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Abstract: Hypothermic-oxygenated-machine-perfusion (HOPE) allows assessment/reconditioning
of livers procured from high-risk donors before transplantation. Graft referral to HOPE mostly
depends on surgeons’ subjective judgment, as objective criteria are still insufficient. We investigated
whether analysis of effluent fluids collected upon organ flush during static-cold-storage can improve
selection criteria for HOPE utilization. Effluents were analyzed to determine cytolysis enzymes,
metabolites, inflammation-related mediators, and damage-associated-molecular-patterns. Molecular
profiles were assessed by unsupervised cluster analysis. Differences between “machine perfusion
(MP)-yes” vs. “MP-no”; “brain-death (DBD) vs. donation-after-circulatory-death (DCD)”; “early-
allograft-dysfunction (EAD)-yes” vs. “EAD-no” groups, as well as correlation between effluent
variables and transplantation outcome, were investigated. Livers assigned to HOPE (n = 18) showed
a different molecular profile relative to grafts transplanted without this procedure (n = 21, p = 0.021).
Increases in the inflammatory mediators PTX3 (p = 0.048), CXCL8/IL-8 (p = 0.017), TNF-α (p = 0.038),
and ANGPTL4 (p = 0.010) were observed, whereas the anti-inflammatory cytokine IL-10 was reduced
(p = 0.007). Peculiar inflammation, cell death, and coagulation signatures were observed in fluids
collected from DCD livers compared to those from DBD grafts. AST (p = 0.034), ALT (p = 0.047), and
LDH (p = 0.047) were higher in the “EAD-yes” compared to the “EAD-no” group. Cytolysis markers
and hyaluronan correlated with recipient creatinine, AST, and ICU stay. The study demonstrates that
effluent molecular analysis can provide directions about the use of HOPE.

Keywords: hypothermic-oxygenated-machine-perfusion (HOPE); liver transplantation (LT); brain
death donors (DBD); extended criteria donors (ECD); donation after circulatory death donors (DCD);
effluent fluids; molecular profile; data-driven decision making; early allograft dysfunction (EAD);
hyaluronan (HA)

1. Introduction

The adoption of expanded criteria for acceptance of organ donors broadened the pool
of livers available for transplantation. However, relative to standard livers, organs pro-
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cured from either brain death (DBD) extended criteria (ECD) or donation after circulatory
death (DCD) donors are associated with enhanced risk of postoperative complications
and transplant failure [1–3]. In this perspective, the machine perfusion (MP) technique
addresses the clinical need to evaluate viability and function of marginal grafts before
transplantation [1,4–12].

In clinical practice, the decision to accept a marginal graft and to perform ex situ
perfusion is based on both donor and graft characteristics, including occurrence of steatosis,
cold ischemia time (CIT), warm ischemia time (WIT), donor brain or cardiac death, donor
age, and donor comorbidities [13]. Although different indexes are available to assess
donor factors influencing graft survival [14–18], their utility in guiding clinicians about MP
referral is debated. In fact, generalization of such scores is hampered by regional differences
in criteria for donor acceptance (e.g., donor age in Italy), in laws governing organ donation,
in assessment of donor–recipient matching, and in allocation systems [14]. Thus, due to
insufficient objective criteria able to assess the need to perform ex situ perfusion, clinicians’
judgment remains crucial in the decision making on MP use [13].

The analysis of effluent fluid, which is released upon organ flush on the bench and
includes the residual preservation solution, could provide useful information to implement
selection criteria for the livers that might benefit from further evaluation during MP. In fact,
both clinical [19–31] and preclinical [32–36] studies showed that effluent concentration of
different parameters correlates with preservation injury and early graft performance. More
specifically, cytolysis enzymes [19,20,23–25,29,31,33,36]—i.e., aspartate aminotransferase
(AST), alanine transaminase (ALT), lactate dehydrogenase (LDH), alkaline phosphatase
(ALP)-, lactate [23,32,35], and damage-associated molecular patterns (DAMPs) [22,28,29,37]
were identified as biomarkers of liver injury and predictors of transplantation outcome.
Moreover, the evaluation of inflammatory mediator concentration in liver effluents could
help to assess the influence of brain death, donor (d) WIT, and cold ischemia on the graft
quality and, consequently, on post-transplant outcome [23,27].

We investigated if the assessment of specific factors in effluent fluids can help clinicians
with decision making regarding the allocation of marginal graft to MP. In particular,
we elected to assess the effluent concentration of biomarkers of hepatocellular damage,
inflammation-related mediators, and DAMPs, which have been previously associated with
brain death-induced inflammation, liver IRI, and poor transplantation outcome [38–40].
The analysis was retrospectively performed in effluent samples collected from both DBD
and DCD human livers, either subjected to MP or static cold storage (SCS) and then
transplanted. The main focus was to determine if livers referred to ex situ perfusion based
on clinicians’ decision were associated with a distinctive molecular profile, compared to
grafts that did not undergo MP. In addition, the presence of a peculiar signature in the
effluent of DCD grafts was investigated. Finally, we evaluated the potential predictive
value of such effluent molecular analysis on the short-term outcome after transplantation.

2. Materials and Methods
2.1. Study Design and Effluent Fluid Collection

The present research includes all consecutive adult patients (n = 49) who received a
liver graft procured from either DBD or DCD donors from February 2017 to May 2019 in
our center. Late re-LT and patients with incomplete data were excluded (n = 11).

