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Review Article
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Abstract. Pregnant women and their developing fetuses are vulnerable to multiple environmental insults, including
exposure to aflatoxin, a mycotoxin that may contaminate as much as 25% of the world food supply. We reviewed and
integrated findings from studies of aflatoxin exposure during pregnancy and evaluated potential links to adverse preg-
nancy outcomes. We identified 27 studies (10 human cross-sectional studies and 17 animal studies) assessing the
relationship between aflatoxin exposure and adverse birth outcomes or anemia. Findings suggest that aflatoxin expo-
sure during pregnancy may impair fetal growth. Only one human study investigated aflatoxin exposure and prematurity,
and no studies investigated its relationship with pregnancy loss, but animal studies suggest aflatoxin exposure may
increase risk for prematurity and pregnancy loss. The fetus could be affected by maternal aflatoxin exposure through
direct toxicity as well as indirect toxicity, via maternal systemic inflammation, impaired placental growth, or elevation of
placental cytokines. The cytotoxic and systemic effects of aflatoxin could plausibly mediate maternal anemia, intrauter-
ine growth restriction, fetal loss, and preterm birth. Given the widespread exposure to this toxin in developing countries,
longitudinal studies in pregnant women are needed to provide stronger evidence for the role of aflatoxin in adverse
pregnancy outcomes, and to explore biological mechanisms. Potential pathways for intervention to reduce aflatoxin
exposure are urgently needed, and this might reduce the global burden of stillbirth, preterm birth, and low birthweight.

INTRODUCTION

Aflatoxins are toxic secondary metabolites of Aspergillus
molds that contaminate foods such as maize, rice, and
legumes. Around 0.5 billion people, predominantly those liv-
ing in developing countries, are at significant risk of exposure
to dietary aflatoxins, with many people chronically exposed
to aflatoxins throughout life.1 In many developing countries,
aflatoxins are not effectively controlled in the food system
and consumption of high-risk foods, such as maize and
groundnuts, is common. Aflatoxin accumulation in food is
highly dependent on environmental factors such as moisture,
temperature, nitrogen availability, and plant density,2 as well
as poor harvest practices and improper grain storage.3–6

Aflatoxins have been most widely studied as causative
agents of liver cancer.7 Chronic exposure has also been
associated with other adverse human health outcomes,
including growth faltering8 and maternal anemia.9 Exposure
during pregnancy has been widely documented,10,11 but the
effects on the mother and fetus are not well described.
Aflatoxins inhibit protein synthesis, are cytotoxic, terato-

genic, and immunotoxic.12,13 Thus, they may affect fetal
health both directly during critical periods of development, or
indirectly, through their adverse effects on maternal health.
Accordingly, aflatoxin exposure during pregnancy may plau-
sibly contribute to adverse pregnancy outcomes, including
intrauterine growth restriction, premature delivery, and preg-
nancy loss.14 If this is the case, the public health implications
could be substantial: globally there are 2.65 million still-
births,15 32 million small-for-gestational-age,16 and 15 million
premature deliveries17 every year.

Adverse birth outcomes stem from multiple causes, many
of which remain poorly understood. Advanced maternal age,
parity, maternal infection, and smoking are well-documented
risk factors for adverse birth outcomes, but do not account
for a large proportion of cases.18 Maternal anemia during the
first and second trimesters has also been associated with
preterm birth and low birthweight, although the causal mech-
anism is not well understood.19–21 Maternal inflammation is
the only pathologic process with a clearly defined causal link
to preterm birth.22 Notably, aflatoxin exposure in humans
and animals has been associated with increases in inflam-
matory markers,23–25 suggesting a potential mechanism
pathway linking aflatoxin exposure and adverse birth out-
comes. Anemia of inflammation might also occur, and
could mediate prematurity or poor fetal growth.
Recently, documented high prevalence of exposure during

pregnancy has directed focus on aflatoxins as a potential
harmful exposure during the first 1,000 days23,26—the devel-
opmentally sensitive period from conception to 2 years of
age. There are no published randomized controlled trials
evaluating the effect of aflatoxin exposure during pregnancy.
Therefore, we aimed to conduct a narrative review to evalu-
ate the evidence for a potential role of aflatoxin exposure
and anemia in intrauterine growth retardation, preterm birth,
and pregnancy loss.

