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Prediction of Prognosis in Glioblastoma Using Radiomics 
Features of Dynamic Contrast-Enhanced MRI 
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Objective: To develop a radiomics risk score based on dynamic contrast-enhanced (DCE) MRI for prognosis prediction in 
patients with glioblastoma.
Materials and Methods: One hundred and fifty patients (92 male [61.3%]; mean age ± standard deviation, 60.5 ± 13.5 
years) with glioblastoma who underwent preoperative MRI were enrolled in the study. Six hundred and forty-two radiomic 
features were extracted from volume transfer constant (Ktrans), fractional volume of vascular plasma space (Vp), and fractional 
volume of extravascular extracellular space (Ve) maps of DCE MRI, wherein the regions of interest were based on both T1-
weighted contrast-enhancing areas and non-enhancing T2 hyperintense areas. Using feature selection algorithms, salient 
radiomic features were selected from the 642 features. Next, a radiomics risk score was developed using a weighted combination 
of the selected features in the discovery set (n = 105); the risk score was validated in the validation set (n = 45) by 
investigating the difference in prognosis between the “radiomics risk score” groups. Finally, multivariable Cox regression 
analysis for progression-free survival was performed using the radiomics risk score and clinical variables as covariates.
Results: 16 radiomic features obtained from non-enhancing T2 hyperintense areas were selected among the 642 features 
identified. The radiomics risk score was used to stratify high- and low-risk groups in both the discovery and validation sets 
(both p < 0.001 by the log-rank test). The radiomics risk score and presence of isocitrate dehydrogenase (IDH) mutation 
showed independent associations with progression-free survival in opposite directions (hazard ratio, 3.56; p = 0.004 and 
hazard ratio, 0.34; p = 0.022, respectively).
Conclusion: We developed and validated the “radiomics risk score” from the features of DCE MRI based on non-enhancing T2 
hyperintense areas for risk stratification of patients with glioblastoma. It was associated with progression-free survival 
independently of IDH mutation status.
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INTRODUCTION

Glioblastoma is a highly malignant brain tumor that 
has a high recurrence rate and a median survival after 
multimodality treatment of approximately 15 months [1]. 
Glioblastomas are highly vascularized tumors that are 
associated with enhanced vascular permeability, which 
can contribute to angiogenesis and edema [2]. The blood-
brain barrier starts to be disrupted with gliomagenesis, 
endothelial cells from normal vessels are roughly separated 
from the vessel’s main structure and form new angiogenic 
spots [3]. The endothelial cells migrate forming new 
vessels and destroying normal vascular structures to arrive 
at the tumor. Besides tumors secrete a lot of different 
molecules that change the normal microenvironment [3]. In 
glioblastoma, the morphological changes of blood vessels 
include disruption of tight junctions and the formation 
of fenestrations. In addition, the basal lamina thickness 
is changed, the width of the perivascular space and the 
number of pericytes related to the vessels is increased [3]. 
Recently, perfusion-weighted MRI has revealed increased 
vascularity when the tumor aggresses and progresses, and 
a radiomics model using dynamic susceptibility contrast 
MRI has been shown to successfully predict the survival 
of glioblastoma patients [4]. Moreover, dynamic contrast-
enhanced (DCE) MRI is a noninvasive perfusion-weighted 
MRI technique that can measure the density, integrity, and 
leakiness of tissue vasculature, or “permeability imaging,” 
which can provide additional information. The method is 
based on measurements and mathematical models of how 
a tracer perfuses through such vessels. Vessels in normal 
tissues may be characterized by a range of parameters that 
measure blood flow, vessel permeability, and tissue volume 
fractions (i.e., fractions of a given sample of tissue that can 
be attributed to intravascular or extravascular space) [5]. 
Previous studies have revealed that histological grading, 
differentiation of pseudo-progression from true progression, 
and prognosis after surgical resection followed by standard 
therapy can be predicted using DCE MRI [6-9]. However, 
these measures can only demonstrate the group difference 
(e.g., between progression and non-progression) using 
a single statistical parameter, such as median and 99th 
percentile volume transfer constant (Ktrans), which suggests 
the possibility of developing a good prognostication model 
using DCE MRI.

