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Abstract: Molecular and histopathological analysis of melanoma subtypes has revealed distinct
epidemiological, genetic, and clinical features. However, immunotherapy for advanced metastatic
melanoma patients does not differ based on subtype. Response to immune checkpoint inhibitors
(ICI) has been shown to vary, therefore, predictive biomarkers are needed in the design of precision
treatments. Targeted sequencing and histopathological analysis (CD8 and CD20 immunohistochem-
istry) were performed on subtypes of metastatic melanoma (cutaneous melanoma (CM, n = 10);
head and neck melanoma (HNM, n = 7); uveal melanoma (UM, n = 4); acral lentiginous melanoma
(AM, n = 1) and mucosal melanoma (MM, n = 1) treated with ICI). Progression-free survival (PFS)
was significantly associated with high CD8 expression (p = 0.025) and mutations in DNA damage
repair (DDR) pathway genes (p = 0.012) in all subtypes but not with CD20 expression. Our study
identified that immune cell infiltration and DDR gene mutations may have an impact in response
to ICI treatment in metastatic melanoma but differs among subtypes. Therefore, a comprehensive
understanding of the immune infiltration cells’ role and DDR gene mutations in metastatic melanoma
may identify prognostic biomarkers.

Keywords: cutaneous melanoma; uveal melanoma; head and neck melanoma; mucosal melanoma;
acral lentiginous melanoma; immunotherapy; genomics; targeted sequencing; predictive biomarkers;
precision medicine

1. Introduction

Immune checkpoint inhibitor (ICI) therapies which target the programmed cell death
protein 1 (PD-1)/programmed death ligand 1 (PD-L1) or the cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) alone or in combination are used in the treatment of multiple
advanced solid tumours including metastatic melanoma. ICI has changed the treatment
landscape for metastatic cutaneous melanoma (CM), with ICI combinations displaying
objective response rates (ORR) of greater than 60%; moreover, compared to traditional
chemotherapy, patients can achieve complete response and long-term survival with novel
combination strategies of ICI [1–3].
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Rare subtypes of non-cutaneous melanoma such as acral, mucosal and uveal melanomas
have different clinical, histopathological and genomic features [4,5]. Acral lentiginous
melanomas (AM) tend to arise on the non-hair skin areas such as the palms of the hands and
soles of the feet; mucosal melanomas (MM) arise from melanocytes of the mucosal epithe-
lium of the respiratory, alimentary and genitourinary tract regions; and uveal melanomas
(UM) arise from melanocytes in the iris, ciliary body, or choroid [6]. Head and neck cu-
taneous melanomas (HNM) are commonly found on the occipital scalp and skin of the
cheek, and represent a distinct entity of skin cancer [7–9]. Despite the advances in CM
treatment and management, ICI therapy has shown varied and limited benefits for other
subtypes of metastatic melanoma. These subtypes of metastatic melanoma tend to be
less susceptible to ICI therapies compared to CM, potentially due to the low presence
of tumour-infiltrating lymphocytes, low somatic mutational burden, and the lack of a
UV-mutational signature [10]. Nevertheless, post-hoc analysis of clinical trials and small
retrospective studies have shown disparities in response rates to ICI [11,12]. A further retro-
spective study of 428 metastatic melanoma patients treated with ICI observed the median
OS as 45 months for CM, 17 months for AM, 18 months for MM, and 12 months for UM.
Although long-term survival was observed, complete responses were rare in metastatic
melanoma subtypes [13]. These studies suggest that ICI is a valuable treatment option
for metastatic melanoma subtypes, but attention is needed in considering the predictive
clinical and biological characteristics to identify patients who will benefit most from ICI.
Clinical predictors of ICI response, such as tumour mutational burden (TMB), DNA dam-
age response pathways, neo-antigen load, and tumour immune microenvironment (TME)
biomarkers have been extensively studied [reviewed in Bai et al. [14]]. However, predictive
biomarkers of ICIs efficacy involve complex interactions between the different subtypes of
metastatic melanoma and the regulation of the immune system network. Therefore, we
performed targeted exome sequencing and assessed the expression of TILs (CD8+) and
tumour infiltrating B-cells (CD20+) in subtypes of 23 metastatic melanoma patients treated
with ICI in order to explore their clinical impact as prognostic factors.

