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Tumor hypoxia: an important regulator of tumor progression or a potential 
modulator of tumor immunogenicity?
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Introduction

Hypoxia in the tumor microenvironment has been shown to be 
a strong indicator of tumor aggressiveness, metastases, and 
promotes cancer progression.1 Several studies have indicated 
that tumor hypoxia is a predictor for resistance to chemothera-
pies, radiotherapy, and immunotherapy.2 Tumor hypoxia can 
also lead to immune suppression and can induce resistance to 
immune checkpoint blockade (ICB).2 However, the mechan-
isms through which hypoxia contributes to immunotherapy 
resistance remain unclear. Current predictive biomarkers of 
response to ICB efficacy include tumor mutational burden 
(TMB), neoantigen load, PD-L1 expression, Microsatellite 
Instability (MSI) status, and diversity of immune cells in the 
TME.3 High TMB with neoantigen load has been reported as 
an independent predictor of favorable outcome across various 
cancer types and there are well-defined factors (both cell intrin-
sic and extrinsic) contributing to TMB generation.3 MSI-High 
tumors arise due to germline variations, as well as epigenetic 
repression of mismatch repair genes, and MSI is currently 
tested as a marker for several immunotherapy trials.3 The 
most well-established biomarker, PD-L1, has been beneficial 
in guiding patient selection for immune checkpoint blockade. 
The regulation of PD-L1 in tumors is quite complex and other 
immune checkpoints contribute to negative immune 
regulation.3 Tumor immunome (the TME’s immune cell reper-
toire) contributes to ICB effectiveness and is used as 
a biomarker for long-term response in many cancers, but it is 
extremely complex and varies spatiotemporally.3 According to 
our current understanding, TMB development, neoantigen 
load, PD-L1 expression, and immune cell infiltration at the 
tumor site are all thought to be influenced by tumor genomic 
instability.4 However, the effect of hypoxia on these biomarkers 
remains unclear.

Hypoxia is associated with immune evasion

While hypoxia may play a role in TMB induction, it can also 
lead to intratumor heterogeneity and immune evasive 
phenotypes5 (Figure 1). Hypoxia in the TME can activate 

a variety of oncogenic signaling pathways that can lead to the 
development of tumor clones resistant to anti-tumor immune 
attacks by cytotoxic T-cells (CTLs), Natural Killer (NK) cells as 
well as macrophages.4 It has the potential to modulate non- 
genetic heterogeneity and phenotypic switches of tumor cells 
(also referred to as tumor plasticity) representing another 
means through which tumors can evade anti-tumor immunity. 
Converging evidence exist that tumors containing clones or 
contingents with a more mesenchymal phenotype frequently 
exhibit elevated expression of PD-L1 and immune suppressive 
factors.6–9

Moreover, hypoxic cells often downregulate Type-I inter-
feron signaling and MHC (major histocompatibility complex) 
presentation mechanisms and activate autophagy to escape 
CTL- and NK cell-mediated killing.10,11 There have been con-
tradictory reports on the effect of hypoxia on MHC-class 
I antigen presentation pathway necessary for activating 
CD8 + T-cells.12,13 On one hand, exposure of murine cancer 
cells to 24 hours of 1% oxygen enhanced MHC I antigen 
presentation through the HIF-1α-inducible ER-resident oxi-
dase ERO1-α.12 On the other hand, in 3D-cultured tumor 
cells exposed to acute hypoxic conditions and in a tumor 
bearing mouse model, hypoxia was shown to downregulate 
MHC molecules and antigen presenting proteins in a HIF-1α- 
dependent manner.13 Hypoxic suppression of IFN-γ was 
further found to inhibit IFN-γ-induced MHC I expression in 
a HIF-1 independent manner in mouse melanoma and colon 
cancer cells exposed to up to 48 hours of 0.5% oxygen.14 