METHODS

We searched ISI Web of Knowledge and PubMed (with
medical subject headings [MeSH] strings) using these search
terms: preterm, low birthweight, fetal loss, fetal resorption,
hemolysis, anemia, iron deficiency, and miscarriage, with
mycotoxin or aflatoxin in the search, between the years 1970
and 2015. We identified additional relevant papers from
related review articles identified in the primary search. A total
of 27 studies (10 humans, 17 animals) assessing the relation-
ship between aflatoxin exposure and adverse birth outcomes

*Address correspondence to Laura E. Smith, Division of Nutritional
Sciences, Cornell University, 118 Savage Hall, Ithaca, NY 14853.
E-mail: les36@cornell.edu

770



or anemia were identified. A second search was conducted
to identify literature evaluatingmechanisms that couldmediate
these adverse health outcomes, using these terms: placenta,
cytokines, interleukin-1, interleukin-6 (IL-6), tumor necrosis
factor-α, insulin-like growth factor, intestine, inflammation,
immune, and organ, withmycotoxin or aflatoxin in the search.
Aflatoxin metabolism and implications for exposure

during pregnancy. Aflatoxins B1 (AFB1), B2, G1, and G2
are produced by several species of Aspergillus; AFB1 expo-
sure is the focus of most research because it occurs most
frequently and is most toxic.27 All aflatoxins are readily
absorbed and undergo a variety of biotransformation reac-
tions; both the parent aflatoxins and their metabolites are
detectable in urine. AFB1 becomes toxic through metabolic
activation by various cytochrome P450 enzyme families
including CYP1a2, CYP3a4, and CyP3a5, which are mainly
found in the liver, but also present in other tissues including
the placenta, intestine, and spleen.12 Activation generates
two reactive epoxide species, AFB1-8,9-exo-epoxide and
AFB1-8,9-endo-epoxide, and several other metabolites
including aflatoxin M1 (AFM1). The aflatoxin epoxides and
AFM1 are toxic; AFB1 exo-epoxide binds to DNA forming
mutagenic lesions.13

The epoxides can be detoxified by glutathione-S transferases
(GST) before urinary excretion as aflatoxin mercapturates.28

They may also be enzymatically hydrolyzed, and then detoxi-
fied to a dialchohol.29,30 Enzymes involved in both activation
and detoxification of aflatoxin are polymorphic, and can there-
fore influence the toxic insult of exposure.31 GST polymor-
phisms are relatively common and have been associated with
risk of various cancers as well as adverse birth outcomes.32–34

In evaluating the available evidence for a potential role of
aflatoxin exposure in adverse pregnancy outcomes, it is
important to recognize variations in the balance of activation
versus detoxification depending on dose, species, and age.
A fetal form of CYP3a4, known as CYP3a7, has been
observed in fetal liver within 2 months of conception,35,36

indicating that the fetus may metabolically generate reactive
epoxides following transplacental transfer of maternally
ingested AFB1.37 Fetal livers catalyze the formation of the
epoxide at similar rates to adults but produce fewer GSTs,
and thus have a lower capacity to protect against toxicity.38

In addition to age differences and genetic differences in afla-
toxin metabolism, there is also considerable interspecies vari-
ability in aflatoxin metabolism. A review by Wild and others39

suggested that humans may be relatively sensitive to the
effects of aflatoxin, as higher levels of aflatoxin-albumin
(AF-alb) were formed per dose of AFB1 in humans com-
pared with many standard laboratory animals.
Human biomarker measurement. The human studies

identified in this review relied on biomarkers to assess afla-
toxin exposure; no trials involving experimental manipula-
tions of the diet during pregnancy were identified. Dietary
aflatoxins and their metabolites can be detected in blood,
urine, and breast milk, but their concentrations are not
equally associated with dietary intake. There are three vali-
dated biomarkers of aflatoxin exposure: urinary biomarkers
reflecting exposure in the prior 24–48 hours (AFM1 and
aflatoxin-N7-guanine) and serum biomarkers reflecting
cumulative exposure over the prior 2–3 months (AF-alb).
These biomarkers are all quantitatively associated with die-
tary aflatoxin intake.40 Other aflatoxin metabolites (e.g., serum

