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Abstract

Fatigue resulting from strenuous exercise can impair cognition and oculomotor control.

These impairments can be prevented by administering psychostimulants such as caffeine.

This study used two experiments to explore the influence of caffeine administered at rest

and during fatiguing physical exercise on spatial attention—a cognitive function that is cru-

cial for task-based visually guided behavior. In independent placebo-controlled studies,

cohorts of 12 healthy participants consumed caffeine and rested or completed 180 min of

stationary cycling. Covert attentional orienting was measured in both experiments using a

spatial cueing paradigm. We observed no alterations in attentional facilitation toward spatial

cues suggesting that covert attentional orienting is not influenced by exercise fatigue or caf-

feine supplementation. Response times were increased (impaired) after exercise and this

deterioration was prevented by caffeine supplementation. In the resting experiment,

response times across all conditions and cues were decreased (improved) with caffeine.

Covert spatial attention was not influenced by caffeine. Together, the results of these

experiments suggest that covert attentional orienting is robust to the effects of fatiguing

exercise and not influenced by caffeine. However, exercise fatigue impairs response times,

which can be prevented by caffeine, suggesting that pre-motor planning and execution of

the motor responses required for performance of the cueing task are sensitive to central

nervous system fatigue. Caffeine improves response time in both fatigued and fresh condi-

tions, most likely through action on networks controlling motor function.

Introduction

Prolonged, fatiguing exercise challenges cerebral homeostasis [1, 2] resulting in brain-based
functional impairments, such as reduced output from the primarymotor cortex [3]. This
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neural component of exercise fatigue, otherwise referred to as central fatigue, is poorly under-
stood, but may develop because of impaired synthesis and metabolism of several neurotrans-
mitters, including dopamine and noradrenaline [4–6]. In a recent study, we discovered that
exercise fatigue reduces the velocity of saccadic eye movements [7] and is therefore capable of
influencing the neural processes that support oculomotor control. Given that the oculomotor
control of saccadic eye movements is closely related to the spatial orienting of visual attention,
it is plausible that exercise fatigue may also challenge the attentional processes supporting sac-
cade control, such visuospatial attention. Interestingly, when caffeine was supplemented during
exercise, impairments in saccadic eye movement velocity were absent [7]. We propose that this
effect is most likely due to the stimulant action of caffeine on central neurotransmission via
adenosine antagonism, which results in up regulation of dopamine and heightened synthesis
and turnover rates of noradrenaline [8].

The oculomotor control of saccadic eye movements is related to the spatial orienting of
attention [9], a process that involves multiple stages of visual processing [10]. At its most basic
level the oculomotor system orients the eyes to foveate information of interest and therefore
contributes to overt attentional orienting. Attentional orienting can also occurwithout an eye
movement towards the attended location; a process known as covert attentional orienting.
Although the extent to which overt and covert attentional orienting are linked is uncertain [11,
12], the brain areas involved in shifting covert attention overlap considerably with those
responsible for overt shifts of attention [9]. It is therefore possible that both forms of atten-
tional orienting are vulnerable to the central effects of fatigue. This is important because effi-
cient shifting of attention is crucial for effective processing of visual information [13–15] and
therefore fatigue-induced deficits in attention may affect sports performance and compromise
safe levels of visual surveillance. In this context, investigating the effect of exercise fatigue on
covert attentional orienting is particularly important because any effect of fatigue would be
independent from exercise-induceddeficits in oculomotor control [7].

Covert spatial attentional orienting is typically investigated using a cueing paradigm [16],
whereby participants are instructed to maintain stable gaze on a fixation point and respond as
quickly as possible to the appearance of a peripheral target that is preceded by a cue. Crucially,
the cue does not predict the target location, yet response times to targets presented in the cued
location (valid cues) are typically faster than response times to targets appearing in uncued
locations (invalid cues) [17] (Fig 1). This facilitation in detecting the cued target occurs because
the cue reflexively attracts attention (exogenous attention), which in turn facilitates the pro-
cessing of information at that location. Attention can also be oriented endogenously, and this
form of attentional orienting can be measured using a similar task. Instead of non-informative
peripheral cues, attention is oriented through centrally presented symbolic cues that inform
participants of the likely target location. Participants are typically faster to detect targets that
appear in the cued location than when they appear elsewhere, and this facilitation in detection
occurs because of participants endogenously orient attention towards the cued location [18].

Two recent studies have shown that short bouts of intense exercise can affect shifts of covert
attention within an exogenous cuing paradigm [13, 19]. Sanabria, Morales (13) initially
reported no difference in facilitation toward targets presented a short interval after cue presen-
tation (100 ms) between exercise and resting conditions. However, after closer inspection of
their data they reported in a later paper that there was in fact a reduction in the magnitude of
facilitation toward validly cued targets after exercise compared to rest [13, 19]. Using the same
task, Llorens, Sanabria (19) replicated this finding, but only in low-fit individuals (mean
VO2peak = 27.3 ± 6.2 ml�kg�min-1). To our knowledge, no studies have investigated the influ-
ence of fatigue associated with prolonged exercise on covert attention. The relative contribu-
tion of central fatigue can be largely influenced by the type of exercise performed. Prolonged
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exercise demands a high level of muscular and cardiorespiratory work, leaving potential for
factors such as hyperthermia [20], substrate depletion [21], changes in cerebral energetics [1,
2] and decreases in synthesis and turnover of brain catecholamines [22]. Because covert atten-
tion can be affected by short bouts of exercise, it is reasonable to predict that the neural systems
supporting this cognitive process might be vulnerable to the effects of central fatigue induced
by an extended period of strenuous exercise.