Hypoxia was shown to downregulate the NK-activating ligands 
MHC class I polypeptide-related sequence A/B (MICA/B)15 

and to induce their shedding.16–18 HIF-1α-induced downregu-
lation of MICA/B was shown to diminish NK cell-mediated 
cytotoxicity in a lung cancer cell line exposed to 24 hours of 
0.6% oxygen.15 In prostate cancer cells maintained for 24 hours 
at 0.5% oxygen, hypoxia-associated impairment of nitric oxide 
(NO) signaling led to MIC shedding and inhibition of NK cell- 
mediated cytotoxicity.16 Alternate mechanisms for hypoxia- 
induced MIC shedding have also been reported.17,18 

Importantly, a milieu of immunosuppressive cytokines is 
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induced by the hypoxic TME, impairing T-cell and NK-cell 
function.4 In addition, under hypoxic conditions, tumor cells, 
and myeloid-derived suppressor cells (MDSCs) express PD-L1 
to induce immune suppression.19 Preclinical evidence in the 
prostate cancer model TRAMP-C2 suggests the presence of 
a ‘cold’ tumor microenvironment with poor T-cell infiltration 
in hypoxic zones in comparison to normoxic zones of the same 
tumor.20 In the context of immunotherapy, hypoxia can pose 
significant challenges for ICB and can lead to resistance by 
establishment of an immune excluded phenotype in the TME 
and decreased immunogenic cell death.21–23Various hypoxia 
alleviating strategies have been applied in preclinical models 
and were found to enhance response to immune checkpoint 
inhibitors and revitalize the anti-tumor immune response. 
Such strategies have been reviewed elsewhere22–24 and include 
directly targeting hypoxia with hypoxia-activated prodrugs,20 

as well as indirectly attenuating hypoxia using inhibitors of 
oxidative phosphorylation to decrease oxygen consumption 
and improve tumor oxygenation.24 Recently, it was also 
shown that blocking HIF-1α transcriptional activity in B16- 
F10 melanoma promoted immune cell infiltration into the 
TME and increased levels of the chemokine CCL5.25 Co- 

targeting melanoma-bearing mice using an inhibitor of HIF-1 
α/β dimerization, coupled with anti-PD-1 and a peptide vac-
cine completely stalled tumor growth.25 Such studies underline 
the significance of targeting hypoxia-associated pathways to 
ameliorate immunotherapy efficacy.

Hypoxia promotes genomic instability

Hypoxic environment can affect DNA repair mechanisms in 
a variety of ways, as has been thoroughly studied.16,17 Hypoxia 
increases the DNA damage response through pan-nuclear acti-
vation of gamma-H2AX in both acute and chronic hypoxia. 
While chronic hypoxia can cause a considerable decrease in 
DNA repair proteins and mechanisms, excessive hypoxia/ 
anoxia can cause replication stress. Transcriptional and trans-
lational downregulation of DNA repair pathways under 
chronic and intermittent hypoxia are the major contributors 
of chromosomal and genomic instability.26,27 Using in-vitro 
breast cancer models, we have recently shown that chronic 
and intermittent hypoxic stress contributes to downregulation 
of several DNA repair pathways, induction of replication stress 
that contributes to an increase in mutational load and 

Figure 1. The dual effect of hypoxia in regulating the antitumor immune response: the left panel represents hypoxia’s role as a key driver of immune evasion and tumor 
plasticity. Hypoxia promotes resistance to cytotoxic T-lymphocyte (CTL) and NK-cell mediated killing by inducing Hypoxia inducible factor-1α (HIF-1α)- mediated 
autophagy, loss of MHC class I molecules, and increased PD-L1 expression in tumor cells as well as myeloid-derived suppressor cells (MDSCs). With respect to tumor 
plasticity, hypoxia promotes epithelial to mesenchymal transition (EMT) and cancer stemness. On the other hand, the right panel highlights the tumor immunogenicity 
promoting role of hypoxia; wherein the hypoxia-associated downregulation of DNA repair mechanisms and replication stress result in increased tumor mutational 
burden (TMB) that could give rise to potential neoantigens. ECM: extracellular matrix; TAM: tumor associated macrophage.
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concomitant potential neoantigens.28 Enigmatically, while 
downregulation of DNA repair pathways makes the cells sus-
ceptible to enhanced DNA damage accumulation and subse-
quent activation of immune response, it can also cause 
immune suppression through upregulation of PD-L1.29 Data 
analysis of TCGA datasets from different cancer types has 
shown that defects in DNA damage signaling like ATR/Chk1, 
deficiency of DNA repair mechanisms like mismatch repair, 
double-strand break repair (DSB) and base excision repair 
(BER) are the major contributors for TMB and 
neoantigens.30 In addition, depletion of DNA repair factors 
related to DSB and BER leads to direct upregulation of PD- 
L1 expression on tumors.30 Chronic hypoxia can also repress 
mismatch repair genes and can inactivate MMR pathway genes 
through epigenetic mechanisms thus participating in MSI.27 

