme shows oxygenase and peroxidase
activities [71] and the predominant isoform in endothelial cells is COX-1 [73]. Finally,
prostacyclin synthase (PGIS) converts PGH2 into PGI2. The effects of PGI2 are mediated
by its binding to cell surface prostacyclin receptors (IPR) and intracellular peroxisome
proliferator-activated receptor (PPAR) β/δ. Activation of both pathways produces a multi-
step reaction that results in a reduction in intracellular Ca2+ levels of vascular smooth
cells and a further vasodilation of the vessel [71]. Moreover, it is known that NO induces
the release of PGI2 and vice versa [49]. PGI2 can also act on juxtaglomerular apparatus,
inducing the release of renin by kidney [74].
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On the other hand, the endothelium also synthesizes and releases vasoconstrictor
compounds, such as ET-1 which is also involved in vascular and myocardial hypertrophy
and promotes inflammation as it stimulates the release of interleukins (IL-6, IL-1 and
IL-8) [75]. ET-1 is produced in different steps, comprising the hydrolysis of prepro-ET-1
into big ET-1 by proteases and the further hydrolysis in Trp-21 of big ET-1 in its active
form ET-1, catalyzed by the endothelin-converting enzyme 1 (ECE-1) [76]. This process is
tightly regulated by different factors. In this regard, ET-1 synthesis or release is favored
by Ang II, ADH, ROS, cytokines (tumor necrosis factor-alpha and IL-1), norepinephrine,
thrombin or shear stress, while it is reduced by NO, atrial natriuretic peptide, cyclic
nucleotides and KLF2 [77–79]. The vasoconstrictor effects of ET-1 are mediated by its
interaction with ETA and ETB receptors (mainly ETA receptors), located in the vascular
smooth cells [80]. However, ET-1 can also bind to ETB receptors in the endothelial cells,
presenting an opposite effect to that showed by ETA activation. Specifically, ET-1 via ETB
favors the release of endothelial prostacyclin and NO, ET-1 clearance, and inhibits ECE-1
expression [79]. In addition, it has been observed that ET-1 can stimulate the vascular Nox
expression [81]. Another vasoconstrictor produced by the endothelium is Ang II, as ACE is
expressed in endothelial cells. This local Ang II helps to maintain normal BP, although it is
not essential [31,82]

The balanced release of vasoconstrictor and vasodilator factors by the endothelium
leads to a controlled homeostasis of vascular tone and BP [49]. The imbalance between
vasodilator and vasoconstrictor factors may trigger the development of some CVD, such
as HTN.

3. Biological Rhythms and Blood Pressure

Many physiological processes including BP and heart rate follow a biological rhythm.
These rhythms are organized in cycles that allow the organisms to adapt to constant
changes in their environment, such as light and dark periods or even seasonal changes,
thus optimizing their metabolic functions and energy expenditure [83]. In mammals, these
rhythms are controlled by synchronized endogenous clocks, which are located both in
the central nervous system and in peripheral areas throughout the body. Because of this
synchronization and their connection to the environment [83,84], these clocks are able to
modulate many biological processes, such as neuronal, endocrine, metabolic and behavioral
functions [85]. The main factor that regulates and controls the endogenous clocks is the 24-h
light/dark cycle of Earth, also called the photoperiod. Nevertheless, other environmental
or behavioral factors, such as meal timing and exercise are also essential in the modulation
of these clocks [86].

3.1. Molecular Machinery behind Circadian Rhtyhms

In mammals, the central clock of the circadian rhythms, which synchronizes all existing
peripheral clocks, is located in the suprachiasmatic nucleus (SCN), specifically in the ventral
periventricular zone of the anterior hypothalamus. The SCN receives information about
external light through its connection with the retina and sends it to other organs, thereby
generating behavioral and biological rhythms [87].

At the molecular level, the circadian clock is controlled by a set of genes called
clock genes, which codify many transcription factors that undergo an autoregulatory
transcription–translation feedback loop (Figure 3). The most important clock proteins
are circadian locomotor output cycles kaput (CLOCK) and brain and muscle Arnt-like
1 (BMAL1). They dimerize to bind to the E-box elements in promoter regions of clock-
controlled genes, such as Per1, Per2 and Per3 (period 1, 2 and 3) and Cry1 and Cry2
(cryptochrome 1 and 2). CRY and PER form a complex that represses the heterodimer
CLOCK–BMAL1 in the nucleus, thus inhibiting the transcription of clock genes by a
negative feedback loop within a 24-h period [88].
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Figure 3. Schematic representation of the molecular mechanism of the molecular clock. Circadian
locomotor output cycles kaput (CLOCK) and brain and muscle Arnt-like 1 (BMAL1) dimerize to
bind to the E-box elements in promoter regions of clock-controlled genes such as Per and Cry. CRY
and PER form a complex that represses the heterodimer CLOCK–BMAL1 in the nucleus, inhibiting
the transcription of clock genes by a negative feedback loop within a 24-h period. The heterodimer
CLOCK–BMAL1 also drives a regular expression of nicotinamide phosphoribosyltransferase (Nampt).
NAMPT triggers the release of NAD+, a cofactor needed for Sirtuin 1(SIRT1), which modulates the
activation of clock genes via deacetylation of histones.