Caffeine is a supplement commonly used by athletes as an ergogenic aid to combat the
effects of exercise fatigue [23]. It is widely accepted that caffeine’s beneficial effects on physical
performance and cognition are accomplished via its stimulant action on the central nervous
system [24]. The question of how caffeine may influence covert spatial attention in the context
of exercise fatigue is yet to be investigated. At rest, a moderate dose of caffeine (3–6 mg�kg-1

bodymass) did not influence the orienting of attention within a cueing task [25] or the atten-
tion network test, which provides a measure of attentional orienting in addition to measures of
alerting and executive control [26, 27]. However, caffeine did shorten response times across all
conditions in the cueing task [25]. This is consistent with previous reports of caffeine improv-
ing performance on basic psychomotor tasks, such as simple and choice reaction tasks [28].

The aim of these two experiments was to investigate the effect of caffeine on endogenous
and exogenous covert attentional orienting in the context of exercise-induced fatigue (the Exer-
cise experiment) and sedentary rest (the Rest experiment). In the Exercise experiment, fatigue

Fig 1. Schematic illustrating the covert attention paradigm for exogenous (A) and endogenous (B) cueing conditions.

Participants were presented with a fixation screen consisting of a central cross flanked by two peripheral boxes, displayed for

1000 ms (0–1000 ms). A cue was then displayed for 200 ms, from 1000 ms after trial onset to 1200 ms after trial onset.

Exogenous cues (A) were an increase peripheral box line width. Endogenous cues (B) comprised an arrow placed above the

central fixation cross pointing toward the right or left peripheral box. Valid cues were congruent with the location of the

subsequent peripheral target, whereas invalid cues were incongruent with the location of the peripheral target. Neutral cues

provided were not indicative of the location of the peripheral target. Following cue presentation, the fixation screen was

displayed for an inter-stimulus interval (ISI) of 200 ms (1200–1400 ms). After this, a circular target appeared in the right or left

peripheral box for 150 ms (1400–1550 ms).

doi:10.1371/journal.pone.0165318.g001
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was induced using a demanding 3 hour cycling exercise protocol that is known to challenge
central nervous system function [1, 2, 7, 21] while the Rest experiment consisted of 3 hours of
sedentary activity. Endogenous and exogenous covert attentional orienting were measured
using a cueing paradigm [16]. We tested multiple hypotheses. In the Exercise experiment, we
predicted that exercise-induced fatigue would degrade both exogenous and endogenous covert
attentional orienting. The second hypothesis was that the administration of caffeine would pro-
tect against the detrimental effects of exercise-induced fatigue on covert attentional orienting.
We predicted that no changes in covert spatial attention at rest with, or without caffeine would
be observed in the Rest experiment.

Experimental Procedures

Participants

Twelve physically fit participants (5 males, Mean VO2 peak 56 ± 6 ml�kg�min-1) with a mean
age of 25 ± 9 (20–48) years volunteered to participate in the Exercise experiment. In the Rest
experiment twelve physically fit participants (6 males, Mean VO2 peak 56 ± 7 ml�kg�min-1)
with a mean age of 23 ± 2 (20–26) years volunteered to participate. Participants gave written
informed consent and visited the laboratory on three (Rest) or four (Exercise) occasions to par-
ticipate in a protocol conducted in accordance with the Declaration of Helsinki and approved
by the University of Auckland Human Participants Ethics Committee.

Experimental design

For the Exercise experiment participants received a dose of caffeine (7.5 mg�kg-1 bodymass).
This was administered in pill form within a double-blind, placebo-controlled, randomized
cross-over design. Experimental trials involved 180 min of continuous cycling at a work rate
equivalent to 60% of aerobic capacity with a minimum of 7 days between cross-over phases.
Caffeine was administered over 2 doses–a 2.5 mg�kg-1 bodymass dose before the exercise pro-
tocol, and a 5 mg�kg-1 bodymass dose at 90 min into exercise. In the placebo trial, a placebo
pill (maltodextrin)was administered before the exercise trial and at the 90 min time point in
place of the caffeine doses administered in the caffeine trial. The Exercise experiment involved
an additional randomized counterbalanced intervention—a psychostimulant drug included to
test a separate hypothesis. These data are not included here and no trial order effects were
detected that might confound interpretation.

Similarly, in the Rest experiment, participants received a moderate dose of caffeine (5
mg�kg-1 bodymass) or placebo (maltodextrin) administered in pill form within a double-blind,
placebo-controlled, randomized cross-over design. Participants completed two experimental
trials involving 180 min of sedentary rest with a minimum of 5 days between cross-over phases.
Caffeine was administered over 2 doses–a 2.5 mg�kg-1 bodymass dose prior to the rest proto-
col, and a 2.5 mg�kg-1 bodymass dose at 90 min.

