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This study was undertaken to determine the effects of IL-1β and TGF-β1 on the expression of differentiation-associated genes in
chondrocytes in vitro. Rat costal chondrocytes were exposed to different concentrations of IL-1β and TGF-β1 for 48 h and
tested for gene expression. IL-1β increased the expression of aggrecanase-1 and aggrecanase-2 and decreased the content of
aggrecan and collagen II. Low concentration of TGF-β1 decreased the expression of aggrecan and collagen II and increased the
expression of aggrecanase-2. However, the level of aggrecanase-1 was significantly elevated in the presence of high concentration
of TGF-β1. IL-1β and TGF-β1 show the ability to modulate the production of aggrecan and collagen II in chondrocytes in vitro.

1. Introduction

Cartilage regeneration is often needed in orthopedic or plas-
tic surgery for the repair of cartilaginous defects. However,
due to the limited regenerative capacity of the cartilage tissue,
the treatment of various cartilaginous lesions remains a chal-
lenge to clinicians. Recently, tissue engineering has emerged
as a new method in which a combination of cells, scaffold,
and bioactive agents is used to fabricate functional new tissue
to replace damaged cartilage [1–3]. Chondrocytes seeded
onto appropriate scaffolds can produce cartilage-like tissues,
thus representing a major cell source for cartilage tissue
engineering [4].

Once chondrocytes had been successfully cultured
in vitro, study of cartilage matrix progressed rapidly. How-
ever, some issues remain unresolved, such as the dedifferen-
tiation which occurs in cultured chondrocytes in vitro. As
the number of passages increases, the cells undergo a change
in phenotype and the morphology becomes more fibroblast-
like [5]. Dedifferentiated chondrocytes lose their ability to

form a matrix; they synthesize predominantly type-1 colla-
gen. There is an associated downregulation of both aggrecan
and type II collagen, the major protein produced by
chondrocytes in cartilage [6, 7]. Thus, maintenance of the
chondrocyte phenotype during a prolonged monolayer
culture, delaying dedifferentiation, is crucial to chondrocyte
transplantation and tissue engineering.

Many studies suggested that interleukin-1beta (IL-1β)
and transforming growth factor beta 1 (TGF-β1) are impli-
cated in cell differentiation [8, 9]. However, their roles in
chondrocyte differentiation are not completely understood.
In this study, we examined the effects of different concentra-
tions of IL-1β and TGF-β1 on the production of collagen II,
aggrecanase-1, aggrecanase-2, and aggrecan in chondrocytes,
in order to explain the mechanism of IL-1β and TGF-β1 on
chondrocyte differentiation.

2. Materials and Methods

2.1. Materials. Female Sprague-Dawley rats weighing about
120 g were purchased from the Laboratory Animal Center
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of Xi’an Jiaotong University (Xi’an, China). DMEM and
fetale bovine serum (FBS) were purchased from Invitrogen.
Hyaluronidase, collagenase II, trypsin, and alcian blue 8GX
(Sigma), mouse anti-rat collagen II monoclonal antibody
(Neomarker), goat anti-rat aggrecan monoclonal antibody
(Santa Cruz Biotechnology), DAB kit (Beijing Zhongshan),
RNA isolation kit (Shanghai Feijie Company), and First

Strand CDNA Synthesis Kit (MBI Fermentas) are the
materials used.

2.2. Isolation and Culture of Chondrocytes. Isolation and cul-
ture of rat costal chondrocytes were performed as described
previously [10]. In brief, rats were killed by cervical disloca-
tion and the ribs were removed and the cartilage was

Table 1: PCR primers.

Gene Primer sequences Product size (bp)

β-actin
Sense 5′-GAGGGAAATCGTGCGTGAC-3′

Antisense 5′-TAGGAGCCAGGGCAGTAATCT-3′ 353

Aggrecanase-1
Sense 5′-GCATCCGAAACCCTGTCAAC-3′

Antisense 5′-GGCGGTCAGCATCATAGTCC-3′ 192

Aggrecanase-2
Sense 5′-AACTTGACATTTGGGCCTGA-3′

Antisense 5′-CAATGGCGGTAGGCAAACT-3′ 290

Aggrecan
Sense 5′-GCTACACAGGTGAAGACTTTGTAGACATCC-3′

Antisense 5′-GCTGTGCCTCCTCAAATGTCAGAGAGTATCT-3′ 478

Collagen II
Sense 5′-TGGTGCTGCTGACGCTGCTCATCGCCACGGTCCTA-3′

Antisense 5′-GCCTTCTGATCAAATCCTCCAGCCATCTGGGCCCGC-3′ 339

(a) (b)