Additionally, the system is also modulated by a secondary loop in which Bmal1 ex-
pression is controlled by nuclear receptors, RAR-related orphan receptor alpha (RORα) and
nuclear receptor subfamily 1 group 1 member 1 (NR1D1). Both proteins are downstream
products of the CLOCK–BMAL1 pathway and can bind with the ROR/REV-ERB-response
element (RORE) in the promoter sequence of Bmal1. RORα acts as an activator of the
transcription, while NR1D1 is an inhibitor [89].

Not only do transcriptional and translational loops control the activation and repres-
sion of clock genes, but also post-translational modifications. The heterodimer CLOCK–
BMAL1 drives a regular expression of nicotinamide phosphoribosyltransferase (Nampt)
and NAMPT triggers the release of NAD+, a cofactor needed for the NAD+-dependent
deacetylase sirtuin 1(SIRT-1), that modulates the activation of clock genes via deacetylation
of histones [90].

3.2. Circadian Blood Pressure Patterns

It is well known that BP in mammals follows a 24-h rhythm. Like heart rate, BP
in humans reaches its highest value after awakening [91,92], where higher prevalence
of myocardial infarction, sudden cardiac death and myocardial ischemia is observed.
Moreover, it also shows a second peak in the afternoon (~7:00 p.m.). Conversely, during
sleep, there is a drop (~10–20% compared with daytime values) in BP, known as the
dipper effect [92–94]. This effect is used to classify subjects as “extreme-dippers” (SBP is
reduced ≥ 20% when compared with the daytime BP value); “dippers” (SBP is reduced
between 10–20% when compared with their daytime BP); “non-dippers” (SBP does not
show a drop, or it is less than 10%) and “inverse-dippers or risers” (SBP increases on
nighttime BP value, instead of showing a drop) [95]. Figure 4 shows a representation of
all these BP circadian patterns. Dippers are associated with cardiovascular health, while
“non-dippers” present a higher cardiovascular risk and correlate with higher end organ
damage in different tissues [96]. Thus, these circadian BP fluctuations are used as predictors
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for CVD [97]. Moreover, it has been seen that hypertensive patients can follow different
cycle patterns, which are classified as dipper, non-dipper, extreme dipper and reverse
dipper depending on BP behavior during the night [95].
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BP regulation mechanisms are under the control of the biological clock
machinery [92,95,98,99]. In fact, biological peripheral clocks are found in the heart, blood
vessels and vascular endothelial cells [100]. Experimental studies in murine models have
proven that BP and heart rate follow a 24-h oscillation, which is disrupted by abolishing
the SCN and thus the central clock functions [95]. Interestingly, in some transgenic hy-
pertensive rats, such as the TGR(mRen2)27 rats, the biological rhythmicity of BP is lost,
showing an increase during the rest phase, contrary to the normotensive fluctuations [94].
Specifically, several studies showed that Bmal1 knock-out (KO) male mice exhibit a decrease
in BP values when compared with normotensive mice [101–103] and a loss of the circadian
BP variations in these animals [102,104]. Another study revealed that the effects of Bmal1
on BP is dependent on organ. Thus, the deletion of the Bmal1 gene in smooth muscle
produced a BP decrease and modified BP rhythm, while the deletion of Bmal1 in cardiomy-
ocytes did not produce the same effects [105]. In addition, Bmal1 KO mice had endothelial
dysfunction [106]. Moreover, studies carried out in kidney-specific cadherin Bmal1 KO
mice under a K+-restricted diet revealed that BMAL1 is involved in Na+ reabsorption in
the distal nephron and collecting duct of nephrons, contributing to BP regulation [103].
Studies with Clock KO mice showed a hypotensive phenotype and a higher urine excretion
of sodium, thus suggesting that this gene could be implicated in mechanisms related to
the sodium transport in the nephron [107]. No changes in BP rhythms were observed in
these animals. Moreover, Per1 KO mice showed reduced BP and higher levels of ET-1 in
the kidney in comparison with Wild-Type (WT) controls, due to the role of Per1 in the renal
sodium reabsorption and excretion [108]. Male Per1 KO mice were also more sensitive
to a high salt diet plus mineralocorticoid treatment, which produced an increase in the
mean arterial pressure and a non-dipper phenotype [109]. However, this non-dipper effect
produced by the treatment was not observed in female Per1 KO mice [110]. In addition, Per2
KO mice showed endothelial dysfunction and a slight reduction in diastolic BP [111,112].
Finally, Cry1/2 KO mice showed salt-sensitive HTN associated with high synthesis of
aldosterone [99,113].