Participants were asked to abstain from caffeine-containing items, such as coffee and tea,
for the 24 hours before each experimental session. Caffeine doses for the Exercise and Rest
experiments were selected based on similar doses employed in other studies for cognitive per-
formance benefits at rest [26, 27, 29–31], and current recommended doses for physical perfor-
mance benefits during exercise [32, 33]. This allowed for each experiment to explore the effect
of a ‘typical’ dose of caffeine, in rest and exercise contexts, on covert spatial attention. Doses
differed between experiments because the magnitude of the caffeine dose recommended to
elicit ‘optimal performance’ is task dependent. For example, larger caffeine doses (5–9 mg�kg-1

bodymass) are required in order to elicit an ergogenic effect during endurance exercise [32–
35]. At rest lower doses are conducive to improvements in elements of cognition and mood
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such as visual information processing and alertness, which are desired performance benefits in
sedentary settings (2–6 mg�kg-1 bodymass) [26, 27, 29–31, 36]. Caffeine reaches a maximum
plasma concentration approximately 1 hour after ingestion and has a half-life of 4 to 6 hours
[8]. Dose timing was selected to ensure that intervention-associated changes in mood or
arousal were possible over the course of the 3 hour rest or exercise period and to attempt to
coincide the peak action of caffeine with post rest or post exercise measures. The timing of the
doses resulted in the lack of a within-session caffeine free baseline for each experiment, hence
the use of a placebo treatment.

Preliminary Tests

At least 1 week prior to the experimental protocol participants performed a maximal cardio-
pulmonary exercise test on an electromagnetically braked cycle ergometer (Velotron Dynafit
Pro, Seattle, WA, USA) to measure peak oxygen uptake. For the Exercise experiment, VO2max
was estimated and used to prescribe a power output that required 60% VO2max for the experi-
mental trials. Participants were familiarizedwith experimental protocols and the cueing task
prior to the experimental trials. Due to a technical difficulty, a peak oxygen uptake measure-
ment was not obtainable for one participant in the Rest experiment.

Experimental protocol

Participants arrived at the laboratory at 8 am following a 12 hour overnight fast. Upon arrival,
bodymass was measured following voiding of the bladder for participants in the Exercise
experiment. This was compared to a bodymass measure collected post exercise in order to
assess hydration status. In both experiments, participants were provided with a cereal-based
breakfast, the quantity of which was self-selectedon the first trial, and repeated for the remain-
ing trials.With breakfast, participants received the first intervention dose in pill form (65 min
before sedentary rest or exercise). Prior to exercise or rest (pre) participants completed the cue-
ing task. The cueing task was performed as one task among a battery of six total visual tasks
that examined the kinematics of basic eye movements, the results of which are not reported
here. The visual task sequence was identical for all participants and therefore the additional
tests did not introduce any systematic bias. The total time required to complete the cueing task
was ~8 min, while the total test battery took ~50 min. After completion of the pre measures,
participants then completed either 3 hours of sedentary rest (Rest) or cycled on an electromag-
netically braked cycle ergometer (Velotron Dynafit Pro, Seattle, WA, USA) at a prescribed
power output for 180 min (Exercise). At 90 min into either protocol, participants received a sec-
ond dose of the intervention in pill form. In the Rest experiment, participants were not permit-
ted to eat during the experimental protocol, but were able to consume water as desired. In the
Exercise experiment a carbohydrate solution (0.7 g carbohydrate�kg-1�h-1) was ingested at 15
min intervals during the cycling protocol in order to prevent substrate depletion and dehydra-
tion. Heart rate was monitored continuously throughout the experimental trials and was
recorded at 15 min intervals using a heart rate monitor (FS1, Polar Electro, Kempele, Finland).
Coincident with the recording of heart rate, participants’ mood and arousal was self-rated on
visual analogue scales. The scales were composed of 25 centimeter lines with a related question
above the scale and opposing descriptive statements at each end. For example, for the visual
analogue scale assessing mood the descriptive question was, ‘how do you feel at the moment,
what type of mood are you in’, while the opposite statements at either end were ‘very bad’–‘very
good’. Participants rated their feelings by putting a perpendicularmark across each scale.
Scores were marked in centimeters from the left of the line to the mark, such that a high score
signified a goodmood and high sense of arousal, while a low score represented a bad mood
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and low arousal. After rest or exercise, participants repeated the covert attention task (post). In
the Exercise experiment a post measurement of bodymass was obtained in order to assess fluid
loss or gain as a result of the exercise trial.

Measures of covert spatial attention

Covert attentional orienting was assessed using a Posner cueing task [16] with endogenous and
exogenous cueing conditions. Visual stimuli (Fig 1) were presented on a cathode ray tube mon-
itor (Philips 109S2; 1280 × 1024 pixel resolution; 85 Hz refresh rate), positioned at a viewing
distance of 660 mm. At the beginning of each trial, a central fixation cross and two peripheral
boxes located ± 10° laterally to the central fixation cross were displayed for 1000 ms. A visual
cue was then presented for 200 ms. 200 ms after the cue was extinguished, a peripheral target
(black circle, radius of 0.5°) appeared in the right or left peripheral box for 150 ms. Participants
were instructed to maintain fixation on the central cross and to respond using a keyboard as
quickly as possible when they detected a peripheral target to the left (left arrow key) or right
(right arrow key) of fixation.