2. Materials and Methods
2.1. Patient Characteristics

This is a retrospective clinical study consisting of 23 patients diagnosed with metastatic
melanoma and treated with ICI in St. Vincent’s University Hospital, Dublin between
2014–2017. The median age was 62 years (range 42–83). The 23 metastatic melanoma
subtypes consisted of primary tumours derived from cutaneous melanoma (CM, n = 10);
head and neck melanoma (HNM, n = 7); uveal melanoma (UM, n = 4); acral lentiginous
(AM, n = 1) and mucosal melanoma (MM, n = 1). All 23 patients were treated with ICI (pem-
brolizumab, ipilimumab or nivolumab), 12/23 (52%) with one ICI and 11/23 (48%) with
two or more ICIs. The majority of patients did not receive chemotherapy/targeted therapy
17/23 (74%) (Supplementary Table S1). This study was approved by the Institutional
Review Board/Ethics Committee of St. Vincent’s University Hospital, Dublin.

2.2. Immunohistochemistry Staining and Scoring

Representative 4 µm sections of formalin-fixed paraffin-embedded metastatic melanoma
tumour tissues were cut using a microtome, mounted onto poly-l-lysine coated slides and
dried overnight at 37 ◦C. Slides were stored at room temperature until required. Immuno-
histochemistry (IHC) staining was performed using an automated staining apparatus for
IHC (Autostainer, DakoCytomation) according to the manufacturer’s guidelines. Optimum
primary antibody dilutions were predetermined using known positive control tissues.
Negative and known positive control sections were included in each run. Deparaffinisation
and heat-induced epitope antigen retrieval (HIER) consisted of 40-min incubation in pH 9.0
buffer (Target Retrieval, DakoCytomation) in a 95 ◦C water bath followed by cooling to
room temperature. In the Dako Autostainer, sections were treated with 3% H2O2 for 10 min
to quench endogenous peroxidase and then rinsed. Quenched sections were incubated
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with antibodies, CD8 (clone C8/144B; Dako, Agilent, Santa Clara, CA, USA) and CD20cy
(clone L26; Dako) for 30 min, followed by incubation with Dako REAL™ detection system,
alkaline phosphatase/RED reagent for 30 min. The antigen-antibody complex was visu-
alised using AP-Fast Red-type chromogen system. Sections were then counterstained with
Dako REAL haematoxylin (S3301, Dako), and mounted using VectaMount AQ aqueous
mounting medium (h-5501-60). Slides were reviewed by light microscopy. The presence
of CD8+ TIL was scored as 0 (negative), low (1, positive cells at edge of tumour, <5% of
area), moderate (2, tumour infiltration of TILs, 5–50% of area), or high (3, strong diffuse
infiltration by TIL, >50% of area). Scores of 0, 1, 2 were collated and compared against
score 3 for evaluation purposes.

2.3. Targeted Sequencing and Analysis

Retrospectively, formalin-fixed paraffin-embedded (FFPE) tissue was analysed by
using a comprehensive hybrid capture–based next-generation sequencing assay as previ-
ously described [15]. Genomic DNA was extracted from FFPE, sheared (Covaris, Woburn,
MA, USA), and subjected to hybrid capture–based next-generation sequencing to detect
point mutations, small insertions and deletions, copy number alterations and rearrange-
ment/gene fusions in a single assay. In brief, after shearing, adapters were ligated and
individual genomic regions of interest were enriched using complementary bait sequences
(hybrid capture procedure). The selected baits ensure optimal coverage of all relevant
genomic regions. After enrichment, targeted fragments were amplified (clonal amplifi-
cation) and sequenced in parallel at high sequencing depth. Reads were trimmed and
aligned to the hg38 reference genome using BWA and duplicate reads were marked. Base
recalibration was conducted with GATK. Variant calling was performed using Mutect2
from GATK (4.1.3). The Copy Number Aberrations (CNA) burden was estimated for each
sample and enrichment analysis was performed using EnrichR [16–18].