The relation between BP and biological rhythms is mechanistically explained by
sympathetic activation during the day, which triggers a release of epinephrine and nore-
pinephrine that is especially high during morning hours [97]. This leads to the activation
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of the RAAS system and its components that also have their maximum concentration peak
just before awakening [92,93]. In this regard, Kawasaki et al. (1990) evidenced in healthy
subjects that the 24-h pattern of the concentration of total renin, active renin and aldos-
terone plasma and renin activity follows a circadian rhythm. In addition, the maximum
concentrations of these parameters were observed at early morning (~05:45–09:00 h) except
for total renin concentration that was found at early afternoon (14:42 h) [114]. Moreover,
Richards et al. observed a weak correlation between circulating levels of renin and Ang
II in plasma and BP in healthy subjects [115]. In addition, a reduction in the endothelial
vasodilator function and a decrease in parasympathetic activity explain the maximum
value of BP at the beginning of the day [92]. Regarding the nighttime pattern of BP, it
can be explained by parasympathetic activity, which rises and exerts the opposite effect
to sympathetic activity. Thus, RAAS activation decreases and, consequently, Ang II, ACE
and aldosterone concentrations in blood are reduced [93]. Furthermore, NO concentrations
and endothelial function increase. All these events boost the dipper effect seen during the
asleep phase [92–94].

It is known that circadian rhythms also regulate endothelial NO production, since
total expression of eNOS is under control of the circadian clock and peaks during the
active-period [116,117]. Although the NO produced by eNOS is key in BP regulation, it
seems that eNOS is not involved in the circadian rhythmicity of BP [118,119]. Although
experiments carried out in eNos−/− mice and WT mice administered L-Nω-nitro arginine
methyl ester (L-NAME, a non-specific NOS inhibitor) showed a BP increase in respect of
WT mice, they maintained the 24-h BP rhythmicity [118]. Additionally, the gene expression
of GTP cyclohydrolase-1 and dihydrofolate reductase, enzymes involved in the synthesis
of the eNOS cofactor BH4, also have a circadian rhythm in WT mice, reaching a peak
during the active period simultaneously to eNOS [106,120]. This rhythmicity was directly
regulated by the circadian clock, as it was lost in the aorta of Bmal1 KO mice. These
animals also exhibited higher levels of superoxide than those shown by WT mice, which
was associated to the eNOS “uncoupling” [106]. Moreover, circadian rhythms of Nox-4
gene expression were also observed in WT murine heart and human aortic endothelial cells
which were under BMAL1 control [121]. Furthermore, it has been observed that plasma ET-
1 (vasoconstrictor) levels, and urinary ET-1 levels follow a 24-h cycle in humans [122,123].
Specifically, plasma ET-1 levels were shown to be higher in the morning compared with the
afternoon. Moreover, it was observed that the ET-1 excretion rhythm corresponds with the
rhythm followed by sodium excretion and the latter, in turn, showed a similar circadian
cycle to BP [122]. Moreover, expression of ET-1 (Edn1) and ET-1 receptors (Ednra and
Ednrb) genes also exhibited a 24-h rhythm in C57BL/6J mice. Specifically, Edn1 expression
levels showed the acrophase in the dark phase in all tissues, while it was tissue-dependent
in the case of the Ednra and Ednrb expression levels [123].

4. Hypertension

HTN is a chronic condition that causes a persistent elevation of BP in the vessels to
at least 90 mm Hg in DBP and 140 mm Hg in SBP [124]. According to the World Health
Organization, over than a billion people suffer from HTN around the world and, most of
them, do not have awareness of it so, in most cases, HTN is not controlled and constitutes
a major and relevant risk factor for CVD, which is still the leading cause of mortality
worldwide [125]. In European countries, the prevalence of HTN is around 30–45% and
the percentage increases with age. Although men and women have the same risk, HTN
usually appears in men at an earlier age and this potential risk is increased in women after
menopause [126].