Because radiomics extract high-dimensional features 
from image metrics such as intensity distribution, spatial 

relationships, and textural heterogeneity, which may reflect 
the underlying pathophysiology, including intratumoral 
heterogeneity, better than the single parameter approach, 
several radiomic prognostication models have been 
successfully applied to glioblastoma using MRI [10-
12]. Recently, Park et al. [4] demonstrated that a 
prognostication model using combined radiomic features 
obtained from diffusion- and perfusion-weighted MRI 
showed improved performance over the model using only 
conventional MRI in glioblastoma.

To date, few studies have analyzed the radiomic 
features obtained from DCE MRI for prognosis prediction 
in glioblastoma. To this end, we developed a “radiomics 
risk score” based on DCE MRI for prognosis prediction in 
glioblastoma.

MATERIALS AND METHODS 

Patients
The Institutional Review Board of Seoul National 

University Hospital approved this retrospective study and 
waived the requirement for informed consent (IRB No. 2006-
144-1134). We identified 274 patients with glioblastoma 
from January 2011 to July 2019 at Seoul National University 
Hospital from the radiology report database. The inclusion 
criteria were as follows: patients 1) with a histopathologic 
diagnosis of glioblastoma based on the 2016 World Health 
Organization (WHO) classification of central nervous 
system tumors; 2) who underwent preoperative 3-Tesla 
(3T) MRI 24–48 hours before surgery, including CE T1-
weighted imaging (T1WI), DCE MRI, and T2-weighted 
fluid attenuated inversion recovery (FLAIR) imaging; 3) 
who underwent standard concomitant chemoradiotherapy 
[1] with temozolomide (TMZ) and six cycles of adjuvant 
TMZ after maximal surgical resection of the contrast-
enhancing region; 4) who had a follow-up period ≥ 1 year 
after surgery with or without disease progression; and 5) 
patients in whom O6-methylguanine-DNA methyltransferase 
(MGMT) methylation status was identified. We specified the 
extent of resection as maximal (near-total or gross-total) 
resection because we focused on investigating the effect 
of non-enhancing T2 hyperintense areas of glioblastoma 
for prognosis, excluding the recurrence from gross residual 
tumor [7,13]. The exclusion criteria were as follows: 
patients 1) with incomplete preoperative DCE MRI (n = 
27), 2) who underwent a treatment regimen other than 
standard treatment (n = 61), or 3) patients with follow-up 
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loss (n = 36).
All patients were classified into disease progression 

and non-progression groups according to the Response 
Assessment in Neuro-Oncology criteria 1 year after the 
completion of adjuvant TMZ, following a previous study [9]. 
Patients with any of the following were considered to have 
disease progression: 1) > 25% increase in the sum of the 
products of the perpendicular diameters of the enhancing 
lesions with the smallest tumor measurement; 2) a 
significant increase in non-enhancing T2-weighted FLAIR 
lesions, not attributable to other non-tumor causes; 3) any 
new lesions; and 4) clinical deterioration not attributable 
to non-tumor causes such as a steroid decrease. Thus, 
disease progression was confirmed by either imaging or 
histopathologic diagnosis. In cases where there was an 
evident increase in enhancing lesions that did not meet 
the criteria of progression, short-term (i.e., 1–2 months) 
follow-up imaging was performed. Progression-free survival 
(PFS) was calculated from the date of initial diagnosis to 
the date of progression. If there was no evidence of disease 
at the last follow-up, PFS was calculated between the date 
of the initial diagnostic imaging and the last follow-up. We 
referred to the electronic medical records at our institution 
to distinguish progression from non-progression.

For all patients, clinical characteristics, including age, 
sex, isocitrate dehydrogenase (IDH) mutation status, and 
methylation status of the MGMT tumor promoter, were 
recorded. The tissue-based diagnoses and genetic analyses 
are detailed in the Supplemen.