AFM1 or AFG1, urinary AFB1 or AFG1, and milk AFM1 or
AFG2) are indicative of exposure, but levels do not correlate
with dietary intake and they are therefore termed biomeasures.
This difference is important when comparing the strength of
epidemiological data that describe relationships between
aflatoxin and health outcomes.
Prevalence of aflatoxin exposure during pregnancy. We

identified 12 epidemiologic studies from Africa, Asia, and the
Middle East, including a total of more than 2,000 participants,
which reported AF exposure in pregnant women and/or
infant cord blood. Of these studies, eight measured AF
exposure in both cord blood and maternal blood, whereas
four measured exposure only in cord blood. Prevalence of
exposure ranged from 6% to 100%,23,41–51 suggesting that
in utero exposure to aflatoxin is widespread where maternal
diets are contaminated. Cord blood samples in Taiwan were
found to have AF-DNA adducts,49 confirming both fetal afla-
toxin exposure and biotransformation capacity to generate
reactive aflatoxin-epoxides.
Aflatoxin and intrauterine growth restriction. Although

exposure is widely documented, there are few human stud-
ies examining the relationship between AF exposure and
pregnancy outcomes. We found four human studies that
relied on aflatoxin biomeasures; three reported a negative
association between an aflatoxin biomeasure and birth-
weight,46,47,51,52 and one reported no association42 (Sup-
plemental Table 1). The presence of AFB1 and AFM1 in
cord blood is quite transient, and in the Nigerian study by
Maxwell and others,42 only 14.6% of samples were positive
for aflatoxins. These studies may have inconsistent findings
in part because the indicators of aflatoxin exposure used
were biomeasures, which represent transient exposure and
are not correlated with dietary intake. We identified two
studies that used quantitative biomarkers, and both of these
reported significant associations. A study of 785 pregnant
Ghanaian women found that those in the highest quartile of
AF-alb had significantly greater odds of having a low
birthweight infant compared with the lowest quartile, with a
linear trend of increasing risk of low birthweight with ascend-
ing aflatoxin quartile.14 In a study of 119 Gambian mother-
infant pairs, average maternal AF-alb (at 5 and 8 months
gestation) was significantly associated with lower weight-for-
age (−0.249 z scores, P = 0.012) and lower height-for-age
(−0.207 z scores, P = 0.044).48

We identified nine experimental animal studies, which
reported consistent significant adverse effects of aflatoxin
on fetal growth. Animal studies in rats, mice, hamsters, swine,
rabbits, and quail consistently report decreased fetal weight,
crown-rump length, and organ weight among exposed ani-
mals compared with control animals across a wide range of
aflatoxin doses (Supplemental Table 2).
Aflatoxin, fetal loss, and spontaneous preterm birth. We

did not identify any human studies investigating risk of fetal
loss, and only one study investigating preterm birth in asso-
ciation with aflatoxin exposure during pregnancy. We only
found two studies investigating aflatoxin and stillbirth; both
reported high levels of aflatoxin biomeasures in cord blood
of three stillborn infants, though neither study was designed
to assess a causal relationship nor investigate a mecha-
nism41,51 (summarized in Supplemental Table 1). A study in
Ghana in which gestational age was measured by ultrasound
or palpation during routine antenatal care found no relationship
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between preterm birth (< 37 weeks gestation) and AF-alb
biomarkers.14 Although these methods are relatively accurate
for determining gestational age in the first 20 weeks, in
Ghana, 43% of women have their first antenatal care (ANC)
visit after the first trimester.53 In addition, the best methods
for gestational age dating include an error of ±week that can
lead to misclassification of prematurity.54,55