According to the European Society of Hypertension and the European Society of
Cardiology, HTN can be classified as grade 1 (DBP 90–99; SBP 140–159 mmHg), grade 2
(DBP 100–109; SBP 160–179 mm Hg) and grade 3 (DBP ≥ 110; SBP ≥ 180 mmHg), as well as
primary (also essential or idiopathic) or secondary HTN [124]. Moreover, there is another
condition called prehypertension, which includes people in process of HTN development
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(DBP 80–99; SBP 120–139 mmHg). Primary HTN, the most extended (≈95% of HTN)
emerges due to unknown causes but some factors are strongly correlated such as age, diet
or pharmacology treatments [127,128]. Moreover, genetics and environmental factors such
as obesity, sedentary lifestyle, alcohol, high salt/Na+ diet, K+/vitamin D deficiency, etc. can
also be involved and lead to an earlier appearance of HTN and CVD [128,129]. When HTN
is caused by other pathologies (renal, thyroid, hormonal, vascular or metabolic disorders),
it is classified as secondary HTN [127].

The high BP levels recorded in hypertensive patients originate in the disruption
and functional alteration of regulation systems, such as RAAS and other disorders, for
example, endothelial dysfunction which starts with an imbalanced secretion of vasodilator
and vasoconstrictor molecules. When the endothelium is damaged, pro-inflammatory
and pro-thrombotic factors (chemokines, cytokines, and adhesion molecules) are released
and interact with leucocytes and platelets, thereby provoking the loss of integrity of
endothelial cells that can be detached from the vascular wall. In addition, the increase in
pro-inflammatory chemokines contributes to T cells and macrophage infiltration, generating
tissue injury [130].

Another consequence caused by HTN is ROS overproduction. In this situation, ROS
content might reach levels that cannot be buffered by endogenous antioxidant mechanisms,
leading to oxidative stress. As was previously mentioned in Section 2, “uncoupled” eNOS
and NOX are particularly relevant in endothelial ROS generation [49,62]. Since the RAAS
is overactivated in HTN, Ang II is overproduced, affecting BP via increasing ET-1 and
ROS production (stimulating NOX-4 activity and eNOS uncoupling) (Figure 2) [68,79].
Moreover, ROS overproduction triggers adipose inflammation, glucose intolerance and
insulin resistance. In addition, the generated superoxide anions can react with NO, increas-
ing peroxynitrite production and decreasing NO bioavailability. In turn, peroxynitrite is
linked to alterations of redox-sensitive genes and transcription factors [49,131]. The results
of all these processes negatively affect the vascular physiology, contributing to damage
progression related to CVD [131].

Moreover, biological rhythm disruptions can lead to HTN or CVD clinical pictures.
For instance, populations such as shift workers (particularly nighttime shift workers) that
suffer a misalignment in the natural light–dark schedule showed alterations in their BP
levels in comparison with daily workers. In addition, alterations in sleep duration were
demonstrated to be associated with cardiometabolic disorders development [132–134]. Fur-
thermore, as was mentioned in Section 3.2, the deletion of Per1 in male mice in combination
with the consumption of a high salt diet plus mineralocorticoid treatment produced an
increase in the mean arterial pressure and a non-dipper phenotype, which is associated to
HTN [109].

4.1. Treatments for Hypertension

Since HTN is assumed as a relevant health problem worldwide, a plethora of potential
preventive and corrective solutions have been investigated. Among them, well-established
and novel pharmacological approaches have been defined and are efficient to manage
HTN in most of the cases; however, they can exert side effects in some patients and they
are not suitable for prehypertensive patients. Thus, new bioactive compounds obtained
from natural sources or food have emerged as an adequate alternative. Moreover, lifestyle
measures such as salt/alcohol intake restrictions, exercise, diet, weight loss, etc. must not
be forgotten [135–137].