Imaging Protocol 
All MR images were acquired using a 3T scanner (Verio, 

Trio, or Skyra; Siemens) using a 32-channel head coil. For 
tumor segmentation, the T1-weighted three-dimensional 
(3D) magnetization-prepared rapid acquisition gradient 
echo (MPRAGE) sequence before and after administration 
of gadobutrol (at a dose of 0.1 mmoL/kg of body weight; 
Gadovist; Bayer) and FLAIR imaging were used for the 
enrolled patients. We performed transverse T1WI with the 
following parameters: repetition time (TR), 558 ms; echo 
time (TE), 9.8 ms; flip angle (FA), 70°; matrix, 384 x 187; 
field of view (FOV), 175 x 220; section thickness, 5 mm; 
and number of excitations (NEX) of 1. The parameters for 3D 
MPRAGE were as follows: a TR of 1500 ms, a TE of 1.9 ms, 
an FA of 9°, a matrix of 256 x 232, a FOV of 220 x 250, a 
section thickness of 1 mm, and a NEX of 1. The parameters 
for transverse FLAIR were as follows: a TR of 9000 ms; a TE 

of 97 ms; a TI of 2500 ms; an FA of 130°; a matrix of 384 
x 348; a FOV of 199 x 220; a section thickness of 5 mm; 
and a NEX of 1. Transverse T2WI was performed using the 
following parameters: a TR of 5160 ms; a TE of 91 ms; an 
FA of 124–130°; a matrix of 640 x 510–580; a FOV of 199 x 
220; a section thickness of 5 mm; and a NEX of 3.

DCE MRI was conducted with 3D gradient-echo T1WI after 
the intravenous administration of gadobutrol at a dose of 0.1 
mmoL/kg of body weight, at a rate of 4 mL/s using a power 
injector (Spectris MedRad). After contrast, a 30 mL saline 
bolus was injected at the same injection rate. For each 
section, 40 images were acquired at intervals equal to the 
TR. The scan parameters of DCE MRI were as follows: a TR of 
2.8 ms, a TE of 1.0 ms, a FA of 10°, a matrix of 192 x 192, a 
FOV of 240 x 240, a section thickness of 3 mm, a voxel size 
of 1.25 x 1.25 x 3 mm3, a pixel bandwidth of 789 Hz, and a 
total acquisition time of 5 minutes 8 seconds.

Image Processing and Analysis
The MR data, including CE T1WI, FLAIR imaging, and 

DCE MRI, were transferred from the PACS workstation 
to a personal computer and were processed using the 
Nordic ICE a software package (v4.1.2; NordicNeuroLab). 
DCE MRI analysis was based on the two-compartment 
pharmacokinetic model suggested by Tofts and Kermode, 
and the perfusion analysis method was used to calculate the 
pharmacokinetic parameters, including the volume transfer 
constant between the plasma and extravascular extracellular 
space (Ktrans), extravascular extracellular space volume per 
unit volume of tissue (Ve), and the blood plasma volume 
per unit volume of tissue (Vp) [13]. More specifically, 
deconvolution with the arterial input function (AIF) was 
performed using a two-compartment pharmacokinetic 
model. The AIF was selected from the tumor-supplying 
arteries near the tumor. Each parameter was calculated 
using a fixed T1 measurement of 1000 ms.

Before drawing regions of interest (ROIs), we 
reconstructed the CE T1WI from the sagittal to axial plane, 
acquired Ktrans, Ve, and Vp maps based on DCE MRI, and 
resampled the size of the CE T1WI and FLAIR images using 
one of the maps (Ktrans, Ve, and Vp) as a reference. Two 
ROIs were drawn: 1) the enhancing tumor without cystic 
or necrotic regions CE T1WI, and 2) the non-enhancing T2 
high signal intensity (SI) areas excluding cystic or necrotic 
areas. In all ROIs, the vessels were carefully excluded. 
All ROIs were drawn semi-automatically using threshold 
segmentation, seed growing, and manually, if needed [14]. 
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Tumor segmentation procedures were performed using the 
NordicICE software tool (v4.1.2). The ROIs were drawn by 
a radiologist supervised by an expert radiologist (with 17 
years of neuro-oncology imaging experience).