Endogenous cues consisted of a centrally presented arrow pointing to the right or left
peripheral box. Arrows were centered 0.2° above the central fixation cross and subtended 0.5°.
Exogenous cues consisted of an increase in the line width of a peripheral box from 0.15° to
0.20°. On valid trials, the target appeared in the cued location, whilst on the invalid trials it
appeared in the opposite location. Neutral trials provided no cue indicating target location. In
exogenous trials, the cue did not reliably predict the target location, with valid, neutral and
invalid cues occurringwith equal probability amongst the 90 trials. For endogenous trials, the
valid cues correctly predicted target location 80% of the time thus, neutral cues were presented
in 30 trials, valid cues in 48 trials, and invalid cues in 12 trials. The cue-target contingency was
based on previous literature [16, 37, 38]. Neutral cues consisted of a double-ended arrow or an
increase in line width of both peripheral boxes, respectively. Only responses occurringwithin
1000 ms of target onset were included in analysis.

In both the exogenous and the endogenous conditions, the targets appeared in the right or
left peripheral box with equal probability. Keyboard responses (response time and left/right
key) were collected using custom software written in Matlab (MathWorks R2010b, Massachu-
setts, USA) using the Psychophysics Toolbox extensions [39–41]. To ensure participants main-
tained fixation, eye movements were monitored with a head-fixed, 400 Hz eye tracker
(ViewPoint Eye Tracker, Arrington Research Systems, Scottsdale, USA). Trials in which the
eyes deviated> 1° from fixation were rejected from analysis.

Data treatment and analysis

Repeatedmeasures analyses of variance (ANOVA) were employed to explore the influence of
the experimental interventions on covert spatial attention, heart rate, mood and arousal. Inde-
pendent analyses were performed for Rest and Exercise experiments.

The final sample sizes for the Exercise experiment (n = 12) and Rest experiment (n = 12) sat-
isfied a priori power analyses. For the Exercise experiment estimations of sample sizes were cal-
culated with power set to 0.95, p< 0.05, a correlation among repeated measures of 0.62 and an
expected effect size of 0.4. This calculation estimated that a sample size of 12 participants was
sufficient to provide appropriate statistical power. Effect size and was derived from a previous
study in which significant changes in saccade velocity were detected following prolonged exer-
cise [7] while correlation among repeated measures was obtained from previous research citing
a high correlation (0.62–0.97) across repeated measures for visual tasks [42]. Sample size for
the Rest experiment was inferred from the calculation performed for the Exercise experiment.
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Endogenous and exogenous response times and task performance (percentage of responses
in the correct direction) in the covert spatial attention task were explored using a repeatedmea-
sures ANOVA with factors 2 (Rest) or 3 (Exercise) INTERVENTION × 2 TIMEPOINT (Pre,
Post) × 3 CUETYPE (Valid, Neutral, Invalid) for the endogenous and exogenous blocks respec-
tively. A validity effect was calculated using the difference between valid and invalid response
times, which reflects the time required to disengage covert attention from an invalid cued loca-
tion and shift to the target location. The effect of our interventions on the validity effect was
statistically explored using a repeated measures ANOVA with factors INTERVENTION ×
TIMEPOINT. Measures of heart rate, mood and arousal were explored using repeated mea-
sures ANOVA with factors INTERVENTION × 11 TIMEPOINT (15 min intervals, 15 min–
165 min).

Though intervention allocation was counterbalanced, due to the repeated measures design
of the experiment, there was a possibility of task learning and trial order effects confounding
our measures of covert spatial attention. This was explored by using the same repeated mea-
sures ANOVAs described above, with the factor of TRIAL used in place of INTERVENTION.

Where relevant, main effects and interactions were explored using within-subject paired
comparisons. The multiple comparison type I error rate was controlled using a false discovery
rate criterion procedure [43]. In cases where sphericity could not be assumed, the Greenhouse-
Geisser correctionwas used. Statistical significancewas set at α = .05. Results are reported as
mean ± standard error (SE), unless otherwise stated.

Results

Heart rate, fluid balance and subjective measures

Rest experiment. In the Rest experiment, heart rate (Fig 2, right panel A) differed signifi-
cantly over the 3 hour rest period depending on intervention and time point (F10, 110 = 3.66,
p< .01). This interaction appears to stem from higher heart rates at the onset of the rest period
with placebo compared to caffeine. As the duration of the rest period continued, heart rate slo-
wed to a rate similar to that observed in the caffeine trial. As illustrated in Fig 2 (right panel B),
self-reportedmood during Rest was not influenced by intervention (F1, 11 = 1.85, p = .202), but
did improve over time point in both sessions (F2.07, 22.7 = 5.21, p< .05). Similarly, there were
no significant effects of intervention (F1, 11 = 3.06, p = .108) on arousal. However, arousal
did improve over the course of both sessions, as indicated by a main effect of time point
(F1.59, 17.5 = 4.00, p< .05).

Exercise experiment. In the Exercise experiment, heart rate was not differentially influ-
enced by intervention (F1, 11 = 4.80, p = .051), or by time point (F2.76, 30.4 = 2.94, p = .05),
although there was a trend toward a main effect of time point on heart rate (Fig 2, panel A).
Importantly, bodymass did not differ pre to post exercise between the interventions.Measures
of bodymass were used to derive a measure of fluid balance for each experimental trial that
quantified the extent of dehydration induced by the exercise bout. Fluid loss relative to body
weight for placebo and caffeine was -0.19% ± 0.20 and -0.26% ± 0.26 respectively. There were
no significant differences in fluid balance between interventions (F1, 11 = 0.21, p = .66). Fur-
thermore, average levels of fluid loss did not exceed 2%–the point at which performance begins
to decline due to dehydration [44]. Intervention did not differentially influencemood through-
out exercise, however there was a trend toward a main effect of intervention (F1, 11 = 4.70, p =
.05). These data are displayed in Fig 2, left panel B. Arousal levels did significantly differ during
exercise depending on intervention (F1, 11 = 11.6, p< .01), with higher levels of arousal with
caffeine (Fig 2, left panel C). There was a trend toward an interaction between intervention and
time point, however this did not reach statistical significance (F2.36, 26 = 3.02, p = .058).
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Fig 2. Heart rate, mood and arousal across the duration of the 180 min experimental trials for the Exercise experiment (left pane)