4.1.1. Pharmacological Treatments

The therapy against HTN includes a wide range of drugs that interact and inhibit
RAAS components and other HTN agonists. Thus, one of the most investigated and
prescribed treatments are those that involve ACE inhibitors, such as captopril or lisinopril,
as well as benazepril, ramipril and imidapril. While ACE inhibitors prevent the production
of Ang II, different Ang II receptor blockers (ARB), such as valsartan and olmesartan, reduce
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its action, thereby avoiding blood vessel constriction [138,139]. Furthermore, inhibitors of
β-adrenergic receptor blockers are utilized to attenuate heart β-adrenoreceptor activation.
These compounds, such as propranolol, are commonly used combined with other drugs and
their proposed mechanism of action includes heart rate and cardiac output reduction, renin
release inhibition, venous return and plasma volume reduction and vascular compliance
improvement, among others [140]. Furthermore, during recent decades, calcium channel
blockers (amlodipine, felodipine, isradipine) have been widely used (monotherapy or
combined therapy) because of their good tolerability by hypertensive patients and their
effectiveness in reducing BP via blocking calcium entry into cardiovascular cells and thus
triggering a vasodilator effect [141]. Moreover, different diuretic drugs are used in several
cases of HTN, acting in several areas of nephrons. For instance, thiazide-type diuretics
block Na+-Cl- cotransporters in the distal convoluted tubule and, consequently, reduce Na+

reabsorption. Also, loop-active agents, such as torasemide, block Na+-K+-Cl- cotransporters
in the thick ascending limb of the loop of Henle and potassium-sparing diuretics act on
Na+-K+ pumps, decreasing K+ excretion in the late distal tubule and collecting duct [142].

Despite the high diversity of pharmacological treatments than can be prescribed for
the different HTN grades, a substantial percentage of hypertensive patients show uncon-
trolled BP because of intolerance or nonadherence to the abovementioned antihypertensive
agents [135,143]. Thus, novel drugs, devices and procedures are being investigated in
preclinical and clinical studies. In this sense, several drugs are in preclinical or phase-I of
development, such as those based on the inhibition of dopamine β-hydroxylase, aminopep-
tidase A and Na+/H+ exchanger 3, as well as vaccines targeting Ang II and AT1R and
antioxidants such as vitamin D. Other agents are at a more advanced stage (phase-II/III),
such as newer mineralocorticoid receptor antagonists, inhibitors of aldosterone synthase,
vasopeptidases and soluble epoxyde hydrolase, and agonists of natriuretic peptide A and
vasoactive intestinal peptide receptor 2 [135,143].

4.1.2. Natural Bioactive Compounds

Although antihypertensive drugs have shown effectiveness against HTN, other alterna-
tives are considered when the disorder is in development. For instance, diet modifications
combined with healthy lifestyles were shown to prevent and alleviate the disruptions
caused by the disease [137,144]. Besides recommended eating plans, such as DASH (Di-
etary Approaches to Stop HTN), that advises a reduced salt/sodium and saturated fat
intake and includes fruit and vegetables, specific natural matrices have been subjected to
investigation to obtain bioactive compound-enriched products [144,145]. Thus, bioactive
compounds extracted from natural sources and food have been targeted to develop novel
approaches that might have a place in a patient’s diet. Among these compounds, several
molecules including peptides, phenolic compounds, vitamins, carotenoids, alkaloids and
organosulfur compounds have shown antihypertensive potential, although not all the
mechanisms of action are fully elucidated [137,146].

These antihypertensive compounds are searched and selected, based on their ACE
inhibitory (ACEi) properties. This is due to the fact that pharmacological ACE inhibitors
are the first-line treatments for HTN and an inhibition of ACE results in an effective BP
reduction [147]. In this sense, protein hydrolysates and peptides obtained from varied
food matrices exert significant ability to inhibit or reduce ACE activity. For instance, those
prepared from vegetal products and by-products, such as from fruits, legumes, cereals,
wine lees, pseudocereals, herbs and spices, etc. showed potent in vitro ACEi activity and,
in some cases, in vivo studies were conducted to validate the BP-lowering effects [148–151].
Moreover, animal sources, such as dairy products, meat, fish or eggs and also specific
by-products from these industries, such as chicken feet, led to potent ACE inhibitors, as
well as other alternative matrices, such as algae or mushrooms [149,152–158]. In addition, it
has been reported that some food matrices including different dairy products, such as kefir
or cheese and unfiltered olive oil, can also contain ACE inhibitory and /or antihypertensive
peptides [8,159–161]. Peptide length and amino acid position in the chain is very important
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to inhibit ACE. Thus, peptides of small size (3–12 amino acids), the presence of hydrophobic
amino acids or those containing hydrophobic-branched side chains at the C-terminal end
and the presence of the branched aliphatic amino acids at N-terminal position were related
to a higher ACEi activity than peptides not presenting these characteristics [157].