2.4. Statistical Analysis

Progression-free survival (PFS) was calculated from the start date of ICI for metastatic
disease to systemic relapse/death. Overall survival (OS) was calculated from date of
diagnosis for metastatic disease to death or latest follow-up. Comparisons between groups
were performed using Fisher’s exact test. A p-value < 0.05 was considered statistically
significant. Univariate and Cox regression analysis was used to determine independent
prognostic predictors of PFS and OS. The Kaplan–Meier survival estimator method was
applied to calculate PFS and OS, and the log-rank test was used for assessment of statistical
significance. Statistical analysis was performed using STATA v17.0 (StataCorp, LLC, College
Station, TX, USA).

3. Results
3.1. IHC Expression of CD8 and CD20 in Metastatic Melanoma Subtypes

Of the 23 patients, only 22 had available specimens for IHC (one UM subtype contained
too much melanin for analysis). Among the 22 patients, 13/22 (59%) displayed low IHC
staining for CD8 with peritumour and/or interstitial TIL infiltration (score 0, 1, 2) and 9/22
(41%) displayed high CD8 staining with strong diffuse immune cell infiltration (score 3).
CD20 low IHC staining (score 0, 1, 2) was observed in 15/22 (68%) of tumours and 7/22
(32%) displayed (score 3) high staining (Figure 1A–F). The majority of CM and HNM
patients displayed low CD8 and CD20 staining, compared to UM subtype samples which
displayed high CD8 and CD20 staining (Figure 1G–H). There was no significant correlation
with CD8 expression and clinical variables, whereas CD20 high expression was significantly
associated with UM (p = 0.023) (Table 1).
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Figure 1. Immunohistochemical staining of tumour samples at ×200 magnification. Representative
high expression (strong diffuse immune cell infiltration) for (A). CD8 in HNM, (B). CD20 staining
in HNM. Representative low expression (peritumour and/or interstitial immune infiltration) for
(C). CD8 in MM, (D). CD20 expression in CM. Representative negative expression for (E). CD8
and (F). CD20 expression in HNM. Overall expression of (G). CD8 and (H). CD20 in metastatic
melanoma subtypes.
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Table 1. Association between the expression of CD8, CD20 expression, DDR gene mutations, CNA
count and clinical features.

CD8 (n = 22) CD20 (n = 22) DDR Mutation (n = 23)
Neg/Low High Neg/Low High Neg Pos
(n = 14) (n = 8) p-Value (n = 14) (n = 8) p-Value (n = 7) (n = 16) p-Value

<62 5 5 4 6 6 4Age ≥62 9 3 0.221 10 2 0.048 1 12 0.012

CM 7 3 7 3 2 8
HNM 4 3 5 2 4 3
UM 2 1 1 2 0 4

Melanoma
subtype

AM/MM 1 1

0.917

1 1

0.720

1 1

0.171

Yes 2 4 3 3 1 5Chemotherapy No 12 4 0.096 11 5 0.369 6 11 0.382

1 ICI 7 4 7 4 5 7Immunotherapy 2+ ICI 7 4 0.670 7 4 0.670 2 9 0.222

High 3 5 3 5
CD20 Neg/Low 11 3 0.072 4 10 0.510

Positive 9 6
DDR mutation Negative 5 2 0.490

High 5 5 5 5 3 8
CNA count Low 9 3 0.221 9 3 0.221 4 8 0.556

3.2. CD8 and CD20 Cell Infiltration Score Associated with Progression-Free Survival (PFS) in
Metastatic Melanoma Subtypes