A recent study demonstrated that cyclic hypoxia-induced repli-
cation stress provides single-strand DNA substrates for 
enhanced APOBEC3B activity. In addition, they demonstrated 
an association for high-hypoxia with increased APOBEC 
mediated mutagenesis in breast and lung cancer cohorts from 
TCGA.31

DNA repair processes are intricately dependent on several 
metabolic pathways for maintenance of genome stability. DNA 
damage signaling kinases regulate the metabolic state of the cell 
through production of nucleotides required for repair, lactate 
mediated chromatin remodeling to enhance DNA repair gene 
transcription.32 Chronic hypoxia promotes the buildup of var-
ious enzymes related to glycolysis and tricarboxylic acid cycle 
oncometabolites such as 2-hydroxyglutarate, fumarate, and 
succinate, that could impede DNA repair.4 For example, 
2-hydroxyglutarate inhibits the lysine demethylase KDM4B 
which acts on histone H3 proteins and contribute to impedi-
ment of homology-directed rejoining.4 Furthermore, re- 
oxygenation after acute hypoxia can result in an increase in 
reactive oxygen species (ROS) and a decrease in mitochondrial 
ATP generation, which in turn may induce alterations in DNA 
damage checkpoints and contribute to genomic instability.4

Alongside DDR, chronic hypoxia can activate Unfolded 
Protein Response (UPR) independent of HIF signaling, but 
the interaction between these two key processes under hypoxic 
conditions remains unclear.33 Upregulation of DDR and/or 
activation of UPR process can regulate common downstream 
process like autophagy, apoptosis, metabolic reprogramming, 
redox homeostasis, and immune regulation.33 As levels of 
hypoxia and chronicity can vary among tumor types, under-
standing the coordination between DDR and UPR will be 
important, specifically in the context of a tumor’s 
immunogenicity.

Another important contributing factor may be TP53. The 
interplay between p53 and hypoxia plays a key role in the DNA 
repair process.34 In a recent study of lung tumors, Sun and 
collaborators reported that while TP53 missense and nonsense 
mutations are equally associated with elevated TMB, neoanti-
gen levels, and DNA damage repair deficiency, TP53 missense 
and nonsense mutations were significantly different in terms of 
associations with PD-L1 and response to anti-PD-L1.35

Given the enormous complexity of DNA repair mechanisms 
and TMB in human tumors, analyzing the exclusive impact of 
hypoxic tumor microenvironment on these disruptive events 
has been challenging to study in in-vivo models.