At the end of the back-table procedure (eventually before MP), the cava vein was
clamped and grafts were flushed through the portal vein with 1000 mL of Celsior Solution
(IGL, Lissieu, France). Effluent samples were collected through a 16G ago-cannula inserted
in the posterior portion of the retrohepatic cava vein (Supplementary Figure S1).

2.2. Donors, Liver Procurement, and Preservation

Grafts were categorized as ECD based on the criteria described by Vodkin and
coworkers [41]. Donor age was considered as non-standard only if >80 years [42].
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The grafts were allocated to our center according to the North Italian Transplant
program allocation policy. Our surgical team procured all grafts, with the exception
of 4 national or interregional allocated livers [43]. Alternative procedures for liver graft
procurement were applied in DCD and DBD donors [44]. Normothermic regional perfusion
(NRP) was applied after death declaration and before organ procurement in all DCD
donors according to the Italian law. It consists of abdominal extracorporeal membrane
oxygenation directly applied in the donors though the placement of femoral cannulas after
death declaration [45].

All grafts underwent in situ flushing with Celsior solution (IGL) and static preserva-
tion in an ice-box.

2.3. Liver Machine Perfusion (MP)

Liver MP was applied to all DCD grafts and to DBD extended-criteria donor (ECD)
organs showing one of the following characteristics: expected prolonged ischemia time
(>10 h), macrovescicular steatosis >30%, or serum levels of hepatonecrosis markers exceed-
ing 4 times the reference range.

MP was performed as back-to-base, end-ischemic dual hypothermic oxygenated
machine perfusion (D-HOPE). Briefly, D-HOPE was performed using the Liver Assist
device (Organ Assist, Groningen, The Netherland), and consisted in a double perfusion
(4000 mL of circulating Belzer MPS-UW Machine Perfusion) through the portal vein and
hepatic artery with pressures set at 4 and 25 mmHg, respectively. Grafts were actively
oxygenated (FiO2 = 100%) at a temperature of 8–10 ◦C.

2.4. Liver Transplantation (LT) and Classification of Post LT Complications

Liver transplantation (LT) was performed with a modified piggyback technique and
bile duct anastomoses over a T-tube. Post-LT course and biochemical analysis were per-
formed (liver and kidney function test, coagulation, blood count).

Early allograft dysfunction (EAD) was defined as: peak transaminases > 2000 IU/L
(within the first week after LT), international normalized ratio > 1.7, or bilirubin > 10 mg/dL
on postoperative day (POD) 7 [46]. Primary non-function (PNF) was defined as a non-
recoverable graft function needing urgent re-LT < 10 POD (AST > 5000 UI/L, INR > 3.0, and
metabolic acidosis) with no sign of vascular pathology of the implanted liver [47]. Acute
kidney injury (AKI) was defined and staged according to KDIGO criteria; we considered
patients as affected by post-LT AKI only if assigned to ≥stage 2 [48].

2.5. Effluent Processing and Molecular Analysis

Samples of effluent were processed to obtain cell-free supernatants and donor-derived
leukocyte pellets (the protocol is described in detail in [49–51]). Effluents collected during
back-table procedure before MP were analyzed to measure the concentration of cytolysis
enzymes, flavin mononucleotide (FMN), caspase-cleaved keratin 18 (CK18), inflammatory
mediators, metabolites, and electrolytes.

2.5.1. Biochemical Tests

A biochemical panel including transaminases (AST, ALT), Blood Urea Nitrogen (BUN),
glucose, lactate, LDH, D-dimer, and electrolytes was assessed following standard techniques.

2.5.2. Flavin Mononucleotide (FMN)

The FMN concentration was determined by fluorescence spectroscopy. Briefly, 5 mg
of Riboflavin 5′-monophosphate sodium salt hydrate (Sigma-Aldrich, Merck KGaA, Darm-
stadt, Germany) were dissolved in either 0.9% sodium chloride or Celsior. Thereafter, these
solutions were serially diluted to obtain different standard FMN solutions with concentra-
tion ranging from 31.25 to 1000.00 ng/mL (Supplementary Figure S2). Effluent samples
were then dispensed in triplicate in black microplates, together with the standard samples.
Fluorescence readings were performed using a multi-mode microplate reader (Synergy
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HTX, Biotek U.S, Winooski, VT, USA). A monochrome light with excitation wavelength
of 460/40 nm was used, while fluorescence emission was revealed with 100% gain at
528/20 nm. Finally, the average fluorescence readings of effluent samples were plotted
against the appropriate standard curve to calculate sample FMN concentration.

2.5.3. Soluble Caspase-Cleaved Keratin (CK) 18

Hepatocyte apoptosis was assessed by measuring the release of caspase-cleaved
CK18 with a commercially available immunoassay based on the use of M30 monoclonal
antibody that specifically detects the neoepitope ccK18/K18-Asp396 (M30-Apoptosense
ELISA kit, PEVIVA, VLVbio-BioScientific Pty. Ltd., Stockholm, Sweden). The analysis
was performed following manufacturers’ instructions and the absorbance was determined
using a microplate reader (Synergy HTX).