In the entire patient group (n = 23), the median OS and PFS times were 27.72 months
(95% CI: 1.81–177.74) and 3.35 months (95% CI: 0.36–39.65), respectively. A high CD8 score
was significantly associated with better progression-free survival compared to a low CD8
score (median PFS, 6.93 months (95% CI: 2.75–19.44) vs. 2.77 months (95% CI: 0.36–7.45),
p = 0.025, log rank) (Figure 2A). CD20 B-cell infiltration score did not significantly improve
PFS (median PFS, 3.07 months (95% CI: 0.36–16.65) vs. 3.41 months (95% CI: 0.45–19.44),
p = NS, log rank) in metastatic melanoma (Figure 2B).
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3.3. Impact of DNA Damage Repair (DDR) Gene Mutation on Clinical Outcome

We next investigated the impact of the number of DDR gene mutations on the clin-
ical outcome of metastatic melanoma subtypes after ICI therapy. We found that 83% of
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metastatic melanoma cases had at least one mutation in a DDR pathway gene (Figure 3A).
DDR gene mutations were significantly associated with better PFS (3.54 months (95% CI:
2.75–9.10) vs. 2.75 months (95% CI: 0.36–3.35), p = 0.012, log rank) in the full cohort (n = 23)
(Figure 3B).
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There was a significant association observed with DDR gene mutation and age
(p = 0.012, Fisher’s exact test), but no significant correlation with CD8/CD20 expression
and clinical variables (Table 1).

3.4. Copy Number Aberrations (CNA) of Metastatic Melanoma Subtypes and Clinical Impact

The median CNA count for the full metastatic melanoma cohort was 168 (range:
26–1402). Sub-analyses based on subtype showed the median CNA count in CM, 202.5
(range: 26–639); HNM, 147 (range: 32–547); UM, 308.5 (range: 168–1402); AM/MM,
151 (range: 145–157). UM has the highest CNA count compared to the other tumours,
but not significantly (Figure 4A). Metastatic melanoma tumours with a high CNA count
showed better PFS (HR: 0.39; median PFS: 5.25 months vs 3.54 months; p = 0.058, log rank)
(Figure 4B).
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of DDR gene mutations (HR 0.28; 95% CI: 0.10–0.81, p = 0.019) are favourable prognostic 
factors for PFS; no variable was found to be a prognostics factor for OS. The variables 
remained as independent favourable prognostic factors in multivariate analysis (p = 
0.018). 

). (B). Progression-free survival (PFS) of CNA low (red line) and high (blue line) in the
total metastatic melanoma cohort. Kaplan–Meier survival curves with a log-rank test were used for
the analysis. ns, not significant.

Univariate analyses for PFS and OS are shown in Table 2. Univariate analysis revealed
that high CD8 expression (HR 0.32; 95% CI: 0.11–0.93, p = 0.039) and the presence of DDR



Med. Sci. 2022, 10, 26 7 of 10

gene mutations (HR 0.28; 95% CI: 0.10–0.81, p = 0.019) are favourable prognostic factors for
PFS; no variable was found to be a prognostics factor for OS. The variables remained as
independent favourable prognostic factors in multivariate analysis (p = 0.018).

Table 2. Univariate Cox Regression analysis of clinical variables associated with PFS and OS.