Computational analysis of publicly available datasets 
links hypoxia with TMB

In this regard, pan-cancer and TCGA studies have paved the 
way for understanding the association of hypoxia with genomic 
instability and TMB. The application of hypoxia gene signatures 
as a surrogate biomarker for this condition enabled the con-
current evaluation of other genomic elements and tumor envir-
onmental features. Clear indications have been established 
between higher levels of hypoxia and increased percentage of 
copy number aberrations,36,37 a marker of genomic instability, 
as well as a higher number of single nucleotide variants (SNVs) 
per Mbp;37 therefore, hypoxia could drive clonal diversification 
in tumors. As hypoxia is an early event in tumor progression, it 
also contributes to the selection of a number of clonal altera-
tions as opposed to subclonal alterations.37 In addition, more 
hypoxic tumors have been found to exhibit a higher proportion 
of mutations attributed to single base substitution (SBS) signa-
tures derived from defective homologous recombination-based 
repair and DNA mismatch repair.37 In one study on primary 
soft tissue sarcoma, the concurrent application of a hypoxia 
signature and a signature measuring the degree of genomic 
instability revealed a significant enrichment of hypoxic tumors 
in the group classified as having high genomic instability.38 The 
positive correlation between hypoxia and TMB has been further 
validated in independent studies for hepatocellular 
carcinoma,39 gastric cancer40 and pancreatic cancer.41 In gastric 
cancer, TMB positivity was further correlated with higher posi-
tive rate of ERO1A protein, a marker of hypoxia, in 73 tumors 
tested by immunohistochemistry.40 In addition, lung adenocar-
cinoma patients classified as high-risk based on a signature of 
hypoxia-related alternative splicing events have been shown to 
harbor significantly higher TMB compared to the low-risk 
group.42 While hypoxia could be driving TMB through its 
downregulation of DNA repair genes and pathways, a recent 
study suggests otherwise.43 This study applied a hypoxia bio-
marker gene signature (named as NB-hop) to classify neuro-
blastoma patients into two groups with favorable (hypoxia-low) 
and unfavorable (hypoxia-high) prognosis. The authors showed 
that several DNA repair pathways (MMR, BER, and DSB 
repair) were upregulated in samples with unfavorable prog-
nosis. Similarly, key DNA repair genes like FEN1, PCNA, 
TERT, BRCA1, BRCA2, CHEK1, CHEK2, TPX2, and TP53 
were also upregulated.43 A prior work from our group found 
that chronic and intermittent hypoxia exposed cells had varied 
gene expression patterns, with a few DNA repair genes being 
upregulated.28 DNA repair appears to be downregulated 
in vitro, however in vivo and transcriptome data from publicly 
available datasets of neuroblastoma patients seems to indicate 
otherwise. There are a few unanswered questions in this area 
that require further investigation.44 How can we assure that 
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in vitro and in vivo data is accurately reported and interpreted? 
Are there various patterns of DNA damage response in hypoxic 
tumors for different cancer types? How can we keep track of 
hypoxic tumors during a patient’s illness and use that informa-
tion to guide treatment?

The immune contexture of hypoxic tumors remains 
inconclusive

Studies in cancer patient cohorts have similarly correlated the 
presence of hypoxia with an immunosuppressed TME in breast 
cancer,45,46 clear cell renal cell carcinoma,47 colorectal cancer,48 

hepatocellular carcinoma,49–51 melanoma,52 osteosarcoma,53 

neuroblastoma43 and pancreatic cancer,41,54 among others.55 

These studies used hypoxia gene signatures to determine the 
hypoxic state and immune fraction or gene set enrichment 
analysis to highlight the immune microenvironment. In addi-
tion, the coupling of an immune score with a hypoxia score in 
lung adenocarcinoma,42 pancreatic cancer,41 and soft tissue 
sarcoma38 revealed significantly lower immune activation in 
tumors with high hypoxia, compared to their low hypoxia 
counterparts. Of interest, colorectal tumors classified as 
immune-cold based on IHC assessment of CD3, CD4, and 
CD8 were linked to a hypoxic biology and poor prognosis.56 

Despite these recurring and complementary findings associat-
ing hypoxia with an immunosuppressive TME, a recent report 
on hepatocellular carcinoma showed diverging results.39 By 
applying a hypoxia-associated risk score, the authors distin-
guished two different clusters of hypoxic tumors that varied in 
terms of their degree genomic instability and TMB, immune 
infiltration, and expression of immune check point 
inhibitors.39 They reported increased immune infiltration and 
expression of immune checkpoint inhibitors in tumors of the 
hypoxia-high cluster. Patients in this cluster were also pre-
dicted to have enhanced response to immunotherapy.39