2.5.4. Mediator Concentration

A panel of soluble proteins relevant to inflammation and its resolution (CCL2/MCP-
1, CXCL8/IL-8, CXCL9/MIG, IL-1β, IL-6, PTX3, TNF-α, IL-10, ANGPTL3, ANGPTL4,
Galectin-9, HGF), glycocalyx (Glypican, HA, Syndecan-1), coagulation (Protein C/Factor
IVX, PAI-1) was evaluated using custom-designed immunoassays based on Luminex
xMAP® Technology (R&D Systems, Minneapolis, MN, USA; fluorescence detection by
Luminex 200, Austin, CA, USA) or commercial available enzyme-linked immunosorbent
assay (ELISA) assays (R&D Systems; absorbance measurement carried out with Synergy
HTX). A list of all the measured analytes with low and high standards as well as test
sensitivity is provided in the Supplementary Table S1.

2.5.5. Leukocyte Count and Free Hemoglobin

Cell pellets were suspended in 0.25 mL 1X PBS solution (Sigma-Aldrich) and counted
using an automated cell counter (Scepter, Millipore Corporation, Billerica, MA, USA).

Free hemoglobin concentration was assessed by applying the Allen correction to
absorbance readings at 563 nm, 577 nm, 600 nm (Synergy HTX).

2.6. Statistical Analysis

Statistical analysis was performed using the JMP Pro 15 software (© SAS Institute Inc.,
Cary, NC, USA). Box plots and linear regression plots were created using SigmaPlot 11.0
(Systat Software Inc., San Jose, CA, USA).

Continuous variables are presented as median (25–75 or absolute values with percent-
age, while categorical variables were expressed in percentages. To reduce the distribution
effect of the flush solution volume and to normalize data according to liver size, all the
measured variables are shown as total release per gram of liver graft.

Multivariate analysis was used to explore associations across all the variables evalu-
ated in effluent samples.

To identify any potential specific signature of effluent parameters, an unsupervised
agglomerative hierarchical cluster analysis was performed (NA-chip analyzer program,
https://sites.google.com/site/dchipsoft/, accessed on 1 July 2021. Thereafter, Wilcoxon-
Rank tests were independently run to investigate if there were significant differences in the
following comparisons: “MP-yes” vs. “MP-no”; DCD vs. DBD; “EAD-yes” vs. “EAD-no”;
“steatosis-yes” vs. “steatosis-no”; “age < 65” vs. “age > 65”; “age < 80” vs. “age > 80”.

Finally, correlation between effluent variables and transplantation outcome was inves-
tigated using the Pearson’s correlation coefficient.

A probability value < 0.05 was considered significant.

3. Results
3.1. Donor Characteristics and Liver Graft Allocation to the MP Procedure

Donor data and procurement timings are shown in Table 1. Ten (20%) grafts were
derived from DCD donors (7 category III and 3 category II) and 39 (80%) from DBD donors.

https://sites.google.com/site/dchipsoft/
https://sites.google.com/site/dchipsoft/
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The total preservation time lasted 565 min (510–660). All DCD liver grafts showed a high-
risk profile, according to the UK-DCD score [18]. Consistently, their median DRI was 2.21
(1.85–2.37), which was higher than the DRI of 1.6 observed in DBD livers. In addition, six
grafts showed a macrovescicular steatosis of >30%.

Eighteen (47%) grafts were subjected to MP, where 10 were procured from DCD and 8
from DBD-ECD donors meeting the criteria specified above, except for livers 18 and 19,
which were subjected to MP to extend the preservation time because of logistic reasons
(change of recipient) [36,45,52].

Table 1. Donor and recipient characteristics. Data are presented as median (25–75) or n (%), n = 49. Abbreviations: BMI,
body mass index; ICU, Intensive care unit stay; DCD, cardiac death donors; DBD, brain death donors; WIT, warm ischemia
time; cDCD, controlled or type III DCD; uDCD, uncontrolled or type II DCD; DHOPE, dual hypothermic oxygenated
machine perfusion; NRP, normothermic machine perfusion; ECD, extended criteria donors; MELD, model for end-stage liver
disease; HCC, hepatocellular carcinoma; PNF, primary non function; EAD, early allograft dysfunction; AKI, acute kidney
injury; AST, aspartate aminotransferase; ALT, alanine transferase; re-LT, liver re-transplantation; * only for DCD donor.

Population Parameter
Median (25–75) or N (%)

Overall DBD Graft DCD Graft

Donors n = 49 n = 39 n = 10

Age, years 62 (54–72) 64 (56–75) 55 (53–58)
Male gender, n (%) 28 (57) 18 (46) 10 (100)
BMI, Kg/cmq 26 (24–27) 26 (24–27) 25 (24–26)
ICU, days 3 (1–7) 4 (1–7) 2 (1–6)
Cardiac arrest, n (%) 18 (37) 8 (20) 10 (100)
Cause of death:
-DCD, n (%) 10 (20) - -
-DBD, n (%) 39 (80) - -
Type III DCD, n 7 (70%)
Functional WIT (cDCD), min 40 (32–54)
Low flow time (uDCD), min 85–87–110
Total WIT (uDCD + cDCD), min 56 (37–65)
Macrosteatosis > 20%. n (%) 18 (37) 11 (28) 7 (70)
Macrosteatosis > 30%. n (%) 6 (12) 3 (8) 3 (30)
Machine perfusion, n (%) 18 (47%) 8 (20) 10 (100)
Timing, min:
-clamp-effluent collection 330 (200–420) 328 (256–397) 285 (224–367)
-cold preservation 565 (510–660) 568 (511–653) 565 (530–605)
Machine perfusion, n (%) 18 (47) 8 (20) 10 (100)
DHOPE duration, min 240 (190–290) 250 (180–290) 240 (180–270)
NRP duration, min * 335 (280–395)
Graft weight, g 1545 (1250–1700) 1420 (1255–1700) 1605 (1415–1655)
ECD, n (%) 32 (65) 22 (56) 10 (100)
Donor-Risk-Index: 1.67 (1.48–2.12) 1.63 (1.43–1.81) 2.21 (1.85–2.37)
UK DCD score 11 (10–14)