In our research, we used the software 3D Slicer 4.11.0 
and the Pyradiomics package for extraction of the radiomic 
features. For each patient, a total of 642 features were 
obtained: 107 features, including 18 first-order, 14 shape-
based, 24 Gy-level co-occurrence matrix (GLCM), 16 Gy-
level size zone matrix (GLSZM), 16 Gy-level run length 
matrix (GLRLM), 5 neighboring gray tone difference matrix 
(NGTDM), and 14 Gy level dependence matrix (GLDM), 
were obtained from each of the Ktrans, Ve, and Vp maps. 
Both enhancing region and non-enhancing T2 high SI 
region masks were used, which resulted in six map-region 
combinations per patient. The details of the radiomic 
features are described in the Supplement.

Radiomic Feature Selection
The patients were randomly split into the discovery set 

(n = 105) and validation set (n = 45) at a 7:3 ratio. The 
radiomic feature selection using the discovery set included 
three steps: first, features with more than 10% outliers were 
discarded, and outliers were defined when the largest and 
smallest 10% value of features were larger than the median 
± median absolute deviation (MAD) [15]. Standardization or 
z-score normalization was performed for each feature. Here, 
we used the mean and standard deviation of the discovery 
set to standardize the validation set to prevent data 
leakage, which may lead to a decrease in the generalized 
model performance [16,17]. Second, univariable Cox 
regression analysis was performed to identify significant 
features. Next, a Cox-least absolute shrinkage selector 
operator (Cox-LASSO) model was developed to select the 
final radiomic features in the prediction of PFS using 
the glmnet R package. LASSO is a popular regularization 
method for selecting features from multiple variables, 
which penalizes the coefficients of variables, shrinking 
some of them to zero in the regression model, and leaving 
others with non-zero coefficients [18]. To determine the 
hyperparameter λ in LASSO, 10-fold cross-validation was 
performed using cv.glmnet.

 
Radiomics Risk Score and Risk Stratification

A radiomics risk score model was developed using a 
weighted combination of the final selected features in the 
discovery set. Next, patients were stratified into either 

a high- or low-risk group using the cutoff value of the 
radiomics risk scores obtained by maximally selected rank 
statistics using the maxstat (R package) [19,20] in the 
discovery set, which was also applied to the validation set 
[17]. In other words, the “radiomics risk” was present when 
the radiomics risk score of the patient was higher than the 
cutoff value.

 
Progression Free Survival (PFS) Analysis

A multivariable Cox regression analysis was performed 
using the following clinical variables as covariates, such 
as age, sex, IDH mutation status, and MGMT methylation 
status, in addition to the risk group variable derived from 
the radiomics risk score. To validate the developed radiomics 
risk score, the radiomics risk score was calculated using the 
values of selected features of the validation set, weighted 
by the coefficients obtained from the discovery set. Using 
the maximally selected rank statistics, the cutoff value of 
the radiomics risk score was obtained from the discovery 
set, and the validation set was stratified into either a high- 
or low-risk group using the same cutoff value. 

All statistical analyses were performed using R-3.6.3 
(R-core Team), and a p value of 0.05 was considered 
significant. The overall process from feature extraction to 
risk group stratification is shown in Figure 1.

RESULTS 

Patient Characteristics
150 patients were enrolled in this study (Fig. 2) (92 

[61.3%] male; mean age, 60.5 ± 13.5 years old; and 137 
[91.3%] IDH-wildtype) (Table 1). The patients were divided 
into the disease progression group (n = 61, 40.7%) and 
the non-progression group (n = 89, 59.3%) 1 year after 
surgery. The median PFS was 11.1 months (range, 0.57–97.0 
months). Patients with MGMT promoter methylation status 
were more frequently observed in the non-progression 
group than in the progression group (61 of 89 vs. 20 of 
61, respectively, p < 0.001). The patient characteristics 
are detailed in Table 1. There were no significant 
clinicopathological differences in IDH (p = 1.000), MGMT 
(p = 0.253), sex (p = 1.000), age (p = 0.149), or number 
of recurrences (p = 0.093) between the discovery and 
validation sets (Supplementary Table 1).