Other important compounds with potent ACEi activities are the phenolic compounds.
Their activity has been linked to the number of the hydroxyl group on the benzene ring [162].
Moreover, the ACEi activity of the flavonoid family has been associated with the presence
of the catechol group in the B-ring and the ketone group at the C4 and the double bond
between the C2 and C3 positions in the C-ring of the structure [163]. In addition to
individual phenolic compounds, ACEi activities were reported for phenolic-rich extracts or
beverages obtained from wine, tea, legumes, barley, winery by-products and algaes among
others [3,164–167].

In addition to ACEi activity, protein hydrolysates were found in macroalga Palmaria
palmate [168], lima bean [169], soy bean [170] and flaxseed [171], phenolic-rich extracts
from tree peony petals [172] and from leaves of Cuphea ignea A. DC. [173] with in vitro
renin-inhibitory activity, some of them with a BP-lowering effect in vivo.

Some of these ACE or renin-inhibitory compounds are able to modulate the RAAS
components after being consumed by hypertensive animals. For instance, such is the
case of Hibiscus sabdariffa L. extracts, which produced a reduction in plasma Ang II, ACE
and aldosterone levels in L-NAME–induced hypertensive rats [174]. However, although
natural antihypertensive compounds are mainly searched and selected based on their
activity on RAAS, it is very common that they can decrease BP by acting on other BP
regulation pathways after ingestion by hypertensive animals. For instance, they can act
on the endothelium, restoring the endothelial dysfunction and oxidative stress associated
with HTN. Thus, they can increase the NO bioavailability in animals treated with bioactive
compounds by favoring the NO release (acting on the activity and expression of eNOS and
SIRT-1), as well as decreasing ROS levels (downregulating Nox expression and increasing
the activity or upregulating the expression of different endogenous antioxidant enzymes
including SOD, CAT, gluthatione peroxidase, heme oxygenase, gamma-glutamylcysteine
synthetase and glutathione S-transferase enzymes) [3]. A decrease in plasma levels in the
vasoconstrictor ET-1 and a downregulation of its gene expression (Edn1) [3] have also been
reported. For instance, a chicken foot hydrolysate, selected according its good ACEi activity,
showed a potent antihypertensive effect after its acute administration to spontaneously
hypertensive rats (SHR) and after its long-term administration to diet-induced hypertensive
rats (CHR) [156,175]. It was found that this bioactive hydrolysate upregulated aortic Sirt1
expression, downregulated Edn expression and increased hepatic GSH levels (the main
endogenous antioxidant) after its long-term administration to CHR [175]. In addition,
the peptide sequence AVFQHNCQE was found in the hydrolysate, showing good in vitro
ACEi activity (IC50 = 44.8 µM) and potent antihypertensive effects in SHR [157]. Moreover,
administration of an acute dose (10 mg/kg body weight) of this chicken foot-derived
peptide to SHR produced an improvement of endothelial function and oxidative stress in
these animals, as a downregulation of aorta Edn1 and Nox-4 gene expression was found and
an increase in hepatic GSH levels in respect of control SHR [176]. Moreover, the peptide
AVPYPQ, identified in a kefir beverage, showed in vitro ACEi, antioxidant and free radical
scavenger activities [177–179]. Administration of this peptide (10 mg/kg/day) for 7 days
to 2K1C mice, an animal model of secondary HTN, reduced both BP and heart rate. It
produced a ROS-level reduction in vascular smooth muscle cells (acting on ROS production
pathways: NOX and mitochondria), attenuated aortic thickening and reduced structural
damage in the aortic endothelium in comparison with control 2K1C mice [179].

Similarly to these abovementioned peptide examples, the mechanisms involved in
the BP-lowering effect of a liquid fraction of wine lees (rich in phenolic compounds)
in SHR, selected also by its ACEi effect, was an improvement of endothelial function
(downregulating of Nox-4 and Edn gene expression and upregulating of eNos and Sirt1
gene expression) and of oxidative stress (increasing hepatic GSH levels) [147,180,181].
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Another example is grape seed proanthocyanidin extract (GSPE), that evidenced ACEi
and antihypertensive effects in several hypertensive animal models (SHR and CHR) and
produced an upregulation of Sirt1 expression and a downregulation of Edn expression in
the aorta of CHR administered with the extract (25 mg/kg) for 3 weeks [182]. Additionally,
it decreased plasma ET-1 levels, upregulated aorta eNos expression and downregulated
aorta Nox expression in CHR consuming a single dose (375 mg/kg) of the extract [183].
Moreover, NOX-activity modulation has been reported for individual phenolic compounds,
such as catechins, hesperidin and curcumin that can be obtained from tea, citrus fruits and
turmeric, respectively [184].