Recipients
Male gender, n (%) 39 (80) 30 (77) 9 (90)
Age, years 57 (54–63) 57 (53–61) 61 (60–64)
MELD 13 (9–17) 14 (9–15) 10 (9–15)
BMI, Kg/cmq 25 (22–27) 25 (23–28) 25 (23–27)
HCC, n (%) 26 (53) 16 (15) 8 (80)
ICU, days 2 (1–5) 2 (1–3) 3 (1–8)
Hospital stay, days 17 (14–27) 17 (14–24) 19 (13–25)
PNF, n (%) 0 0 0
EAD, n (%) 10 (20) 7 (18) 3 (30)
AKI peak, n (%) 19 (39) 15 (38) 4 (40)
AST peak, U/L 1004 (652–1787) 883 (638–1787) 1389 (935–1857)
ALT peak, U/L 729 (440–1320) 749 (399–1229) 717 (551–1766)
Re-LT, n (%) 1 (2) 1 (2) 0
Death, n (%) 2 (6) 2 (5) 0
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3.2. Recipients’ Characteristics and Outcome of Transplantation

The mean recipient model for end stage liver disease (MELD) score was 13 (9–17)
points, while 11% of the patients received an urgent allocated graft (Table 1). Pre-LT
chronic renal failure was diagnosed in four (11%) cases. One-year graft survival was 90%
(44/49) with a patient survival of 92% (45/49). Two recipients died (sepsis, intracranial
hemorrhage) within 10 days after transplantation. One patient was re-transplanted because
of a hepatic artery thrombosis.

Despite an overall high-risk population in our cohort, graft survival, censored for
tumor-related death, remained comparable to the levels seen in an ideal LT cohort presented
in a recent benchmark study (Table 1, no cases of PNF, 1 case of ischemic type biliary lesion
in a DBD graft) [53]. EAD was diagnosed in 7 cases and 14 patients developed AKI.

3.3. Molecular Analysis of Effluent Fluids
3.3.1. Associations across the Measured Parameters

Different correlations across the variables assessed in effluent fluids were found
through multivariate analysis (Supplementary Figure S3). The following molecule patterns
were identified (p < 0.05): (1) TNF-α, IL-1β, CXCL8/IL-8, CXCL9/MIG; (2) ANGPTL3,
ANGPTL4, Galectin-9, HGF; (3) AST, ALT, LDH.

Of note, IL-10 was inversely associated with TNF-α (r = −0.653, p = 0.040), ANGPTL3
(r = −0.551, p = 0.001), ANGPTL4 (r = −0.547, p = 0.003), and CXCL9 (r = −0.546, p = 0.001).
HA was associated with both inflammatory mediators (TNF-a: r = 0.869, p = 0.001; IL-1β:
r = 0.427, p = 0.042; CXCL9/MIG: r = 0.556, p = 0.006) and markers of hepatocyte injury
(AST: r = 0.689, p < 0.001; ALT: r = 0.583, p = 0.003; LDH: r = 0.533, p = 0.001; FMN: r = 0.517,
p = 0.001). The apoptosis marker CK18 correlated with CCL2 (r = 0.510, p = 0.030), HGF
(r = 0.711, p = 0.001), IL-6 (r = 0.748, p < 0.001), and free hemoglobin (r = 0.640, p = 0.034).
Finally, a strong association was observed between FMN and free hemoglobin (r = 0.781,
p < 0.001).

3.3.2. Effluents of Livers Referred to MP Procedure Show a Peculiar Molecular Signature

Unsupervised clustering analysis disclosed a distinctive signature in the bio-molecular
profile of livers referred to MP procedure. In fact, half of the grafts subjected to MP (livers
35, 37, 30, 2, 14, 8, 32, 39, 41; 9/18, 50%) were grouped together due to their similar profiles
(Figure 1, blue dendrogram, p = 0.021). Out of the nine grafts excluded from the “MP-yes”
cluster, six were procured from DCD donors (livers 38, 34, 40, 16, 7, 42; 6/9), while three
were from DBD donors (livers 29, 18, 36; 3/9). Of note, three livers were grouped in a
distinctive sub-cluster due to high expression of inflammation-related molecules (Figure 1,
livers 38, 34, and 40, p = 0.018).

Consistently, statistical analysis indicated substantial differences between effluents
collected from livers referred to MP compared to those of the grafts immediately used for
transplantation. In particular, the “MP-yes” group was associated with increased effluent
concentrations of the inflammatory molecules PTX3, CXCL8/IL-8, TNF-α, and ANGPTL4
(Figure 2). Conversely, fluids recovered from livers assigned to ex situ perfusion showed
lower concentrations of FMN and IL-10 (Figure 2). Finally, there was no difference in
the effluent concentration of the cytolysis enzymes AST (“MP-no” vs. “MP-yes”: 0.26
(0.21–0.44) IU/g vs. 0.35 (0.27–0.66) IU/g, p = 0.419), ALT (0.22 (0.20–0.38) IU/g vs. 0.42
(0.18–0.70) IU/g, p = 0.260), and LDH (0.52 (0.35–0.86) IU/g vs. 0.64 (0.40–1.34) IU/g,
p = 0.437).
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lactate dehydrogenase; PTX3, Pentraxin 3; TNF-α, Tumor Necrosis Factor α.