 
Selected Features and Radiomics Risk Score

As a result of discarding outliers using three MADs, 589 of 
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642 features were left. After univariable Cox regression, 76 
significant features were left, and 16 features were selected 
using a Cox-LASSO model in the prediction of PFS. The 
intermediate results of the Cox-LASSO procedure are shown 
in Supplementary Figure 1, and a heatmap of radiomic 

features using hierarchical clustering with dendrogram 
is shown in Supplementary Figure 2 for the 76 features 
selected from univariable Cox regression. The intermediate 
results in the procedure of the Cox-LASSO model using the 
training set are illustrated in Supplementary Figure 3. The 

Eligible patients (n = 274)

Total enrolled patients (n = 150)

Inclusion criteria
1)  Histopathological diagnosis of glioblastoma based on the 2016 WHO classification  

of central nervous system tumors
2) 3T MR imaging including CE T1WI, DCE MRI, and T2 FLAIR
3) The standard CCRT and adjuvant TMZ after maximal surgical resection
4) Follow-up period of ≥ one year after surgery without/with disease progression 
5) MGMT methylation status identified

Exclusion criteria
1)  Absence of pre-operative DCE MRI (n = 27)
2) Other treatment regimen except standard treatment (n = 61)
3) Follow-up loss (n = 36)

Fig. 2. Inclusion/exclusion criteria for the study population. CCRT = concomitant chemoradiotherapy, CE T1WI = contrast-enhanced T1-
weighted imaging, DCE = dynamic contrast-enhanced, MGMT = O6-methylguanine-DNA methyltransferase, TMZ = temozolomide, T2 FLAIR = T2-
weighted fluid attenuated inversion recovery, WHO = World Health Organization
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fractional volume of extravascular extracellular space, Vp = fractional volume of vascular plasma space
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16 features selected included 7 features from Ktrans, and the 
other 9 features from the Ve map of the non-enhancing T2 
high SI region: one NGTDM feature, three GLDM features, 
one first-order feature, five GLRLM features, three shape 
features, one GLCM feature, and two GLSZM features (Table 
2). A radiomics risk score model was developed using a 
linear combination of the 16 final selected features, with 
coefficients obtained from the Cox-LASSO model using the 
discovery set (Eq. 1).

Radiomics risk score
= gldm_SmallDependenceEmphasis_NE_Ve x 0.186
+  gldm_SmallDependenceHighGrayLevelEmphasis_NE_Ve 

x 0.119 
+  firstorder_Energy_NE_Ve x 0.114 +... + glcm_

JointAverage_NE_Ve 
x 0.029 + shape_MajorAxisLength_NE_Ve x 0.005 
+ gldm_GrayLevelVariance_NE_Ve x 0.001 (Eq. 1)

Patient Stratification Using the Radiomics Risk Score
For each discovery and validation set, the radiomics 

risk score was computed using the 16 selected features 
obtained from the discovery set. The radiomics risk score 
stratified high- and low-risk group in both the discovery 
and validation sets (both p < 0.001 by the log-rank test) 
(Fig. 3). A cutoff value of 0.374 was obtained using 
maximally selected rank variables (M = 3.277; p = 0.017). 
The intermediate results are presented in Supplementary 
Figure 4.

Table 1. Clinicopathologic Characteristics of the Study Population

Characteristics
Total 

(n = 150)
Progression at 1 Year

(n = 61)
Non-Progression at 1 Year

(n = 89)
P

Age, years   60.5 ± 13.5   61.5 ± 13.03 59.8 ± 13.9 0.444*
Radiation dose, Gy 55.2 ± 9.2 53.0 ± 11.7   56.7 ± 7.3 0.032*
Sex 0.237†