and the Rest experiment (right pane). These data were collected at 15 min intervals over the duration of the 180 min experimental

trial. (A) Heart rate for each intervention in beats per min (bpm). (B) Self-reported mood ratings for each intervention over the course of each

experimental trial. Ratings from the visual analogue scale were converted to a percentage value whereby 100% represents a ‘very good’

mood, while 0% indicates a ‘very bad’ mood. (C) Self-reported levels of arousal over the duration of the experimental trial for each

intervention. Levels of arousal were also converted to a percentage value where 100% indicates ‘very high’ arousal, while 0% indicates ‘very

low’ arousal. Significance labelling in right panel A represents a significant difference in heart rate over time depending on intervention

(interaction effect between intervention and time point), while left panel C represents a significant difference between caffeine and placebo

(main effect of intervention). p < 0.05. Data represent mean ± SEM.

doi:10.1371/journal.pone.0165318.g002
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Summary. To summarize, at rest, the interventions did not differentially influence levels
of self-rated mood or arousal. At the start of rest, heart rates in placebo were higher than with
caffeine, but slowed to a similar rate 60 min into the rest duration. In the exercise trials, partici-
pants’ experienced equivalent physiological stress. Heart rate and fluid losses did not differ
between interventions, and there was no dehydration. Self-ratedmoodwas not differentially
affected by our interventions, although arousal levels were heightened over the duration of the
exercise with caffeine.

Endogenous results

Error rates. In both experiments, endogenous error rates were not sensitive to task learn-
ing, with no trial order effects detected.

Rest experiment: Error rates were not influenced by intervention (Rest, F1, 11 = 1.50, p = .24)
or time point (F1, 11 = 0.166, p = 0.69) in the Rest experiment. There was a trend toward a main
effect of cue type (F1.05, 11.6 = 4.54, p = .05) on error rates, whereby lower error rates occurred
in valid and neutral trials, and high error rates occurred in invalid trials, although this did not
reach statistical significance. These data are reported in Table 1.

Exercise experiment: Similarly to Rest, error rates were not influenced by intervention
(F1, 11 = 0.321, p = .58) or time point (F1, 11 = 0.031, p = .86) in the Exercise experiment. How-
ever, there was a main effect of cue type (F2, 22 = 20.0, p< .01). Within-subject paired compari-
sons revealed significantly lower error rates in valid compared to invalid trials (t47 = 4.80, p<
.01), and lower error rates in neutral compared to invalid trials (t47 = 4.74, p< .01). However,
there was no difference in error rates between valid and neutral trials (t47 = 0.281, p = .78).

Response times. Rest experiment: A repeated measures ANOVA revealed a main effect of
time point (F1, 11 = 6.25, p< .05), and a significant effect of cue type (F2, 22 = 31.4, p< .01) on
response times at rest. Furthermore, the difference in response times between time points
depended on cue type, as indicated by a significant interaction (F2, 22 = 5.046, p< .05). Post-
hoc comparisons revealed a significant decrease in response times following rest for valid (t23 =
2.62, p< .01) and neutral cues (t23 = 2.98, p< .01), but no difference in response times pre to
post rest with invalid cues (t23 = -0.419, p = .68). There was no effect of intervention (F1, 11 =
1.67, p = .22) on response times.

There was a significant increase in the magnitude of the validity effect after rest (Fig 3, right
panel C) (main effect of time point: F1, 11 = 8.28, p< .05), but no effect of intervention (F1, 11 =
1.67, p = .22). This appears to result from participants responding faster to validly cued targets
post rest compared to pre rest in both caffeine and placebo interventions. However, in the Rest
experiment we did discover a task learning effect. A repeated measures ANOVA revealed a
three-way interaction between cue type, trial and time point (F2, 22 = 3.70, p< .05). This stems
from a small decrease in response times post rest to validly cued targets in the first trial, fol-
lowed by a larger magnitude decrease pre to post rest in the second trial. The presence of this
task learning effect confounds our ability to interpret the influence of our interventions on
endogenous spatial attention, as the most likely explanation for the greater facilitation in
response time toward validly cued targets is that, by the fourth presentation of the covert atten-
tion task (Trial 2, post rest) participants improved their response speeds simply by learning.

Exercise experiment: No task learning effects on response times were detected. As expected,
response times were modulated by cue type (F1.16, 12.8 = 25.6, p< .01). Within-subject paired
comparisons revealed that cueing influenced response times in a typical manner, with response
times in invalid trials significantly slower than for valid trials (t47 = -8.98, p< .01). Response
times were also significantly slower after 3 hours of exercise (main effect of time point: F1,11 =
5.39, p< .05) and differentially affected by intervention (main effect of intervention: F1,11 =
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8.64, p< .05) (Placebo, 344 ± 15ms; Caffeine, 314 ± 10 ms). These results suggest that exercise
fatigue increased (impaired) response times overall, but did not influence attentional orienting,
since there was no interaction between cue type and intervention (F2,22 = 0.791, p = .47) or cue
type, intervention and time point (F2,22 = 0.826, p = .45). This is also reflected in measures of
the validity effect, illustrated in Fig 3 (left panel C). A repeated measures ANOVA on these

Table 1. Measures of Covert Attention. Data show response times and error rates as mean ± SD. Data were recorded before and after exercise (Exercise

experiment) and rest (Rest experiment), respectively.