3.3.3. Differences in the Bio-Molecular Profiles of Effluent Fluids Collected from DCD and
DBD Livers

Data reported in Table 2 indicate that livers procured from DCD and DBD donors
show different effluent molecular profiles. Among differentially expressed mediators,
there were molecules relevant to inflammation (CCL2/MCP-1, CXCL8/IL-8, CXCL9/MIG,
TNF-α, ANGPTL4), hepatocyte apoptosis (CK18), and coagulation (Protein C, D-Dimer).
Of note, concentration of the anti-inflammatory cytokine IL-10 was lower in effluent fluids
of DCD compared to those obtained from DBD livers. Differences in BUN and K+ levels
were likewise observed.

Finally, no relationship was found between the concentration of lactate, AST, and ALT
assessed in NRP perfusates and the release of these factors in effluent fluids.
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Table 2. Differences in the molecular profile of effluent fluids collected from DCD and DBD liver grafts. Variables were assessed by means of routine laboratory testing, gas analysis,
and immunoassays. Median (25–75) is shown for each variable. Fold change was calculated by log2-trasforming the ratio of the mean of DCD over the mean of DBD for each analyte; a
color-based scale was used to facilitate data visualization. Statistical significance between groups was investigated with non-parametric Wilcoxon test.

Pattern Variable DCD DBD Fold Change p Value

Inflammation
CCL2/MCP-1, pg/g 231.25 (186.4–451.9) 120.45 (57.45–238.35) 0.7 0.048
CXCL8/IL-8, pg/g 52.40 (15.40–84.70) 9.80 (4.80–14.52) 2.6 0.002
CXCL9/MIG, pg/g 104.55 (85.4–194.8) 72.02 (7.9–122.2) 0.9 0.042
IL-1b, pg/g 3.70 (1.95–17.12) 5.75 (3.15–9.45) 1.9 0.956
IL-6, pg/g 34.15 (18.1–56.2) 34.75 (15.1–60.56) 0.5 0.973
PTX3, ng/g 0.04 (0.03–0.11) 0.11 (0.04–0.21) −0.1 0.451
TNF-α, pg/g 5.45 (5.30–5.60) 1.45 (0.55–2.65) 1.7 0.037
IL-10, pg/g 0.60 (0.40–1.50) 13.15 (1.00–19.00) −3.4 0.003

Resolution, Repair, Regeneration
ANGPTL3, pg/g 989.40 (523.70–1.27) 562.35 (219.10–1419.37) 0.3 0.329
ANGPTL4, ng/g 128.40 (106.70–212.97) 1.00 (0.50–37.70) 3.0 0.001
Galectin-9, ng/g 4.67 (3.77–6.20) 2.50 (0.97–6.87) −0.4 0.412
HGF, pg/g 475.60 (367.40–919.82) 445.80 (318.75–833.00) 0.5 0.770

Coagulation
Protein C/Factor IVX, pg/g 347.30 (193.40–514.70) 111.25 (79.17–200.35) 1.2 0.008
D-dimer, mg/g 0.99 (0.50–1.27) 1.87 (1.02–3.01) −1.5 0.012
PAI-1, ng/g 0.11 (0.03–0.18) 0.17 (0.17–0.17) −0.6 0.486

Hepatocyte injury
CK18, U/g 0.63 (0.21–1.10) 0.12 (0.09–0.21) 1.0 0.018
AST, IU/g 0.45 (0.28–0.7) 0.29 (0.21–0.43) 0.6 0.221
ALT, IU/g 0.49 (0.22–0.76) 0.24 (0.16–0.41) 0.7 0.190
LDH, IU/g 0.63 (0.34–1.32) 0.64 (0.35–0.89) 0.2 0.804
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Table 2. Cont.

Pattern Variable DCD DBD Fold Change p Value

Liver/hepatocyte metabolism
BUN, mmol/g 0.005 (0.003–0.006) 0.002 (0.001–0.003) 1.3 0.039
Lac, mmol/g 0.002 (0.002–0.003) 0.002 (0.002–0.003) 0.0 0.622
FMN, ng/g 25.00 (16.20–36.70) 38.18 (29.60–50.70) −0.4 0.127

Glycocalyx
Glypican, pg/g 24.35 (13.61–61.55) 40.84 (32.76–59.04) 0.3 0.376
HA, ng/g 10.15 (6.10–121.95) 17.75 (8.70–28.80) 1.8 0.195
Syndecan-1, pg/g 637.35 (470.60–804.10) 449.30 (280.20–523.50) 0.6 0.170

Other
K+, mmol/g 0.011 (0.010–0.015) 0.015 (0.012–0.016) −0.3 0.027
Free hemoglobin, mcg/g 11.00 (1.70–24.55) 13.00 (5.70–21.10) 0.1 0.951
WBC, cells × 106/g 0.70 (0.45–0.92) 0.45 (0.30–0.80) 0.8 0.305
RBC, cells × 103/g 332.95 (181.80–580.10) 276.35 (127.20–537.30) 0.2 0.502