Male   92 41 51
Female   58 20 38

Methylated MGMT promoter < 0.001†

Positive   81 20 61
Negative   69 41 28

IDH1/2 mutation 0.075†

Positive   13   2 11
Negative 137 59 78

Data are number of patients except for age and radiation dose which are presented as mean ± standard deviation. *Calculated using an 
unpaired Student’s t test, †Calculated using chi-square or Fisher’s exact test. IDH = isocitrate dehydrogenase, MGMT = O6-methylguanine-
DNA methyltransferase

Table 2. Radiomics Features Selected for Radiomics Risk Score
No.* Radiomic Features† Coefficients‡

  1 gldm_SmallDependenceEmphasis_NE_Ve 0.186 

  2
gldm_SmallDependenceHighGrayLevelEmpha
sis_NE_Ve

0.119 

  3 firstorder_Energy_NE_Ve 0.114 
  4 ngtdm_Complexity_NE_Ve 0.105 

  5
glrlm_ShortRunHighGrayLevelEmphasis_NE_
ktrans

0.100 

  6
glrlm_ShortRunLowGrayLevelEmphasis_NE_
ktrans

0.096 

  7 glszm_SmallAreaEmphasis_NE_ktrans 0.091 
  8 shape_SurfaceArea_NE_ktrans 0.086 
  9 glrlm_ShortRunEmphasis_NE_ktrans 0.082 

10
glszm_SmallAreaHighGrayLevelEmphasis_
NE_ktrans

0.071 

11 glrlm_RunLengthNonUniformity_NE_ktrans 0.053 

12
glrlm_ShortRunHighGrayLevelEmphasis_NE_
Ve

0.044 

13 shape_Maximum3DDiameter_NE_Ve 0.043 
14 glcm_JointAverage_NE_Ve 0.029 
15 shape_MajorAxisLength_NE_Ve 0.005 
16 gldm_GrayLevelVariance_NE_Ve 0.001 

*Features are given in the descending order of coefficients, †Each 
part of the feature label indicates the class, the name of features, 
subregion of tumor, and the pharmacokinetic parametric maps 
from which the features were derived, in order, ‡Coefficients are 
given to the third decimal place. firstorder = first order features, 
glcm = gray level co-occurrence matrix features, gldm = gray level 
dependence matrix features, glrlm = gray level run length matrix, 
glszm = gray level size zone matrix features, Ktrans = volume transfer 
constant, NE = subregion of nonenhancing T2 hyperintense lesion, 
ngtdm = neighbouring gray tone difference matrix features, 
shape = shape-based features, Ve = volume of the extravascular 
extracellular space
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Multivariable Cox-Regression Analysis Adding Clinical 
Variables

A multivariable Cox regression analysis was performed 
using the following clinical variables as covariates, such 
as age, sex, IDH mutation status, and MGMT methylation 
status, in addition to the “radiomics risk score”. Among 
the five variables, the presence of a high radiomics risk 
score and IDH mutation were significant variables (hazard 
ratio [HR], 3.56; p = 0.004 and HR, 0.34; p = 0.022, 
respectively). In other words, the high radiomics risk 
score group showed an approximately 3.5-fold stronger 
association with progression than the low risk score group, 
and the IDH mutation group showed an approximately 
3-fold stronger association with progression than the 
wildtype group in a different direction. A forest plot of the 
multivariable Cox regression analysis is shown in Figure 
4. The stratification of the survival curves for each single 
variable is plotted in Figure 5.

DISCUSSION

We developed and validated the “radiomics risk score” 
from Ktrans and Ve maps of DCE MRI to show the diagnostic 
capability in the prediction of the high-risk patient group 
in glioblastoma. In particular, we found that our approaches 
could be useful for the following: first, the textural features 
of the Ktrans and Ve maps based on non-enhancing T2 high SI 