PFS Univariate Analysis OS Univariate Analysis
Median PFS,

Months (Range) HR (95% CI) p-Value Median OS,
Months (Range) HR (95% CI) p-Value

3.35 (0.36–39.65) 27.72 (1.80–177.74)
Categories (n = 23)

<62 10 3.23 (0.36–16.65) Ref 44.13 (5.12–100.66) Ref
Age ≥62 13 3.35 (0.45–39.65) 0.74

(0.30–1.78) 0.502 27.36 (1.80–177.74) 1.27
(0.415–3.92) 0.670

CM 10 3.54 (0.36–19.45) Ref 51.51 (1.8–100.67) Ref

HNM 7 2.92 (1.51–7.46) 1.38
(0.48–3.98) 0.548 27.73 (5.12–177.74) 1.66

(0.36–7.66) 0.513

UM 4 3.01 (1.54–39.65) 0.82
(0.22–3.07) 0.777 19.52 (10.74–50.13) 4.86

(1.12–21.05) 0.034Melanoma Subtype

AM/MM 2 5.05 (2.72–7.39) 1.27
(0.27–6.01) 0.756 20.90 (14.06–27.72) 5.23

(0.86–31.73) 0.072

Yes 6 4.40 (2.92–7.39) Ref 38.04 (23.52–100.66) Ref
Chemo-Therapy No 17 2.79 (0.36–39.65) 1.00

(0.37–2.69) 0.997 27.30 (1.80–177.74) 0.69
(1.87–2.55) 0.582

1 ICI 12 2.85 (0.36–39.65) Ref 25.74 (1.80–80.91) Ref
Immuno-Therapy 2+ ICI 11 3.48 (2.72–19.44) 0.99

(0.41–2.35) 0.984 35.58 (14.06–177.74) 0.36
(0.11–1.20) 0.098

Neg 16 2.75 (0.36–3.54) Ref 40.50 (5.12–177.74) Ref
DDR Mutation Pos 7 4.40 (0.45–39.65) 0.28

(0.10–0.81) 0.019 27.54 (1.80–100.66) 0.98
(0.29–3.25) 0.984

Low 12 2.92 (1.51–3.54) Ref 31.65 (1.80–177.74) Ref
CNA Count High 11 5.25 (1.54–19.4) 0.39

(0.14–1.08) 0.070 23.75 (5.12–100.66) 1.24
(0.417–3.74) 0.690

Categories (n = 22)
Neg/Low 14 2.78 (0.36–7.45) Ref 27.72 (1.81–177.74) Ref

CD8 Expression
High 8 6.93 (2.75–19.44) 0.32

(0.11–0.94) 0.039 34.11 (5.12–53.61) 0.83
(0.24–2.81) 0.773

Neg/Low 14 3.41 (0.45–19.44) Ref 27.54 (1.81–177.74) Ref
CD20 Expression

High 8 3.07 (0.36–16.65) 1.03
(0.41–2.57) 0.935 32.01 (10.74–80.91) 0.91

(0.27–3.07) 0.888

4. Discussion

Clinical markers of response to ICI therapies have been extensively studied. Compre-
hensive predictive and prognostic models have been developed integrating the expression
of intermolecular interactions within the tumour, its microenvironment as well as the
correlation with tumour genome mutational, neo-antigen burden, and genetic variations in
DNA mismatch repair genes [14]. However, conflicting evidence into the clinical predic-
tive efficacy of ICI biomarkers in different cancer subtypes exists [19]. PD-L1 expression
measured by immunohistochemistry (IHC) has emerged as a widely used biomarker of
response to ICI; however, patients with PD-L1 negative tumours also have shown efficacy
to ICI treatment. In a clinical trial of refractory or metastatic cervical cancer patients treated
with nivolumab, the overall response rates (ORR) were 2/10 (20%) in PD-L1 positive pa-
tients and 1/6 (16.7%) in PD-L1 negative patients. Indeed, a patient with a PD-L1 negative
tumour had a durable partial response that exceeded 24 months [20].

Responses in other cancer types such as small cell lung cancer (SCLC), squamous cell
carcinoma of the head and neck (SCCHN) and cutaneous melanoma led to an accelerated
all-comer approval for pembrolizumab regardless of PD-L1 status [21,22]. However, a
recent follow-up of the cervical cancer KEYNOTE-158 study found that all 14 responses
were in patients with PD-L1–positive tumours (ORR 17.1%) and with no responses observed
in the PD-L1–negative cohort (ORR 0.0%) [23].

