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ABSTRACT

Background and Objective: Clinical decision support tools for risk prediction are readily available, but typically

require workflow interruptions and manual data entry so are rarely used. Due to new data interoperability

standards for electronic health records (EHRs), other options are available. As a clinical case study, we sought

to build a scalable, web-based system that would automate calculation of kidney failure risk and display clinical

decision support to users in primary care practices.

Materials and Methods: We developed a single-page application, web server, database, and application pro-

gramming interface to calculate and display kidney failure risk. Data were extracted from the EHR using the

Consolidated Clinical Document Architecture interoperability standard for Continuity of Care Documents

(CCDs). EHR users were presented with a noninterruptive alert on the patient’s summary screen and a hyperlink

to details and recommendations provided through a web application. Clinic schedules and CCDs were retrieved

using existing application programming interfaces to the EHR, and we provided a clinical decision support

hyperlink to the EHR as a service.

Results: We debugged a series of terminology and technical issues. The application was validated with data

from 255 patients and subsequently deployed to 10 primary care clinics where, over the course of 1 year,

569 533 CCD documents were processed.

Conclusions: We validated the use of interoperable documents and open-source components to develop a low-

cost tool for automated clinical decision support. Since Consolidated Clinical Document Architecture–based

data extraction extends to any certified EHR, this demonstrates a successful modular approach to clinical deci-

sion support.
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BACKGROUND AND OBJECTIVES

Clinical decision support (CDS) “provides clinicians with knowledge

and person-specific information, intelligently filtered and presented

at appropriate times, to enhance the quality and efficiency of health

care.”1 Patient-specific risk predictions are a form of CDS that im-

prove care by helping physicians to organize and synthesize various

clinical data into a single metric.2 Many popular risk-prediction

models, such as the Framingham Cardiovascular Risk Score, the

Atherosclerotic Cardiovascular Disease Risk Score, and the Gail

Breast Cancer Risk Score, have been made publicly available

through websites, spreadsheets, and smartphone apps.3–5 These

methods, however, require manual data entry and workflow inter-

ruptions. Ambulatory practices also present many challenges with

respect to information technology adoption, including minimal

budget for infrastructure and service.6 Sixty percent of ambulatory

practices have <5 physicians and limited personnel available to de-

velop CDS not provided by the electronic health record (EHR).7

Given the widespread adoption of EHRs, CDS could alterna-

tively leverage structured clinical data, such as laboratory results, to

enable the automation of risk-prediction models. Automation could

increase model use, save clinician time, and reduce data entry errors

while protecting patient privacy. We sought to develop a modular

application to extract data, perform calculations, and display CDS

recommendations in a manner that would address real-world con-

straints of ambulatory practices.8 In this study, we developed a

stand-alone CDS application for kidney failure risk prediction as a

case study of CDS using Health Level 7 (HL7) interoperability

standards.9,10

Clinical case study: kidney failure risk prediction
The majority of the 26 million Americans with chronic kidney dis-

ease (CKD) are managed in primary care practices where early rec-

ognition of progression to kidney failure could significantly impact

cost, morbidity, and mortality.11,12 It is difficult for primary care

physicians (PCPs) to recognize kidney disease progression, since de-

terioration can be nonlinear and rapid.13,14 Therefore, we identified

a risk-prediction model with the hypothesis that risk estimates could

greatly enhance PCPs’ ability to recognize kidney failure progres-

sion. After the technology was developed, we sought to validate the

performance of our risk-prediction tool against risk estimates pro-

duced by a tool accompanying the original article.15

METHODS

Requirements and technology selection
The development of the application was divided into 3 stages. The

first stage was the development of risk-prediction calculation and a

user interface, which was developed in a single-page application

(SPA). The second stage required a server to host the SPA and pro-

vide long-term data storage. The last stage included EHR integration

using application programming interfaces (APIs). (Further details

about Stages 1–3 and how we addressed missing and out-of-range

data are provided in Supplementary Appendix S1.)

Stage 1: Single-page application development
We identified an 8-variable risk-prediction model incorporating age,

sex, estimated glomerular filtration rate (eGFR), urine albumin-to-

creatinine ratio, serum albumin, serum bicarbonate, serum calcium,

and serum phosphorus to estimate a 5-year risk of progression to

kidney failure.15 A similar version of this model has been validated

in 31 cohorts internationally.16 We also calculated estimated eGFR

with the more recently validated Chronic Kidney Disease Epidemi-

ology Collaboration (CKD-EPI) equation rather than relying on

older Modification of Diet in Renal Disease (MDRD) equations

reported by our laboratory.17,18 The application was designed to

diagnose CKD stage according to guidelines incorporating eGFR

and albuminuria. If the risk was >10%, the application recom-

mended a nephrology referral. If the risk was >1.5% and any la-

boratory results were missing, the application recommended orders

for any missing laboratory results.