Placebo Caffeine

Pre exercise Post exercise Pre exercise Post exercise

Exercise Experiment Mean SD Mean SD Mean SD Mean SD

Endogenous Condition

Response Time (ms) 325 52 360 66 308 42 319 50

Valid Response Time (ms) 301 49 329 71 288 39 294 48

Neutral Response Time (ms) 323 53 363 61 306 44 316 54

Invalid Response Time (ms) 349 62 388 74 330 50 348 57

Error rate (% incorrect responses) 2 2 2 2 2 2 2 2

Valid error rate (%) 1 2 1 2 1 2 0 1

Neutral error rate (%) 0 1 2 2 0 1 1 2

Invalid error rate (%) 4 6 3 5 5 6 5 5

Exogenous Condition

Response Time (ms) 325 50 372 59 321 46 325 51

Valid Response Time (ms) 313 50 351 61 312 37 304 49

Neutral Response Time (ms) 325 51 381 65 320 59 333 54

Invalid Response Time (ms) 338 55 382 75 330 49 338 61

Error rate (% incorrect responses) 2 3 2 2 1 2 2 1

Valid error rate (%) 2 4 1 1 1 4 1 2

Neutral error rate (%) 2 3 2 3 1 2 2 2

Invalid error rate (%) 1 2 3 4 2 3 2 3

Pre rest Post rest Pre rest Post rest

Rest Experiment Mean SD Mean SD Mean SD Mean SD

Endogenous Condition

Response Time (ms) 316 19 315 24 312 26 299 28

Valid Response Time (ms) 305 26 295 25 302 21 284 34

Neutral Response Time (ms) 307 23 302 27 309 26 291 23

Invalid Response Time (ms) 337 28 347 30 327 40 321 37

Error rate (% incorrect responses) 1 1 1 1 3 5 2 5

Valid error rate (%) 0 0 0 1 0 1 1 2

Neutral error rate (%) 0 1 1 1 1 3 1 2

Invalid error rate (%) 1 3 2 4 6 12 5 12

Exogenous Condition

Response Time (ms) 330 27 331 24 330 25 312 36

Valid Response Time (ms) 327 34 324 26 324 32 302 32

Neutral Response Time (ms) 313 23 323 35 320 20 313 43

Invalid Response Time (ms) 348 34 347 29 346 38 320 38

Error rate (% incorrect responses) 1 1 1 1 0 1 1 1

Valid error rate (%) 0 1 0 1 0 0 1 1

Neutral error rate (%) 1 2 1 2 1 3 1 3

Invalid error rate (%) 2 2 2 2 1 1 2 3

doi:10.1371/journal.pone.0165318.t001
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data showed no main effects between the magnitude of the validity effect after 3 hours of exer-
cise (F1,11 = 2.41, p = .15), in response to the drug interventions (F1,11 = 0.144, p = .71), or an
interaction between time point and drug intervention (F1,11 = 0.149, p = .71).

Fig 3. Measures of endogenous covert attention for the Exercise (left pane) and Rest (right pane) experiments. (A)

and (B) Response time pre (solid lines) and post (dashed lines) exercise or rest across cue type for Placebo (white fill) and

Caffeine (black fill). (C) Validity effect for each intervention (difference between invalid and valid cue types). Significance

labelling in right panel C represents a significant difference pre to post rest in the magnitude of the validity effect (main effect

of time point). Data represent mean ± SEM.

doi:10.1371/journal.pone.0165318.g003
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Summary: Error rates were not differentially influenced by intervention in the Rest or Exer-
cise experiments. At rest, response times to valid cues decreased across time point (in both
interventions), leading to an increase in the magnitude of the validity effect. However, it
appears that this modulation in attentional orienting can be explained by the presence of a task
learning effect. A task learning effect was not present in the Exercise experiment, nor did inter-
vention differentially influence attentional orienting. However, response times overall were sig-
nificantly slower (worse) with placebo compared to caffeine.

Exogenous results

Error rates. For both experiments, error rates did not display a task learning effect.
Rest experiment: Error rates at rest were unaffected by intervention (F1, 11 = 1.20, p = .30) or

time point (F1, 11 = 1.18, p = .30). There was a main effect of cue type (F2, 22 = 3.44, p< .05),
with significantly lower error rates following valid cues compared to invalid (t47 = 3.05, p<
.01) and valid compared to neutral cues (t47 = 2.24, p< .05).

Exercise experiment: Similarly to Rest, error rates were unaffected by intervention (F1, 11 =
0.648, p = .44) or time point (F1, 11 = 0.022, p = .89). Unlike Rest, there was no significant differ-
ences in error rates due to cue type (F2, 22 = 1.50, p = .25). These data are reported in Table 1.

Response times. No task learning effects were detected in response times for both
experiments.