Metastatic melanoma is a heterogeneous group of cancers characterised by site of
origin, subtypes based on the cumulative levels of exposure to ultraviolet (UV) radia-
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tion [10,11,24]. Melanomas found in sun damaged areas of the body tend to have a higher
mutational burden than tumours arising from non-sun exposed areas correlating with
somatic mutational profile of the tumour and high response rates after ICI therapy [25]. In
addition, many studies have found that melanoma is characterised by high immunogenicity
and patients with high TIL cells have shown favourable therapeutic outcomes and progno-
sis. However, as ICI only shows efficiency in some metastatic melanoma patients (majority
of cutaneous melanoma), this study examined the clinical relevance of CD8+ TIL and CD20+
tumour infiltrating B cells and the genomic mutational landscape in different subtypes of
23 metastatic melanoma patients treated with immune checkpoint inhibitors (ICI). TILs
have previously been identified as prognostic and predictive biomarkers in many cancers,
including melanoma. However, complex tumour-immune interactions exist whereby some
cancers with similar TIL cell expression respond differently to immunotherapy [26]. We
observed lower CD8+ and CD20+ expression in subtypes CM and HNM. CD8+ TILs have
been detected in metastatic uveal melanoma (MUM) [27], however, no difference in CD8+
infiltrating T cells between metastatic CM and MUM was observed [28]. However, the
number of UM in our study was very low (n = 4). Location of the tumour in head and
neck melanoma has a significant impact on prognosis, with the scalp displaying the worst
prognosis, followed by the ear, cheek, and neck [9]. A rare variant of HNM is desmoplastic
melanoma (DM), which is associated with old age, chronic sun exposure, and location on
the head and neck. HNM DM has shown a great response rate to ICI therapy [29]. However,
Frydenlund et al. [30] found that the presence of CD8+ lymphocytes correlated significantly
with depth of invasion > 1 mm, and PD-L1 expression in DM. Additionally, CD8+ TILs
correlated with PD-L1 expression, which was associated with tumour aggressiveness and
progression in DM [31]. However, in our study, HNM did not harbour a higher mutational
burden comparable to other metastatic melanoma subtypes. High tumour mutation burden
(TMB) has been associated with response to ICI in several cancers. Several studies of multi-
ple cancers have shown that ICI mean response rate positively correlates with TMB [32].
The FDA have approved TMB (TMB-High defined as ≥10 mutations/megabase of DNA
(mut/Mb), as determined by the targeted sequencing FoundationOne CDx (F1CDx) assay)
as a companion diagnostic biomarker for pembrolizumab [33]. However, some clinical
studies also showed that high TMB does not predict clinically relevant responses to ICI in
all cancer types. Specifically, cancer types such as breast, prostate and glioma displayed
no relationship between high CD8 TIL expression and neo-antigen load. Designated TMB-
H tumours failed to achieve a 20% ORR (15.3%) and displayed significantly lower ORR
relative to TMB-Low tumours [34].

In agreement with many studies, DDR gene mutations correlated with better PFS
in the metastatic melanoma cohort. Additionally, metastatic melanoma tumours with a
high CNA count showed better PFS (HR: 0.39; median PFS: 5.25 months vs. 2.92 months;
p = 0.058, logrank) but this was not significant. In univariate analysis DDR gene mutations
and CD8 high were prognostic indicators of better PFS. Therefore, this study highlights
the differential expression of TILs and genomic variation (DDR gene mutations and CNV
counts) in subsets of metastatic melanoma. The variability of these biomarkers highlights
the need for additional predictive and prognostic specific to metastatic melanoma subtypes.
However, this study is retrospective in nature, and is limited by the small sample and
subtype size, therefore further analysis on larger cohorts would be required.
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