(c) (d)

Figure 1: Effects of different concentrations of IL-1β on the expression of aggrecan in chondrocytes. Representative immunocytochemical
images are shown. ((a) Control; (b) 1 ng/ml; (c) 10 ng/ml; (d) 100 ng/ml). Bar = 50 μm.
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collected and cut into 1mm3 pieces. The tissue samples
were digested with hyaluronidase and collagenase II, and
the isolated cells were cultured at 37°C under a humidified
atmosphere of 5% CO2. Cells were subcultured at a ratio
of 1 : 1 after treatment with 0.25% trypsin/EDTA. The iso-
lated chondrocytes were identified by immunostaining for
collagen II and aggrecan. In this study, cells at passage 2
were used.

2.3. Treatment of Chondrocytes with IL-1β and TGF-β1. Cells
(5× 104) were seeded in triplicates onto 24-well plates and
incubated with different concentrations of IL-1β or TGF-β1
(1, 10, and 100ng/ml) for 48 h. The cells were then collected
and tested for gene expression.

2.4. Immunocytochemical Analysis. Cells were plated on
cover slips and allowed to grow to 80% confluence. Cells were
washed and fixed with 4% paraformaldehyde for 30min.
Normal goat serum was used to block nonspecific binding
sites. The coverslips were then incubated at 4°C overnight
with antiaggrecan (1 : 200) and anticollagen II (1 : 200) anti-
body, followed by incubation with biotinylated IgG
(1 : 400). The bound antibody was visualized using 3,3′-
diaminobenzidine. The coverslips were mounted and exam-
ined under a microscope [11].

2.5. Semiquantitative Reverse Transcription-PCR (RT-PCR)
Analysis. Total RNA was extracted from cells using TRIzol
reagent (Shanghai Feijie Company, Shanghai, China). cDNA
was reverse transcripted from total RNA using the First

Strand cDNA Synthesis Kit (MBI Fermentas, Vilnius,
Lithuania). PCR amplification was performed using the
specific primers summarized in Table 1. PCR products
were subjected to 1.5% agarose gel electrophoresis and
stained with ethidium bromide. The bands were quantified
by densitometry.

2.6. Statistical Analysis. Data are expressed as mean±
standard deviation. Differences among multiple groups
were determined using one-way analysis of variance followed
by Tukey’s post hoc test. A value of P < 0 05 indicated
statistical significance.

3. Results

3.1. Morphological Findings. The isolated cells attached to the
culture plate within 24h and showed a typical polygon shape.
After culturing for 3–5 days, cells grew to confluence and
could be subcultured.

3.2. Immunocytochemical Studies. The amounts of aggrecan
(Figure 1) and collagen II (Figure 2) were decreased with
the increase in the concentration of IL-1β used. In contrast,
treatment with high concentrations of TGF-β1 led to an
increase in the aggrecan level (Figure 3) and decrease in the
level of collagen II (Figure 4).

3.3. RT-PCR Analysis. Increased concentrations of IL-1β
were associated with significantly (P < 0 05) lower levels of
aggrecan and collagen II transcripts, compared to the control
group (Figure 5(a)). IL-1β at the concentration of 10ng/ml

(a) (b)

(c) (d)

Figure 2: Effects of different concentrations of IL-1β on the expression of collagen II in chondrocytes. Representative immunocytochemical
images are shown. ((a) Control; (b) 1 ng/ml; (c) 10 ng/ml; (d) 100 ng/ml). Bar = 50 μm.
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(a) (b)

(c) (d)

Figure 3: Effects of different concentrations of TGF-β1 on the expression of aggrecan in chondrocytes. Representative immunocytochemical
images are shown. ((a) Control; (b) 1 ng/ml; (c) 10 ng/ml; (d) 100 ng/ml). Bar = 50 μm.