FC scale −2 −1.5 −1 −0.5 0 +0.5 +1 +1.5 +2
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3.4. Association with Transplantation-Related Complications and Recipient Outcome

Effluent concentration of cytolysis markers AST, ALT, and LDH was significantly
higher in the “EAD-yes” group (Figure 3). Conversely, there was an increased release
of K+ in the samples from the “EAD-no” group (0.012 (0.010–0.012) mmol/g vs. 0.015
(0.012–0.016) mmol/g, p = 0.016). With regard to the other biomarkers assessed in effluent
fluids, no significant difference was observed between the “EAD-yes” and the “EAD-no”
groups (Supplementary Table S2).
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Figure 3. Effluent cytolysis enzymes according to Early Graft Function (EAD) occurrence. Patients
that developed EAD after LT showed increased effluent concentration of biomarkers of hepatocellular
lysis. Boxes denote median 5th–95th percentiles; red lines highlight the mean of each study group,
while black points denote outliers. Statistical significance was investigated using Wilcoxon non-
parametric test. p value: * <0.05. ALT, alanino transferase; AST, aspartate amino transferase; LDH,
lactate dehydrogenase.
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A further analysis investigated any potential association between the variables mea-
sured in the effluent fluids and clinical data related to transplantation outcome, including
days of recipient hospitalization in intensive care unit (ICU) and biochemical parameters of
liver and kidney function assessed in recipients’ plasma samples (peak). Effluent biomark-
ers of liver damage correlated with recipient serum creatinine (LDH: r = 0.517, p = 0.001;
AST: r = 0.538, p = 0.0007; ALT: r = 0.570, p = 0.0003), recipient serum AST (LDH: r = 0.745,
p < 0.0001; AST: r = 0.726, p < 0.0001; ALT: r = 0.698, p < 0.0001), and ICU stay (LDH:
r = 0.459, p = 0.001; AST: r = 0.400, p < 0.0001; ALT: r = 0.381, p = 0.029). Of interest, strong
or moderate correlations were found between effluent HA and recipient creatinine, AST,
and ICU stay (Figure 4). Finally, there were weaker positive associations between ICU
stay and effluent concentration of ANGPTL4 (r = 0.532, p = 0.009) and CXCL8 (r = 0.329,
p = 0.048).
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4. Discussion

The present proof-of-concept study indicates that the analysis of effluent fluids col-
lected from liver grafts during SCS can provide valuable information to guide surgeons
in the decision making on D-HOPE application to marginal organs. In fact, the clinical
decision to allocate specific livers to the MP procedure was retrospectively supported by a
peculiar molecular profile in the liver effluents. In addition, a donor-specific signature was
observed, with increased concentration of inflammation- and cell death-related factors in
the effluent fluids collected from DCD grafts compared to those seen in DBD livers. Finally,
an interesting correlation between the effluent concentrations of certain molecules and
EAD as well as recipient clinical data was observed.

Higher numbers and quality of donor organs can be lifesaving for many patients
waiting for a transplant. The MP technique allows a possible evaluation of viability and
function as well as reconditioning of suboptimal grafts before transplantation. However,
there are no reliable criteria to determine whether a marginal liver is immediately suitable
for transplantation or if it rather might benefit from further treatment with MP. Therefore,
the decision to perfuse a specific liver or not is currently based on a few objective criteria,
on the center-specific policy, and on surgeons’ individual “gut feeling” [13].

The assessment of specific parameters in effluent fluids could reduce the uncertainty
about liver viability and would facilitate the preoperative estimation of graft quality. In fact,
such biological material has a huge diagnostic potential as it contains molecules and cells
from the graft, challenged by the noxious stimuli inherent in the transplantation procedure,
from the donor treatment withdrawal and surgery throughout the entire preservation
period until implantation. Of note, the effluent analysis provides information on the
entire liver parenchyma rather than on a small part of the hepatic tissue, which is a clear
advantage compared to liver biopsies. Consistently, several researchers demonstrated
that the effluent composition can reveal both pre-existing injury, including brain death-
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and steatosis-related inflammation, and the damage acquired during procurement and
preservation [19–35].

We therefore hypothesized, that the molecular analysis of effluents could help with the
selection of marginal livers, that may require a more accurate assessment and recondition-
ing with MP. To test this idea, we performed an analysis of effluent samples collected from
grafts either subjected to MP based on the surgeon’s judgment or transplanted without
this procedure. In addition to cytolysis enzymes and metabolites, we investigated the
concentration of inflammation-related mediators and DAMPs, previously shown to be
accurate markers of brain death-induced inflammation and damage, liver IRI, and poor
transplantation outcome [38–40].