Furthermore, a study on gastric cancer reported TMB-high 
GC tumors as being positively correlated with NK cells and 
negatively correlated with CD8 + T-cells.40 TMB-high tumors 
were also associated with the presence of hypoxia, however 
how the immune milieu varied between patients based on both 
the tumor’s mutational load and hypoxic state was not inves-
tigated. It is intriguing to think that hypoxia could instigate an 
increased TMB, which could give rise to immunogenic clonal 
neoantigens that spur immune infiltration and enhance 
response to ICB. Nonetheless, studies investigating hypoxia, 
TMB, and immune cell infiltration are required to better elu-
cidate the complex mechanisms at play.

Indeed, on the flipside, studies in pancreatic cancer41 and lung 
adenocarcinoma42 that have simultaneously reported on the 
TMB, immune TME and hypoxia, found that hypoxia-high 
tumors harbored higher mutations and exhibited significantly 
lower immune scores, compared to hypoxia-low tumors. Such 
discrepancies between studies suggest specific events controlled 
by hypoxia. The complexity of the matter is additionally exacer-
bated by the presence of other pro-immunogenic and anti- 
immunogenic factors in the TME. Such factors can skew the 
disparity between an immunogenic, “immune-hot” and a non- 
immunogenic, “immune-cold” microenvironment. In this regard, 
positive associations between hypoxia and the expression of PD- 

L1, among other immune checkpoint markers, were reported in 
hepatocellular carcinoma.39,49,51 In this line, we recently observed 
a similar association with PD-L1 in pancreatic tumors, and further 
found that hypoxia-high tumors displayed significantly lower 
cytolytic index scores, evocative of T-cell cytolytic dysfunction.41 

Indeed, higher hypoxia scores were enriched in tumors with a low 
chemokine signature score, indicating inefficient T-cell activation 
and presumably migration.41 Clearly a more wholistic approach 
that considers all these elements is warranted to better isolate the 
direct impact of hypoxia on the tumor immune microenviron-
ment and its role in resistance to ICB.

Conclusion

Recent studies targeting the hypoxic tumor microenvironment 
through inhibition of oxidative phosphorylation,24 inhibiting 
HIF-1α transcriptional activity,25 hypoxia activated pro-drugs 
and anti-angiogenesis inhibitors23 have yielded promising 
results. However, immunotherapeutic strategies aimed at trig-
gering or enhancing antitumor immunity are disappointing 
because of diverse tumor escape mechanisms from immunosur-
veillance. We and others provided evidence indicating that the 
majority of malignancies create a hostile hypoxic microenviron-
ment that can hamper cell-mediated immunity and dampen the 
efficacy of the immune response.1 More importantly, recent data 
from cohorts of cancer tissue clearly show a connection between 
hypoxia and genomic instability, as well as TMB. Here, it would 
be interesting to develop models and study whether acute vs 
chronic hypoxia, both presumably occurring in tumors, would 
reveal differential effects on these parameters. Attempts to target 
hypoxia or hypoxia-associated pathways, to avoid hypoxia- 
driven immune escape, should also consider the role played by 
hypoxic stress and lymphocytes’ exclusion from the tumor nest. 
Furthermore, while studies have shown that hypoxia is an early 
event during tumor development, and often associated it with 
clonal genomic variations; it remains to be determined whether 
hypoxia-linked TMB actually results in the production of clonal 
or sub-clonal neoantigens that are distinct from normoxic 
tumors. Another consideration is that even when hypoxia- 
specific neoantigens are expressed, an immune-privileged micro-
environment is necessary for successful ICB. Future studies with 
independent trials assessing the impact of hypoxia on TMB, PD- 
L1 and neoantigen quality will be beneficial in guiding patient 
selection and treatment strategies concerning ICB. Indeed, 
whether a hypoxic tumor microenvironment in the context of 
immune checkpoint blockade is a boon or a bane remains to be 
further investigated. This could provide insight into more 
adapted strategies to increase immunotherapy efficiency.
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