In animals, aflatoxin exposure during pregnancy causes
fetal anomalies and decreased live births and litter size. In a
study assessing aflatoxin exposure in pregnant rabbits,
animals were dosed with 0–100 μg AF/kg body weight
(bw)/day.56 Wangikar and others56 reported a decreased
percentage of live fetuses and increased resorption (∼5%),
impaired organ development (14% reduction in organ
weight in 100 μg AF/kg bw/day treatment), and skeletal
anomalies (28% of offspring with anomalies in 100 μg AF/kg
bw/day). Similarly, Kihara and others57 found that rats
treated with aflatoxin (300 μg AF/kg bw/day) on day 15–18
of gestation had a lower proportion of live births/implants
(85%) compared with controls (94%). Aflatoxin is a potent
teratogen because of its ability to bind DNA and subse-
quently inhibit protein synthesis. Several studies have
reported skeletal anomalies in the offspring of animals
treated with aflatoxin during pregnancy.56,58–60 The doses of
aflatoxin used in these animal experiments are similar to esti-
mated exposures ranging from 0 to 91 μg AF/kg bw/day in
human studies in Zimbabwe and China.61

Aflatoxin and maternal anemia. Aflatoxin exposure has
been associated with anemia in one human study and several
animal studies. Shuaib and others9 reported a cross-sectional
association between AF-alb and anemia in 785 pregnant
Ghanaian women, with those in the highest quartile of afla-
toxin exposure having 1.85-fold increased odds of anemia
compared with those in the lowest quartile (confidence
interval = 1.16–2.85).
In vitro and in vivo studies in dogs, rabbits, catfish, and

poultry show that relatively high aflatoxin exposures (range
0.5–1 ppm) are cytotoxic and cause lysis of red blood
cells.62–65 This small body of evidence (summarized in
Supplemental Table 3) indicates that aflatoxin may cause
low hematocrit and hemoglobin,66,67 low iron absorption,68

and microcytic hypochromic anemia,69 all of which are
characteristic of iron deficiency.
Although in vivo and in vitro studies have focused on a

red cell lysis pathway, doses to cause such an effect are
likely higher than levels experienced in human populations.
It is more probable that chronic aflatoxin exposure could
therefore cause anemia through three different mechanisms
related to immune activation and enteropathy: a decreased
capacity of the intestine to absorb essential nutrients such
as iron; a decrease in erythropoiesis arising from chronic
inflammation; and reduced availability of iron due to hepcidin
upregulation (Figure 1). IL-6—which has shown to be
upregulated by aflatoxin exposure24—increases hepcidin
production, which decreases iron absorption and iron
release from macrophages.70 However, further human and
animal studies are needed to test these hypotheses. In
summary, although it is biologically plausible that aflatoxin
exposure causes anemia, the doses used in animal studies
are high and the results may not be relevant for human
exposure. Although there is evidence that aflatoxin expo-
sure can alter the inflammatory response, none of the stud-

ies reviewed explored aflatoxin exposure and inflammation-
induced anemia.
Interactions between aflatoxin exposure and maternal

diet. Pregnant women in developing countries have multi-
ple overlapping risk factors for poor pregnancy outcomes,
which may increase vulnerability to even low doses of afla-
toxin. For example, when diets are deficient in vitamins A,
C, or E, or selenium (all of which protect against the toxic
effects of aflatoxin), the detoxifying system for aflatoxin
may be impaired, increasing the production of epoxides.71,72