Our study discloses a distinctive molecular signature in the effluents of livers referred
to the D-HOPE procedure. The most remarkable observation is the reduced concentration
of the anti-inflammatory mediator IL-10 in fluids of grafts, which underwent MP, compared
to those collected from livers immediately used for transplantation. IL-10 is a pleiotropic
anti-inflammatory cytokine expressed in different liver cell types, including hepatocytes,
Kupffer cells, sinusoidal endothelial cells, type 2 T-helper (Th2) cells, and lymphocytes [54].
Of note, recent evidence indicated IL-10 as a master regulator of macrophage efferocytosis
and phenotypic conversion in sterile liver injury, such as IRI [55]. In particular, this molecule
induces macrophage switching from a proinflammatory to a restorative phenotype and a
low concentration of IL-10 was associated with failure of debris uptake, prolonged liver
damage, aberrant hepatocyte proliferation and fibrosis [55,56]. Another interesting result of
our research concerns the higher release of inflammation-related mediators, such as PTX3
and CXCL8/IL-8, from livers subsequently subjected to MP. Beside activated leukocytes,
DAMPs and inflammatory mediators are released by stressed and dying hepatocytes.
IL-8/CXCL-8 promotes neutrophil and macrophage migration to the liver and regulates
hepatocyte survival and proliferation upon IR injury [57]. Of note, increased serum IL-
8/CXCL-8 concentration was associated with higher serum transaminases in patients
who received a liver transplantation [27]. PTX3 is a pattern-recognizing protein produced
by macrophages and hepatic stellate cells in response to proinflammatory signals and
Toll-like receptor engagement [58]. In liver pathology, the detection of an elevated blood
concentration of PTX3 is an index of hepatic disease [38,59]. These observations collectively
show that in our case series, livers subjected to MP were actually associated with a pro-
inflammatory and non-resolutive effluent profile compared to grafts not referred to D-
HOPE. Interestingly, clinical [8] and preclinical [60] studies showed that the application of
D-HOPE can efficiently modulate such inflammatory and cell death pathways activated by
perimortem and donation events and exacerbated by high-risk donor characteristics. The
beneficial effect of D-HOPE is based on the induction of mitochondrial Complex I and II
reprogramming [10,61], with subsequent improved function of the entire respiratory chain,
improved Succinate metabolism, and enhanced ATP production. This ultimately leads to
reduced reperfusion injury and lower risk of post-LT complications [10].

With regard to traditional markers of liver injury, there was no significant difference
in effluent concentration of AST, ALT, and LDH of livers referred to MP, compared to grafts
not subjected to ex situ perfusion. Of note, the present study includes the evaluation of
FMN, a novel biomarker of cell viability, whose concentration is measured in perfusate
samples to assess liver graft mitochondrial function throughout HOPE [62]. Although
increasing data support its robustness and reliability in the prediction of organ viability
during oxygenated ex situ perfusion [62,63], our results suggest that the evaluation of
effluent FMN during SCS could provide different information, probably due to the absence
of an active oxygenation and dynamic perfusion. Of interest, the multivariate analysis
indicated a positive association between FMN and free hemoglobin concentration. Targeted
studies are needed to determine the biological significance of FMN release during donor
management and the preservation phase.

Additional analysis documented a peculiar inflammation, cell death, and coagulation
profile in fluids collected from DCD livers, compared to those obtained from DBD grafts.
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This condition could reflect the detrimental influence of prolonged WIT secondary to
the 20 min no-touch period, which is mandatory in the Italian setting [45]. Moreover,
the marked inflammatory signature observed in our DCD grafts could be a consequence
of the NRP procedure, consisting of an oxygenated in situ perfusion, applied following
cardiac arrest in DCD organ donation. In fact, in other case-series, where livers were
procured immediately after death declaration without NRP [64,65], DCD grafts showed
increased necrosis-related biomarkers compared to DBD organs, but no sign of enhanced
inflammation. Our data further support the diagnostic power of effluent analysis in liver
transplantation, suggesting that it could be used to assess both the degree and the nature
of injury in each graft type.

Finally, correlations between recipient short-term outcome and effluent concentration
of either cytolysis biomarkers or HA were observed. Along with biliary complications and
AKI, EAD is a post-LT complication [66] mainly consequent to IRI-induced hepatocellular
injury, endothelial damage, and inflammatory cell activation [67]. In our case series, all
evaluated markers of hepatocellular damage correlated with EAD, consistent with previous
reports [19,20,23–25,29,31,33]. In addition, effluent enzyme levels were positively associ-
ated with recipient parameters of liver and kidney function and hospitalization duration.
Concerning HA, significant correlations were found between its effluent concentration and
recipient blood creatinine, AST and ICU stay. HA is normally taken up from the circulation
and metabolized by hepatic microvascular endothelial cells. Therefore, increased effluent
HA concentration can denote a loss of integrity or functional failure of sinusoidal cells.
Our results are consistent with previous studies, where HA uptake measured in the caval
effluent during recipient operation [22,37] or in back-table effluents [29] was lower in
patients with poorer early graft function following LT.

A significant limitation in the present study resides in the small number of liver
transplantations performed in our center, which limits the validation of each of the variables
assessed in effluent fluids. In addition, based on the excellent outcomes with a low
number of complications, despite the high donor risk, we were not able to correlate
effluent molecular analysis with recipient outcomes. Targeted studies are required to
better characterize the prognostic ability of effluent biomarkers to predict the occurrence of
post-transplant complications.