We wanted to ensure that the application could be used by PCPs

across multiple practices, operating systems, and devices, so we fol-

lowed the example set by other projects that have demonstrated the

popularity, scalability, flexibility, and security of web-based applica-

tions.19 In addition, we achieved low-cost implementation through

the use of open-source libraries.20

We built upon our prior experience with the HL7 Version 2

Messaging and Clinical Document Architecture standards.25–28

Since generation of HL7 Consolidated Clinical Document Architec-

ture (C-CDA) documents is a requirement for certified EHRs, pro-

viders incur no incremental cost to export data.29 The Continuity of

Care Documents (CCDs) that are created according to this standard

export structured data, such as laboratory results, encoded with

Logical Observation Identifiers Names and Codes (LOINC).

Knowing that web browsers would host our user interface, we

identified 2 options widely used in online risk prediction tools: a

static HyperText Markup Language (HTML) page, where the risk

calculation is performed by a server-based application (Figure 1A),

and a JavaScript web application, where the risk is calculated dir-

ectly in the web browser (Figures 1B and C). This second method

uses JavaScript to update without refreshing the HTML page con-

tent so that users can change values in the web browser and immedi-

ately recalculate risk. This approach allowed rapid testing and

prototyping without a hosted environment. We developed a SPA

that was able to parse a CCD, extract the data necessary for the 8-

variable model, and return CDS recommendations (Figure 2).

First, we validated the application using CCDs from vendors

that were available in a public repository (https://github.com/chb/

sample_ccdas). We established cross-EHR compatibility by testing

fictional samples from multiple EHRs: Allscripts, Cerner, Green-

way, Partners HealthCare, and Vitera. Second, we requested the cre-

ation of 5 test patients with laboratory results indicating various

levels of risk from Partners HealthCare. The demographics and la-

boratory values were added to these additional test patients in the

same manner as if they were generated for real patients. Then,

CCDs were generated for these test patients in a non-production en-

vironment. We then loaded these CCDs into the SPA and confirmed

that the calculated risk was accurate.

Third, after receiving approval from the Partners HealthCare In-

stitutional Review Board, we performed additional testing using

documents from a cohort of real patients with stage 3, 4, or 5 CKD

assembled for previous studies of CKD care.21,22 We manually veri-

fied demographic data and serum and urine laboratory results in the

patients’ CCDs by comparing them with data in the EHR. We then

validated our risk estimates using a spreadsheet calculator supplied

with the original article.15

Stage 2: Server-based application
The next stage was to develop the server programming to automatic-

ally ingest CCDs and return a prepopulated version of the SPA. To

1112 Journal of the American Medical Informatics Association, 2017, Vol. 24, No. 6

https://github.com/chb/sample_ccdas
https://github.com/chb/sample_ccdas


maintain the security and privacy of health records, the application

required the capability of limiting user access and maintaining an activ-

ity log. We selected Node.js as the server platform so that we could re-

use JavaScript code on both the browser and the server with minimal

editing.23 This period spanned from March to July 2015, during which

time the application was again tested for browser compatibility.

Stage 3: EHR integration via API
The final stage was to set up the services to request CCDs automat-

ically and return a prepopulated version of the SPA to the EHR via

API. Integration with the Partners HealthCare homegrown EHR

(Longitudinal Medical Record) required the use of 3 APIs.

Documents were requested using a CCD Data Portability specifi-

cation, which had been implemented by Partners to provide 5 years’

worth of prior laboratory data. The resulting data were parsed,

risk was calculated, and the estimate was stored in a MongoDB

database.

The final step was to return a CDS message regarding a patient’s

risk, which was shown on the clinical summary tab of Partners’

EHR (Figure 3). If users rolled over the blue underlined text, they

would see the longer version of the CDS message (eg, “12% risk of

end stage renal disease in the next 5 years”).

We requested schedules and CCDs for patients before produc-

tion deployment to ensure that the application accurately diagnosed

patients with stage 3, 4, or 5 CKD. Finally, we coordinated how

long hyperlinks would remain present in the EHR, which was deter-

mined to be 8 days after appointment date. This period spanned Au-

gust to November 2015.