Rest experiment: Fig 4 (right panels A and B) illustrate response times across cue types for
caffeine and placebo interventions. There were no main effects of intervention (F1, 11 = 1.25, p
= .29) or time point (F1, 11 = 3.46, p = .09) on response times. However, there was an interac-
tion between intervention and time point (F1, 11 = 5.57, p< .05), revealing that the extent to
which response times shortened after rest depended on the intervention received.With Pla-
cebo, response times were similar between time points (pre rest = 329 ± 8 ms; post
rest = 331 ± 7 ms respectively; t35 = -0.353, p = .73). Conversely, with Caffeine, response times
decreased significantly from 330 ± 10 ms pre rest to 312 ± 10 ms post rest (t35 = 2.384, p<
.05). In addition, the ANOVA revealed a main effect of cue type (F2, 22 = 14.23, p< .01). Post-
hoc analyses revealed a typical cueing effect, with significantly faster response times to valid
compared to invalid cues (t47 = -6.463, p< 0.01). As depicted in Fig 4 (right panel C), the mag-
nitude of the validity effect was unaffected by time point (F1, 11 = 0.019, p = .89) or drug inter-
vention (F1,11 = 0.254, p = .62), and there was no interaction between the two factors (F1,11 =
0.343, p = .57).

Exercise experiment: Similarly to Rest, response times in the Exercise experiment were also
modulated according to cue type (F2, 22 = 7.23, p< .01). Post-hoc comparisons confirmed a
typical cueing effect, with the response times for invalid trials significantly slower than that for
valid trials (t47 = -6.13, p< .01). The repeated measures ANOVA also revealed a significant
interaction between intervention and time point (F1, 11 = 8.65, p< .05), thus, the magnitude by
which response times changed after 3 hours of exercise was modulated by intervention. Post-
hoc comparisons revealed a significant slowing of response times pre to post exercise in pla-
cebo (t35 = -6.83, p< .01), but no difference in response times pre to post exercise with caffeine
(t35 = -0.596, p = .56). These alterations in response time occurred generally, across all cue
types. These results are illustrated in Fig 4 (left panels A and B). As observed in the endogenous
condition, there was no change in the magnitude of the validity effect between time points (F1,
11 = 3.162, p = .10), or in response to intervention (F1, 11 = 0.028, p = .87). Furthermore there
was no interaction between the two (F1, 11 = 2.34, p = .15). The validity effect across time point
and intervention for the exogenous condition in the Exercise experiment is illustrated in Fig 4
(left panel C).
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Summary: Overall, there were no effects of intervention on task performance in Rest or
Exercise experiments. At rest, caffeine and placebo interventions did not differentially alter
attentional orienting although response times overall did change after rest depending on the
intervention received. Response times after rest were significantly faster in the caffeine trial,

Fig 4. Measures of exogenous covert attention for the Exercise (left pane) and Rest (right pane) experiments. (A)

and (B) Response time pre (solid lines) and post (dashed lines) exercise or rest across cue type for Placebo (white fill) and

Caffeine (black fill). (C) Validity effect for each intervention (difference between invalid and valid cue types). Data

represent mean ± SEM.

doi:10.1371/journal.pone.0165318.g004
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whereas with placebo response times were similar between pre and post rest time points. Atten-
tional orienting was not influenced by fatiguing exercise with or without caffeine. However,
overall responses times slowed significantly after exercise in the placebo trial, while this
impairment in response times was prevented in the caffeine trial.

Discussion

This study examined the influence of fatiguing exercise and caffeine on endogenous and exoge-
nous covert spatial attention. Covert attentional orienting was unaffected by exercise-induced
fatigue and the administration of caffeine. However, exercise fatigue impaired response time
components of the attention task, an effect that was prevented by the consumption of caffeine.
This finding suggests that the processes governing the pre-motor planning and execution of
behavioral responses are sensitive to the effects of exercise-induced fatigue and modulated by
caffeine, while the networks controlling covert attentional orienting are robust to both
challenges.

Prolonged strenuous exercise had no effect on our measures of covert spatial attention. The
magnitude of the validity effect pre to post exercise was unchanged for both endogenous and
exogenous cue types, suggesting that the processes governing the covert attentional orienting
are robust to exercise fatigue. This is surprising because the challenge to brain homeostasis
associated with this exercise protocol is substantial. Others have shown that similar protocols
significantly impair cerebral energetics [2, 21], and we have recently measured a reduction in
the velocity of saccadic eye movements after same the exercise protocol [7], implicating fatigue
related impairments in networks controlling the oculomotor system. Consistent with previous
findings [7], there were no alterations in error rates in the covert spatial attention task after
exercise, suggesting that response selectionwas robust to exercise-induced fatigue. However,
the overall error rate was low because the task was designed to detect differences in response
times between cueing conditions rather than changes inaccuracy. Therefore small changes in
error rates would not have been detected.

Llorens, Sanabria (19) reported detrimental effects of short duration exercise on exogenous
shifts of covert attention in low-fit (mean VO2max = 41.28 ± 6.32 ml�kg-1�min-1) but not high
fit (mean VO2max = 58.38 ± 2.96 ml�kg-1�min-1) participants. Physical fitness may protect
exogenous spatial attention during an exercise challenge, with well-trained individuals likely to
show smaller exercise-induced reductions in cerebral metabolic resources [19]. The aerobic fit-
ness of our cohort (mean VO2 peak = 56 ± 6 ml�kg�min-1) was comparable to Llorens, Sanabria
(19) high-fit group. Therefore, we may have failed to observe an effect of fatiguing exercise as
high fit individuals may be robust to the influence of exercise on covert spatial attention,
despite other neural systems being compromised.