Populations at risk of frequent aflatoxin exposure are often
those with poor dietary diversity and thus micronutrient
insufficient is common. We did not identify animal studies
designed to explore potential interactions between nutritional
deficiencies and aflatoxin exposure.
Potential mechanisms linking aflatoxin exposure to

adverse pregnancy outcomes. Mechanistic studies sug-
gest that maternal exposure to aflatoxin might cause
adverse pregnancy outcomes through four primary path-
ways: 1) upregulation of pro-inflammatory cytokines and/or
downregulation of anti-inflammatory cytokines23,24,73–76;
2) induction of enteropathy characterized by intestinal inflam-
mation and impaired barrier function, leading to systemic
immune activation24,76–78; 3) potential toxic effects on mater-
nal organs causing systemic immune activation and impaired
placental and fetal development24,70,79,80; and 4) toxic effects
on fetal organs causing fetal inflammation and impaired fetal
development56,81–83 (Figure 1).
This framework offers numerous hypotheses suggested

by the current literature, with proposed mechanisms draw-
ing heavily on evidence from in vivo animal studies and
in vitro studies. We highlight two necessary areas for future
research to refine and test these hypotheses. First, there is a
need for rigorous human studies on the relationship between
maternal aflatoxin exposure and adverse pregnancy out-
comes, using validated biomarkers. Although cross-sectional
studies at delivery would be informative, stronger designs
would investigate the longitudinal relationship of maternal
exposure during pregnancy and pregnancy outcomes or
experimentally intervene to reduce aflatoxin exposure in
maternal diets. Second, research is needed to elucidate the
mechanism by which aflatoxin mediates adverse pregnancy
outcomes. For translational science in particular, studies are
needed to understand the effects of aflatoxin on the placenta
and fetus at modest dose and on a background of maternal
dietary insufficiency, as this commonly co-occurs with afla-
toxin exposure in human populations.

CONCLUSION

Aflatoxin exposure is common in developing countries,
making it an issue of substantial public health importance.
Despite this, there are relatively few human studies investi-
gating the effects of aflatoxin during pregnancy on the
mother and fetus. Aflatoxin exposure assessment studies
have been small and geographically scattered and the
majority of human studies have focused on low birthweight.
However, animal studies provide biological support for the
hypothesis that aflatoxin exposure may mediate adverse
pregnancy outcomes.
Given the enormous burden of aflatoxin exposure, anemia,

intrauterine growth restriction, and preterm birth in developing
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countries in the context of co-exposure to multiple environ-
mental insults, further investigations into the effects of aflatoxin
are strongly warranted. Research is needed to comprehen-
sively evaluate the relationship and potential mechanisms

linking aflatoxin with adverse health outcomes in pregnancy,
so that novel pathways for intervention can be defined to
mitigate aflatoxin exposure and reduce the global burden of
stillbirth, preterm birth, and low birthweight.

FIGURE 1. (A) Conceptual framework for the effect of aflatoxin exposure on maternal-fetal health. Maternal exposure to aflatoxin might
cause adverse pregnancy outcomes through three primary pathways: induction of environmental enteric dysfunction characterized by intestinal
inflammation, impaired barrier function, and systemic immune activation; upregulation of pro-inflammatory cytokines and downregulation of anti-
inflammatory cytokines; and potential toxic effects on maternal and fetal organs once absorbed causing systemic immune activation, and
impaired placental and fetal development. Red arrows represent the transfer of aflatoxin from mother to placenta to fetus. Solid black arrows
represent the hypothesized effects of aflatoxin exposure in the mother, placenta and fetus; dotted black arrows represent the hypothesized indi-
rect effect of aflatoxin-induced maternal inflammation on the placenta and fetus. The few cross-sectional studies conducted in humans suggest
that aflatoxin exposure impairs intrauterine growth and may be a cause of pregnancy loss. Although no conclusive studies have been conducted
in humans, we have reviewed evidence from in vivo and in vitro studies that aflatoxin exposure may cause anemia, intestinal damage, and eleva-
tion of pro-inflammatory cytokines. In addition, animal studies indicate aflatoxin exposure results in impaired organ development. There are no
studies investigating the effects of aflatoxin on the placenta, but given that the placenta metabolizes and transports aflatoxin, further investiga-
tions into its effects are warranted. This framework provides directions for future research investigating the effects of aflatoxin exposure during
pregnancy.
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