areas were crucial for risk stratification in the recurrence of 
glioblastoma (p < 0.001 in both the training and validation 
sets; log-rank test). Second, the developed radiomics 
risk score was independent of IDH mutation status in Cox 
regression analysis (HR, 3.56; p = 0.004 and HR = 0.34, 
p = 0.022, respectively), thereby providing an additional 
surrogate marker for progression in glioblastoma. The final 
16 selected radiomic features out of 642 features were 
obtained from non-enhancing T2 hyperintense lesions: 
nine features (gldm Small Dependence Emphasis showing 
the largest coefficient) from the from Ve map; and the 
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other 7 features (glrlm Short Run High Gray Level Emphasis 
showing the largest coefficient) from the Ktrans map. In 
other words, the textural features obtained from the non-
enhancing T2 high SI areas of the Ktrans and Ve maps that 
significantly stratified the low- and high-risk groups (Eq. 
1 and Table 2) independent of IDH mutation status, were 
the most important risk factors. Thus, radiomic features 
can predict the prognosis of glioblastoma, reflecting the 
intra-tumoral heterogeneity of “permeability” of non-
enhancing T2 hyperintense areas using DCE MRI. This is 
possible because textural features provide a measure of the 
spatial arrangement of the intra-lesional voxel intensities, 
which are obtained by calculating the statistical inter-
relationships between neighboring voxel intensities [21]. 

Our finding that radiomic features from non-enhancing 
T2 hyperintense lesions were more important than contrast-
enhancing lesions in predicting prognosis/progression, 
especially when total resection was performed, is consistent 
with previous studies [13,22]. More specifically, non-
enhancing T2 high SI regions on the tumor margin have 
been described as “peritumoral edema.” Non-enhancing 

T2 high SI lesions are a mixture of infiltrating tumor cells 
and vasogenic edema, where fluid penetrates into the 
parenchymal extracellular space [22]. Schoenegger et al. 
[23] showed that the extent of edema was an independent 
prognostic factor in patients with glioblastoma. However, it 
is not possible to differentiate infiltrating neoplasms from 
vasogenic edema using conventional imaging sequences [22]. 

Recent studies have shown that perfusion characteristics 
obtained from perfusion-weighted MRI predict not only 
survival/progression, but also crucial tumor characteristics 
such as genetic mutations in glioblastoma [9,14,24]. 
Among perfusion-weighted MR techniques, DCE MRI 
images the perfusion characteristics of the tumors that 
cannot be provided in the conventional MRI sequence, 
thereby reflecting the exchange between the vasculature 
in the tissue and interstitium, or “leakage space” [13]. 
Pharmacokinetic parameters obtained from DCE MRI 
represent the tissue permeability; Ktrans, the volume transfer 
constant between the plasma and the extravascular 
extracellular space, has the capability to histologically 
grade gliomas, because higher grade gliomas show 

Fig. 5. Survival curves of the multivariable Cox-regression analysis for risk stratification using each variable of the validation set: 
sex (A), radiomics risk group (B), IDH mutation status (C), and MGMT methylation status (D). IDH = isocitrate dehydrogenase, MGMT = 
O6-methylguanine-DNA methyltransferase
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enhanced angiogenesis, resulting in immature vessels of 
higher permeability [13,25]; and Ve, the extravascular 
extracellular space volume per unit volume of tissue, which 
is another a predictor of progression in patients with high-
grade glioma [26]. Kim et al. [13] showed that the analysis 
of DCE MR parameters of non-enhancing T2 high SI lesions 
could predict the progression of glioblastoma. The 99th 
percentile value (PV) Ktrans of non-enhancing T2 high SI 
lesions in glioblastoma is a candidate imaging biomarker for 
the prediction of early disease progression after standard 
treatment. Moreover, another permeability parameter, the 
97th PV Ve, could also differentiate non-progression and 
progression [13]. As a result, infiltrative tumor cells in non-
enhancing areas, residing outside the enhancing portion, 
could serve as surrogate markers of the aggressiveness and 
prognosis of glioblastoma. Hwang et al. [7] also reported 
that an increased preoperative median Ktrans from non-
enhancing T2 high SI lesions was associated with poor 
survival in patients with gross total resection followed 
by standard therapy, using multivariable Cox regression 
analysis. In our study, the radiomics risk score obtained 
from Ktrans and Ve maps of non-enhancing T2 high SI lesions 
showed diagnostic capability in the risk stratification of 
glioblastoma, which is also consistent with the findings of 
previous studies.