RESULTS

Single-page application validation results
As described in the Methods section, we performed several valid-

ation steps to ensure that our SPA worked as intended. We proc-

essed CCDs for 115 known CKD patients. Several terminology

issues were reconciled. Specifically, certain laboratory tests had mul-

tiple LOINC codes that could be used. For example, we needed to

disambiguate the LOINC code for serum bicarbonate. Though we

initially used the LOINC code 1963-8 (Bicarbonate in Serum) based

on the name “serum bicarbonate” used in the original article and in

common parlance among physicians, we determined that Partners

HealthCare actually reports 2028-9 (Carbon Dioxide in Serum) as

part of the basic metabolic panel. In addition, we found that not all

laboratory results returned numeric results in all circumstances. For

urine albumin-to-creatinine ratio, a normal result would be reported

by the text string “below assay,” which required additional logic for

Figure 1. Methods for delivering online clinical decision support.

Figure 2. Chronic kidney disease risk tool application.

Figure 3. Clinical decision support link and rollover text on LMR patient sum-

mary page.
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us to incorporate into risk calculation. We validated the perform-

ance of the application including imputed values (Supplementary

Appendix A1; Table 1).

Server-based application validation results
During end-to-end testing, we tested the application’s perform-

ance for an additional 58 CKD patients in a non-production en-

vironment. These patients were selected from the schedules of

the 10 primary care clinics by the application. We validated that

the application performed eGFR and risk estimate calculations

correctly. The links to the EHR were functioning. The clinical

recommendations were populating as expected. However, during

the initial service implementation, we had to debug several issues

with the generation and receipt of CCDs. Specifically, using APIs

requires precise management of namespace issues to function re-

liably. We also discovered that some patients could generate >1

clinical document if they had multiple appointments, and that

new patients might not have an enterprise master patient index

number, so the application would not be able to request a CCD

for them. Steps within the file processing were added to accom-

modate these scenarios.

The final validation included 82 patients scheduled at 1 primary

care clinic, some of whom did not have CKD. Out of those 82 sched-

uled patients, our application correctly diagnosed the 14 patients

who had stage 3, 4, or 5 CKD. The application performed eGFR

and risk estimate calculations correctly.

This final phase of testing presented several challenges that we

addressed before go-live. This included recognizing that many

users would be using Internet Explorer 8. HTML elements were

added to create backwards compatibility before the application

would function with this browser version. Additionally, database

indexing was performed based on query parameters to speed web-

site generation.

The system was placed into production utilization in support of

a clinical trial on December 3, 2015. System logs were monitored

and no unexpected downtime was experienced. The system

requested and processed 569 533 documents during the period be-

tween December 4, 2015, and December 3, 2016. During this time

frame, 41 842 (7.3%) of processed CCDs diagnosed patients with

stage 3, 4, or 5 CKD.

DISCUSSION

We developed and implemented an application to automatically cal-

culate 5-year risk of kidney failure for primary care patients. We

determined that it is feasible to use C-CDA documents in a stand-

alone CDS application. Moreover, this application was developed

without a data warehouse and can be adapted to any certified EHR

with minor incremental cost. These advantages are meaningful for

cost-conscious ambulatory care providers, such as PCPs, who desire

CDS and analytics functionality beyond what their EHR can

provide.

We could have created the same tool within an EHR, because

many commercial EHRs represent the data necessary for this risk-

prediction model in a structured, coded manner. There are several

advantages of an externally hosted CDS application like this one,

such as the opportunity to deploy a single application across

multiple EHRs. Also, knowledge managers have more flexibility to

update recommendations and references within a web-based

application versus a commercial EHR.

Previous research has demonstrated that substantial heterogen-

eity and complexity are present within C-CDA documents, and

observations from this research study related to LOINC codes sub-

stantiate those findings.24 These issues, however, were surmount-

able. While we do not expect that small practices would pursue

application development independently, this research demonstrates

that modern development approaches leveraging open-source tech-

nology and interoperability standards can provide a disruptive force

to this sector.8

LIMITATIONS

While our application delivered a reliable service to diagnose a con-

dition and calculate risk across 10 primary care practices and thou-

sands of patients, our findings are limited in several ways. First, our

development, design, and findings were specific to CKD. Second,

our asynchronous approach to requesting clinical information the

night before a patient visit may not support scenarios for clinical de-

cision support that require data collection or immediate clinician re-

sponse during the office visit. Third, validation of the server-based

application was limited to the Partners HealthCare environment.

Lastly, the CKD risk-prediction model relied primarily on structured

data (demographics and lab results). This risk-prediction model may

be less accurate than one that incorporates data that are only

recorded in free-text notes, such as elements of the social history (eg,

“Patient has started smoking again.”). Natural language processing

would be one way to enrich the free-text data so that it can be used

for risk prediction.

CONCLUSION AND IMPLICATIONS

This research study is the first to establish the feasibility of low-cost

stand-alone CDS using modern web technology and C-CDA docu-

ments. Future advances in standards and technology are likely to

further reduce cost and challenges to implementation.
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