It is worth noting the in vitro antioxidant effects shown by some of these natural com-
pounds, such as phenolic compounds. Thus, these compounds can scavenge or attenuate
the generation of ROS within the oxidative stress status linked to HTN and, therefore,
hinder the disease progression. A great number of works have been carried out referring
to the antioxidant activity of phenolic compounds. This antioxidant and antihypertensive
potential was observed for phenol-rich products from fruit and vegetables, such as grapes,
cherries, berries, tea leaves, etc. [185–187].

In addition to dietary bioactive compounds, the importance of probiotics in the BP
regulation was reported. For example, the administration of the probiotic kefir bever-
age (0.3 mL/100 g bw) to SHR for 60 days produced a significant reduction in BP and
heart rate in these animals [188,189]. Its antihypertensive effect was associated with an
improvement of endothelial dysfunction. Specifically, it improved the responsiveness of
vessels (aorta) to acetylcholine-induced endothelium-dependent vasorelaxation in response
to reduced levels of aortic ROS (•O2

−, H2O2, and ONOO−/•OH−), increased levels of
NO in aorta and increased the circulating endothelial progenitor cells levels, in respect
of control SHR [189]. The correlation between probiotics administration and endothelial
dysfunction amelioration was also noticed after Lactobacillus fermentum or Bifidobacterium
breve supplementation (1 billion colony forming units per day) to SHR for 18 weeks [190].
Furthermore, administration of the probiotic VSL#3 (50 billion bacteria/kg/bw/daily) to
chronic bile-duct-ligated (CBDL) rats prevented endothelial dysfunction, oxidative stress,
inflammation and overactivation of aorta RAS associated with this animal model [191].
Another example is the administration of Lactobacillus coryniformis CECT5711 to high-fat-
induced obese mice for 12 weeks, which improved the endothelial dysfunction and restored
ROS levels (reducing NOX activity and increasing antioxidant enzymes) of these animals
in respect of control mice [192].

5. Antihypertensive Compounds and their Role in Biological Rhythms
5.1. Pharmacological Treatments and Circadian Rhythms

Traditionally, the clinical approaches for the management of HTN is based on the
modulation of the treatment dose or the combination of different drugs, ignoring how the
rhythmicity of the pathology impacts on the efficacy, kinetics, dynamics and toxicity of
the therapeutic products. In this regard, the study of chronopharmacology in antihyper-
tensive treatment aims to synchronize drug concentrations with the circadian rhythms
of the disease, in order to increase the effectiveness and to reduce the side effects of the
treatment [193].

Patients with HTN generally take BP-lowering medication in the morning [194],
despite several clinical trials having demonstrated that the efficacy of the available an-
tihypertensive drugs varies depending on whether they are ingested in the morning or
evening [195]. For example, ACE inhibitors, i.e., drugs such as captopril, ramipril or lisino-
pril, generally improved tolerance and antihypertensive efficacy when they were taken at
bedtime [196]. By contrast, treatments with other drugs, such as imidapril, did not exert
different effects between morning and evening dosage or, in the case of benazepril, even
resulted in a better antihypertensive activity after morning administration [197].

In a similar manner to ACE inhibitors, treatments with ARB in monotherapy enhanced
the reduction in BP values when dosed at a rest phase [196]. Evening treatments with
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valsartan, both in dipper and non-dipper volunteers, showed a reduction in asleep BP
values and normalized the 24-h BP pattern [93]. Similarly, olmesartan consumed at bedtime
was more effective in reducing SBP/DBP, as well as increasing the BP decline produced
during sleep-time in essential hypertensive patients than the same drug consumed in a
morning dosage [198].

Concerning other therapies, calcium channel blockers showed a reduction in BP
independently of the treatment-time regimen [199]. However, the diuretic torasemide was
much more effective when administered at bedtime compared with morning time [200].
Little information is available regarding the relationship between dosing time and efficacy
of β-adrenergic receptor blockers. Only nebivolol, dosed at bedtime, maintained its efficacy
throughout the daytime and slightly attenuated the nocturnal reduction in antihypertensive
effect generally observed in β-adrenergic receptor blockers [201].