Radiomics extracts high-dimensional features from 
image metrics such as intensity distribution, spatial 
relationships, and textural heterogeneity, which may reflect 
the underlying pathophysiology, including intratumoral 
heterogeneity. Several radiomics prognostication models 
for glioblastoma have been developed and validated using 
radiomic features obtained from MRI [10-12]. However, 
the high dimensionality (d = 642) of radiomics data, or 
much higher dimension of data compared to the number of 
subjects in the discovery set (n = 105), causes the “curse 
of dimensionality,” leading to “overfitting” of the model 
to the discovery set. In other words, the model developed 
using radiomics data may show good performance only in 
the discovery set, but not in the validation set, or show low 
“generalizability” [27]. To overcome this issue, we used the 
Cox-LASSO model to select the salient radiomic features for 
predicting PFS. LASSO is a popular regularization method 
for selecting features from multiple variables because it 
penalizes and imposes the coefficients of some variables to 
shrink toward zero in the regression model. This leaves the 
other variables with non-zero coefficients, selects important 
features [18], which also leads to relieve the “curse of 

dimensionality” due to the high dimensionality in radiomics 
data analysis [28]. 

The IDH1/2 mutation is known to be one of the most 
important molecular biomarkers of glioblastoma, with 
diagnostic, prognostic, and predictive roles. Indeed, a 
previous study demonstrated that the IDH-mutant group 
showed better survival compared to the IDH-wildtype group 
[29]. IDH mutation appears to be a significant marker of 
positive chemosensitivity in secondary glioblastoma [30], 
and maximal surgical resection of the IDH-mutant group 
has been shown to provide a survival benefit [31]. Based 
on these results, glioblastomas are categorized according 
to the 2016 CNS WHO classification into 1) primary 
glioblastomas, IDH-wildtype (approximately 90% of cases), 
and 2) secondary glioblastomas, IDH-mutant (approximately 
10% of cases). Secondary glioblastomas show evidence 
of progression from lower-grade tumors, whereas primary 
glioblastomas present as advanced cancers at diagnosis [32]. 
IDH1/2 mutations facilitate easier formation of the tumor 
microenvironment and increase invasiveness [33]. Previous 
research has demonstrated that the radiomics model built 
with multiregional features from multiparametric MRI 
has the potential to preoperatively detect IDH1 mutation 
status in patients with glioblastomaa [34,35]. Moreover, in 
the study by Tan et al. [36], multivariable Cox regression 
analysis identified the radiomics signature, age, and IDH 
as independent risk factors in the prediction of high-grade 
glioma. Our study showed that the developed radiomics 
risk score increased the risk of progression in patients with 
glioblastoma, independent of IDH mutation status (HR = 
3.56, p = 0.004; HR = 0.34, p = 0.022, respectively). 

The present study has several limitations. First, the 
study was retrospective and the number of patients was 
limited for sufficient extraction of salient radiomic features, 
which warrants further improvement of the radiomics risk 
score with a larger number of patients. Second, the time-
consuming, multi-staged workflow, including manual ROI 
drawing, discourages the application of the developed 
radiomics risk score in clinical practice. The use of the 
automated segmentation technique could effectively 
relieve the problem. Third, radiomic features are sensitive 
to imaging parameters and systems, which may cause the 
radiomics models to fail in multi-centered and prospective 
applications. “Harmonization” of multi-centered radiomics 
could improve the generalizability, and is our next 
research topic. Fourth, although there was no significant 
clinicopathologic difference between the discovery and 
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validation sets, the discovery and validation sets were 
randomly split, instead of using a stratified split, which 
might improve the model performance.

In conclusion, we developed and validated the radiomics 
risk score obtained from DCE MRI and imaging perfusion 
characteristics for the risk stratification of progression in 
glioblastoma. The radiomics risk score was mainly extracted 
from non-enhancing T2 hyperintense areas rather than 
contrast-enhancing areas. It was associated with PFS 
independently of IDH mutation, providing an additional 
surrogate marker of progression in glioblastoma.
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