(a) (b)

(c) (d)

Figure 4: Effects of different concentrations of TGF-β1 on the expression of collagen II in chondrocytes. Representative
immunocytochemical images are shown. ((a) Control; (b) 1 ng/ml; (c) 10 ng/ml; (d) 100 ng/ml). Bar = 50μm.
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resulted in a maximal induction of aggrecanase-1 and
aggrecanase-2 in chondrocytes. The aggrecan amounts
increased after treatment with 1 and 10ng/ml TGF-β1
but showed no significant change after treatment with
100ng/ml TGF-β1 (Figure 5(b)). TGF-β1 treatment, espe-
cially at the concentration of 1 ng/ml, significantly induced
the expression of aggrecanase-2. However, the level of
aggrecanase-1 was significantly raised by the treatment
with 100ng/ml TGF-β1. Additionally, the collagen II level
was not significant difference with different concentration
of TGF-β1.

4. Discussion

Aggrecan and collagens are abundantly present in the extra-
cellular matrix (ECM) of cartilaginous tissues [12]. Aggrecan
is a proteoglycan that plays a critical role in chondrocyte
growth and differentiation [13]. Aggrecanase-1 and/or
aggrecanase-2 is the enzymes responsible for aggrecan cleav-
age during cytokine-induced cartilage degradation [14–16].
Aggrecanases have the ability to cleave aggrecan and are thus
implicated in modulation of the behaviors of chondrocytes
[17, 18]. Besides structural components, a number of growth

factors such as IL-1β, TGF-β, bone morphogenetic protein
(BMP), and fibroblast growth factor (FGF) are also detected
in cartilage ECM. These growth factors affect multiple
aspects of chondrocyte biology including cell proliferation,
metabolism, and survival [19, 20]. IL-1β can suppress the
proliferation of chondrocytes [21], while BMP and FGF are
known to enhance chondrocyte growth [22]. However, the
roles of TGF-β in chondrocytes remain controversial. It has
been documented that TGF-β can facilitate protein synthesis
and articular chondrocyte proliferation [23, 24], thus partic-
ipating in the metabolism of cartilage ECM. De Haart et al.
[25] reported that TGF-β1 is capable of stimulating the pro-
liferation of primary chondrocytes but has a modest impact
on the proliferation of chondrocytes after subculturing for
several passages.

IL-1, consisting of two molecules (IL-1α and IL-1β), is
primarily produced by mononuclear cells. IL-1β is an
important component of cartilage ECM [26] and plays a neg-
ative role in chondrocyte proliferation [23]. Our data showed
that IL-1β treatment significantly raised the amounts of
aggrecanase-1 and aggrecanase-2 but decreased the produc-
tion of aggrecan and collagen in chondrocytes. These results
suggest that IL-1β can induce the expression of aggrecanases
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Figure 5: Analysis of the mRNA abundance of indicated genes in chondrocytes after treatment with different concentrations of IL-1β (a) and
TGF-β1 (b).

5Journal of Healthcare Engineering



in chondrocytes and lead to ECM degradation, which in turn
decreases the amount of collagen, consequently contributing
to chondrocyte dedifferentiation. Our observations are con-
sistent with a previous study [27].

Mature TGF-β (25 kDa in size), which is composed of
two polypeptides linked with disulfide bonds, is a multifunc-
tional cytokine. It plays a complex role in chondrocyte
biology. It has been reported that TGF-β1 can stimulate pro-
tein synthesis and chondrocyte proliferation [26]. Similarly,
Lee et al. [28] showed that TGF-β1-containing chitosan
scaffolds provide proliferative advantages to chondrocytes,
compared to control scaffolds. Shuler et al. [29] revealed that
adenoviral delivery of TGF-β1 gene into chondrocytes led to
a marked increase in collagen synthesis. However, TGF-β1
failed to rescue the collagen phenotype of dedifferentiated
chondrocytes. Administration of high dose of TGF-β1 to
damaged articular cartilage promoted tissue fibrosis [30]. In
this study, we found that the collagen II level was reduced
to the maximal extent after treatment with a moderate con-
centration of TGF-β1 (i.e., 10 ng/ml). In contrast, low to
moderate concentrations of TGF-β1 decreased the expres-
sion of aggrecanase-1, while high concentration of TGF-β1
elevated the expression of aggrecanase-1 and aggrecanase-2.
These results support the notion that TGF-β1 plays a dual
role in chondrocyte differentiation [31].

Dedifferentiation is a major obstacle for chondrocyte-
based tissue engineering. Both IL-1β and TGF-β1 can mod-
ulate the expression of aggrecan, collagen II, aggrecanase-1,
and aggrecanase-2 in chondrocytes and thus have the poten-
tial to maintain chondrocyte phenotypes after serial passages.
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