5.2. Bioactive Compounds and Circadian Rhythms

As mentioned above, alternative therapeutic approaches are considered for preventing
the development of HTN. Considering that drugs used to treat diseases such as HTN exert
differential effects depending on administration time, as well as bioactive compounds
targeting the same molecular pathways than drugs, it is logical to think that the effective-
ness of bioactive compounds could also vary depending on administration time. Thus,
chrononutrition, a discipline that studies the relationship between temporal eating patterns,
biological rhythms and metabolic health, has emerged as a potential therapeutic option [85].
Specifically, an appropriate composition of the diet and the timing of food intake can
preserve the circadian rhythmicity and promote healthy metabolic and cardiovascular sys-
tems [202]. In this regard, phenolic compounds have been described as compounds able to
regulate BP and endothelial function, and which can also interact with the circadian rhythm
by affecting the expression clock genes (see [88,203] for more details). Consequently, as
well as for conventional drugs, the dosing schedule of phenolic compounds could modify
their ability to restore metabolic disorders [203].

One experimental study in rats revealed that resveratrol, a well-known antioxidant,
generated different oxidative effects depending on the administration schedule [204]. Specif-
ically, the study analyzed the levels in heart, liver and kidney of thiobarbituric acid reactive
species (TBARS), lipid peroxidation-derived products that have been correlated with car-
diovascular risk factors such as HTN [205]. Measurements showed a high decrease in
TBARS values after light span administration and, conversely, a dramatic increase in
TBARS concentrations when resveratrol was administered during the dark phase. Based on
this evidence, the authors concluded that time of consumption of resveratrol may impact
its function in the cardiovascular system, thus recommending morning intake in humans
to obtain better therapeutic results.

Similarly, GSPE has widely shown potential beneficial effects on different metabolic
syndrome components, including antihypertensive properties in an obese rat model [182].
In another study with rats on standard diet, GSPE also modulated the circadian rhythm
by targeting BMAL1 acetylation in the liver, only after administration at the beginning
of the dark (active) phase [206]. Consequently, this phenolic extract modulated the levels
of NAMPT and NAD+ in the liver depending on the time of GSPE administration, thus
integrating the impact of GSPE on both biological rhythms and metabolic pathways [206].

There are several studies in rodents, as well in humans, highlighting the antihyperten-
sive effects of epigallocatechin-3-gallate (EGCG), a phenolic compound found mostly in
green tea [207,208]. Interestingly, in a murine model of diet-induced obesity, only during
the dark phase, did this compound restore the alteration of the biological rhythms due to
the diet by regulating the expression of Bmal1, Clock and Cry1 through the modulation of
the SIRT1–PGC-1α loop, in liver and adipose tissue [209].

Moreover, it has been suggested that cacao liquor procyanidin (CLPr), an antihyper-
tensive extract rich in phenolic compounds (epicatechins catechins and procyanidins) [88]
could regulate clock gene expression in the liver by modulating the secretion of glucagon-
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like peptide-1 in mice [210]. Additionally, CLPr administration, only at the light period (rest
phase), suppressed postprandial hyperglycemia by activation of the AMP-activated protein
kinase (AMPK) and the resulting translocation of glucose transporter type 4 (GLUT4), thus
demonstrating that the beneficial effects of this compound on metabolic syndrome was
related to its administration timing [211].

It is undeniable that circadian oscillations should be considered in the traditional
and alternative therapies for HTN. Unfortunately, despite the increasing evidence of the
importance of chrononutrition in the management of metabolic disorders, and the evi-
dence describing the cardioprotective properties and the modulatory effect of phenolic
compounds over the regulation of clock genes and restoration of circadian rhythms, there
is a lack of studies assessing the optimal timing of bioactive compound dosing to enhance
their ability to regulate HTN.

6. Conclusions and Future Perspectives

The relevance of controlling BP is confirmed by the impact of HTN and CVD as a major
problem within public health. Thus, novel approaches using pharmacological drugs are
being investigated and, when HTN is still in development, natural bioactive compounds
and nutritional interventions emerge as promising alternatives.

The study of the mechanisms of action of these bioactive molecules (e.g., phenolic com-
pounds or bioactive peptides) is crucial but the consumption timing must be highlighted.
In this sense, chrononutrition is a novel concept that gathers together biological rhythms
along with diet and bioactive compounds. Thus, the effect of biological oscillations on BP
regulation mechanisms, as well as on compound digestion and metabolization, should be
considered in the development of new antihypertensive ingredients, since these factors
could alter the effectiveness of these compounds against HTN. In addition, it is known that
gut microbiota is also sensitive to biological rhythms [212] and, therefore, it is plausible to
believe that these changes may also alter BP. However, little is known about these changes
and their consequences and further research is needed.

Although several studies have been conducted following strategies based on chrononu-
trition, further studies must be carried out to fully understand the relation between bioactive
compounds, rhythms and HTN.
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