5. Conclusions

The present proof-of-concept study shows that molecular analysis of effluent samples
can provide objective criteria reflecting the cumulative effects of noxious stimuli affecting
liver graft quality during the organ donation process. We suggest that bio-molecular
stratification of livers would significantly contribute to implement the clinical strategy
with or without application of the MP procedure, leading to improved, cost-saving, and
tailored healthcare resource utilization based on the specific injury experienced by each
graft. In addition, marginal organs that are currently deemed unsuitable because of the
presumed high-risk to develop complications could be successfully used in case a “healthy”
biomarker profile is found. Of interest, novel technologies can enable surgeons to perform
real-time evaluation of effluent fluids during back table preparation [68,69], with results
available in time to support the decision making of the surgeon and the entire surgical team.
This perspective could pave the way for the adoption of a personalized medicine-based
approach in the field of organ transplantation, which would ultimately lead to improved
donor-recipient matching and to better post-transplant results.
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samples; Supplementary Table S1: Low standards, high standards, and sensitivity of the tests used
in the present study to assess analyte concentration in effluent fluids; Supplementary Figure S3:
Color map on correlations across the parameters evaluated in the present study; Supplementary
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Table S2: Differences in the molecular profile of effluent fluids of livers from the “EAD-no” and the
“EAD-yes” groups.
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Abbreviations

ALT alanine transaminase
ANGPTL3 Angiopoietin-like Protein-3
ANGPTL4 Angiopoietin-like Protein-4
AST aspartate aminotransferase
CCL2/MCP-1 C-C motif chemokine ligand 2/Monocyte chemoattractant protein 1
CK18 caspase-cleaved keratin 18
CXCL8/IL-8 C-X-C Motif Chemokine Ligand 8/Interleukin 8
CXCL9/MIG C-X-C Motif Chemokine Ligand 9
DAMPs damage-associated molecular patterns
DBD brain death donors
DCD donation after circulatory death donors
EAD early allograft dysfunction
ECD extended criteria donors
FMN flavin mononucleotide
HA hyaluronan
HGF Hepatocyte Growth Factor
HOPE Hypothermic-oxygenated-machine-perfusion
IL-10 interleukin 10
IL-1β interleukin 1β
IL-6 interleukin 6
LDH lactate dehydrogenase
LT liver transplantation
MP machine perfusion
PNF Primary non-function
POD postoperative day
PTX3 Pentraxin 3
TNF-α Tumor Necrosis Factor α

References
1. Michelotto, J.; Gassner, J.M.G.V.; Moosburner, S.; Muth, V.; Patel, M.S.; Selzner, M.; Pratschke, J.; Sauer, I.M.; Raschzok, N. Ex vivo

machine perfusion: Current applications and future directions in liver transplantation. Langenbeck’s Arch. Surg. 2021, 406, 39–54.
[CrossRef] [PubMed]

2. Barshes, N.R.; Horwitz, I.B.; Franzini, L.; Vierling, J.M.; Goss, J.A. Waitlist mortality decreases with increased use of extended
criteria donor liver grafts at adult liver transplant centers. Arab. Archaeol. Epigr. 2007, 7, 1265–1270. [CrossRef]

http://doi.org/10.1007/s00423-020-02014-7
http://www.ncbi.nlm.nih.gov/pubmed/33216216
http://doi.org/10.1111/j.1600-6143.2007.01758.x


Biomedicines 2021, 9, 1444 16 of 18

3. Chu, M.J.J.; Dare, A.J.; Phillips, A.R.J.; Bartlett, A.S.J.R. Donor hepatic steatosis and outcome after liver transplantation: A
systematic review. J. Gastrointest. Surg. 2015, 19, 1713–1724. [CrossRef]

4. Tullius, S.G.; Rabb, H. Improving the supply and quality of deceased-donor organs for transplantation. N. Engl. J. Med. 2018, 378,
1920–1929. [CrossRef]

5. Van Rijn, R.; Schurink, I.J.; de Vries, Y.; Berg, A.P.V.D.; Cerisuelo, M.C.; Murad, S.D.; Erdmann, J.I.; Gilbo, N.; de Haas, R.J.; Heaton,
N.; et al. Hypothermic machine perfusion in liver transplantation—A randomized trial. N. Engl. J. Med. 2021, 384, 1391–1401.
[CrossRef]

6. Guarrera, J.V.; Henry, S.D.; Samstein, B.; Reznik, E.; Musat, C.; Lukose, T.; Ratner, E.L.; Brown, R.S.; Kato, T.S.; Emond, J.C.
Hypothermic machine preservation facilitates successful transplantation of “Orphan” extended criteria donor livers. Arab.
Archaeol. Epigr. 2014, 15, 161–169. [CrossRef]

7. Kron, P.; Schlegel, A.; Mancina, L.; Clavien, P.-A.; Dutkowski, P. Hypothermic oxygenated perfusion (HOPE) for fatty liver grafts
in rats and humans. J. Hepatol. 2018, 68, 82–91. [CrossRef]

8. Schlegel, A.; Muller, X.; Kalisvaart, M.; Muellhaupt, B.; Perera, M.T.P.; Isaac, J.R.; Clavien, P.-A.; Muiesan, P.; Dutkowski, P.
Outcomes of DCD liver transplantation using organs treated by hypothermic oxygenated perfusion before implantation. J.
Hepatol. 2019, 70, 50–57. [CrossRef] [PubMed]

9. Schlegel, A.; Muller, X.; Dutkowski, P. Hypothermic machine preservation of the liver: State of the art. Curr. Transplant. Rep. 2018,
5, 93–102. [CrossRef] [PubMed]

10. Schlegel, A.; Muller, X.; Mueller, M.; Stepanova, A.; Kron, P.; de Rougemont, O.; Muiesan, P.; Clavien, P.-A.; Galkin, A.; Meierhofer,
D.; et al. Hypothermic oxygenated perfusion protects from mitochondrial injury before liver transplantation. EBioMedicine 2020,
60, 103014. [CrossRef]
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