Although exercise fatigue did not alter the cueing effect in response to endogenous or exoge-
nous cues, we did observe a significant slowing of response time. This effect of fatigue was most
noticeable in response times to exogenous cues, where there was a significant slowing of
response times post exercise across all cue types with placebo (Fig 4, left panel A). In the endog-
enous block, response times were significantly slower overall in placebo trials compared to the
caffeine trials, but did not exhibit an interaction between intervention and time point. This sug-
gests that exercise fatigue may have influenced the preparation and execution of motor
responses (key presses). Accompanying the impairment in response times after exercise in the
placebo trial were changes in self-rated arousal, particularly evident in the late stages of pro-
longed exercise. A general slowing of response time has been observed as a result of other
forms of fatigue, such as sleep deprivation [45, 46]. Additionally, increased response time has
been observed following prolonged fatiguing exercise with heat stress and dehydration [47]. In
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this study we used several strategies to avoid dehydration, heat stress or hypoglycemia. Fluid
balance and euglycemia were maintained with a hydration and carbohydrate supplementation
strategy and participants performed a set amount of work in a controlled environmental cham-
ber. Despite these controls it is plausible that the neurohumoral and metabolic challenge of
prolonged strenuous exercise [1, 21] exerted an influence on the speed of response time.

Caffeine prevented the slowing of response times observed after fatiguing exercise (Figs 3
and 4, left panel B). Decreases in reaction time and heightened arousal at rest following the
administration of caffeine have been observed across several studies [30]. In addition, there is
evidence to suggest that the improvements in reaction time with caffeine are greater in the
presence of fatigue [29]. Interestingly, but not measured here, alterations in the central levels of
dopamine and noradrenaline have been linked to the development of fatigue during exercise
[48–50] and the maintenance of these central neurotransmitters through administration of caf-
feine or other psychostimulant drugs appears to attenuate the impact of fatigue on exercise per-
formance [51] and the central nervous system [7, 52]. Therefore, caffeinemay have preserved
response times after exercise through its actions on central neurotransmission.

In the Rest experiment, endogenous and exogenous covert spatial attention was not differ-
entially influenced by caffeine. There was no effect of 3 hours of rest on the magnitude of the
validity effect in the exogenous cueing condition, nor by the administration of a moderate dose
of caffeine (Fig 4, right panel C). Interestingly, there was a global decrease in response times
across all cue types in exogenous trials after 3 hours of rest with caffeine (Fig 4, right panel B),
while no differences between pre and post rest response times were seen with placebo. Because
caffeine did not influence the validity effect, the global reduction in exogenous response times
with caffeine is most likely related to an improvement in the preparation and execution of the
motor response rather than an influence on the processes of covert attentional orienting. This
finding adds to an already large body of literature demonstrating caffeine’s positive influence
on the performance of basic psychomotor tasks [25, 29, 53–55]. Caffeine’s ability to influence
psychomotor speed in this nature is most likely the result of the blockade in adenosine caused
by caffeine, and a subsequent reduction in adenosine’s ability to inhibit dopaminergic activity
in the basal ganglia circuits involved in voluntary skeletal motor output [8]. In addition the
basal ganglia pathway involved in skeletal-motor output is functionally distinct from the paral-
lel subcortical pathway involving the basal ganglia that is involved in oculomotor control and
may contribute to orienting of visual attention [56].

In contrast to our observations at rest in the exogenous condition, in the endogenous condi-
tion we did observe a significant increase in the magnitude of the validity effect post rest, irre-
spective of intervention (Fig 3, right panel C). However, the observation of a task learning
effect in the endogenous condition is the most likely explanation for the increase in the validity
effect post rest across both intervention groups and limits further interpretation of these
results.

Previous studies have described the presence of learning effects for several cognitivemea-
sures collectedwithin a repeated measures experimental design [57, 58], but the sensitivity of
endogenous covert attention to task learning is not commonly reported.We observed a signifi-
cant decrease in response time to endogenous valid cues within each trial, with the largest pre
to post decrease occurring in the second trial. Despite the use of a familiarization session to
reduce the possibility of task learning, it appears that, at rest, participants improve their ability
to interpret and respond to valid endogenous cues simply due to repetition of the task as a
result of the experimental design. Given this, it may not be favorable to include endogenous
cueing paradigms when employing a repeated measures design with acute interventions. Inter-
estingly, in the Exercise experiment within-task learning effects were absent. Acute hypoxia,
which also represents a significant challenge to cerebral homeostasis [59], appears to abolish
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practice effects in measures of cognition such as information processing and executive function
[57]. Similarly, our results suggest that fatiguing exercise may eliminate endogenous task
learning.

In sum, this study revealed that the covert orienting of endogenous and exogenous spatial
attention is robust to the effects of fatiguing exercise and unaffected by the administration of
caffeine. However, exercise fatigue globally impairs response times, irrespective of cueing con-
dition or cue type, an effect that was prevented by caffeine. This finding suggests that the pre-
motor planning and execution of the behavioral response prescribed by the covert spatial atten-
tion task are sensitive to the effects of exercise-induced fatigue. 3 hours of sedentary rest with
caffeine had no differential effects on covert attentional orienting compared to placebo, but did
speed response times overall. Interestingly, a within-task learning effect was observed at rest in
the endogenous condition, highlighting an additional consideration when employing spatial
cueing tasks in a repeated measures fashion.
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