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ABSTRACT

Numerous studies indicate that non-coding RNAs
(ncRNAs) have critical functions across biologi-
cal processes, and single-nucleotide polymorphisms
(SNPs) could contribute to diseases or traits through
influencing ncRNA expression. However, the asso-
ciations between SNPs and ncRNA expression are
largely unknown. Therefore, genome-wide expres-
sion quantitative trait loci (eQTL) analysis to assess
the effects of SNPs on ncRNA expression, espe-
cially in multiple cancer types, will help to under-
stand how risk alleles contribute toward tumorigen-
esis and cancer development. Using genotype data
and expression profiles of ncRNAs of >8700 sam-
ples from The Cancer Genome Atlas (TCGA), we
developed a computational pipeline to systemati-
cally identify ncRNA-related eQTLs (ncRNA-eQTLs)
across 33 cancer types. We identified a total of
6 133 278 and 721 122 eQTL-ncRNA pairs in cis-
eQTL and trans-eQTL analyses, respectively. Further
survival analyses identified 8312 eQTLs associated
with patient survival times. Furthermore, we linked
ncRNA-eQTLs to genome-wide association study
(GWAS) data and found 262 332 ncRNA-eQTLs over-
lapping with known disease- and trait-associated
loci. Finally, a user-friendly database, ncRNA-eQTL
(http://ibi.hzau.edu.cn/ncRNA-eQTL), was developed
for free searching, browsing and downloading of all
ncRNA-eQTLs. We anticipate that such an integra-
tive and comprehensive resource will improve our
understanding of the mechanistic basis of human
complex phenotypic variation, especially for ncRNA-
and cancer-related studies.

INTRODUCTION

In recent decades, non-coding RNA (ncRNA) has gradu-
ally become a research hotspot because of its important
roles in a wide range of biological processes. ncRNA can in-
teract with various macromolecules, including DNA, RNA
and proteins, and regulate gene expression at transcrip-
tional, post-transcriptional and epigenetic levels (1,2). The
number of identified ncRNAs has also sharply increased
with the widespread usage of high-throughput technology
in different cells and tissues. The latest GENCODE ver-
sion 29 annotated more than 40 000 ncRNAs in the hu-
man genome. Many ncRNAs are important oncogenes or
tumour suppressor genes, such as HULC (3) and HOXB-
AS3 (4). However, compared with protein-coding genes, the
function of most ncRNAs remains to be deciphered.

Single-nucleotide polymorphisms (SNPs), the most com-
mon type of human genetic variation, play important roles
in human complex traits and diseases (5–7). Genome-wide
association studies (GWAS) have found extensive SNPs as-
sociated with various traits and diseases. However, most
GWAS-detected risk SNPs are located in the genomic non-
coding regions (8), which indicates that ncRNAs may be
possible causal targets of some GWAS loci (9). For exam-
ple, rs6983267 on human chromosome 8q24.21 is a poten-
tial genetic biomarker of colorectal cancer predisposition
and is located far from protein-coding genes. Recent studies
demonstrated that rs6983267 may exert its role through in-
fluencing the expression of lncRNA CCAT2 (10,11). There-
fore, investigation of the effects of SNPs on ncRNA expres-
sion will help to understand how risk alleles contribute to-
wards tumorigenesis and cancer development.

Expression quantitative trait locus (eQTL) analysis links
variations in gene expression to genotypes and has been
considered a powerful tool to understand the effects and
molecular mechanism of functional SNPs (12–15). How-
ever, most eQTL analyses are focused on the associations
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between genotypes and protein-coding genes; only a few
ncRNA-related eQTL (ncRNA-eQTL) analyses have been
performed at the genome-wide level (16). In recent years, al-
though some ncRNA-related SNP databases such as Linc-
SNP 2.0 (17), MSDD (18) and lncRNASNP2 (19) have
been developed to explore the relationship of ncRNAs and
SNPs, no database has been developed to specifically and
comprehensively quantify the association between SNP and
ncRNA expression. The Cancer Genome Atlas (TCGA)
consortium (20) has generated DNA germline genotype
datasets, transcriptome profiling and patient survival data
for over 10 000 primary tumours in 33 cancer types. Us-
ing these valuable datasets, we previously performed eQTL
analyses for all cancer types and developed the pancanQTL
online database (21), which provides eQTLs of 20 531 genes.
However, most of the genes in pancanQTL are protein-
coding genes. Recently, the TCGA database has updated
its gene expression profiles and provided expression pro-
files of more than 40 000 lncRNAs. In addition, the TCGA
has also provided microRNA (miRNA) expression profiles.
These data enable us to systematically analyse associations
between SNPs and the gene expression of ncRNAs (in-
cluding lncRNAs and miRNAs). Thus, in this study, us-
ing TCGA genotype data and the latest expression pro-
files, we developed a computational pipeline to systemati-
cally identify ncRNA-eQTLs across 33 cancer types. In ad-
dition, we linked ncRNA-eQTLs to known GWAS loci and
patient survival times and identified thousands of GWAS-
related eQTLs and survival-related eQTLs. Finally, we con-
structed a user-friendly database, ncRNA-eQTL (http://ibi.
hzau.edu.cn/ncRNA-eQTL), for users to browse and down-
load data.

DATA COLLECTION AND PROCESSING

Collection and processing of genotype data

Genotype data of 33 cancer types (full names of cancer
types are shown in Supplementary Table S1) of each indi-
vidual were obtained from the TCGA data portal (https:
//tcga-data.nci.nih.gov/tcga/), which were called by the
Affymetrix SNP 6.0 array platform and included 898 620
SNPs (Figure 1A). To increase the power for eQTL discov-
ery, we imputed autosomal variants for all samples using
IMPUTE2 (22) in each cancer type, with 1000 Genomes
Phase 3 as the reference panel (23). A two-step imputation
procedure was used to improve the computation efficiency.
TCGA genotype data were first pre-phased to certain hap-
lotypes and then imputed from the reference panel into the
estimated study haplotypes. After imputation, the follow-
ing criteria (24) were employed to remove SNPs: (i) impu-
tation confidence score, INFO < 0.4, (ii) minor allele fre-
quency (MAF) < 5%, (iii) SNP missing rate > 5% for best-
guessed genotypes at posterior probability ≥ 0.9 and (iv)
Hardy–Weinberg equilibrium P-value < 1 × 10−6 estimated
by Hardy–Weinberg R package (25) (Figure 1B).

Expression data processing and covariates

Gene expression profiles generated from RNA sequenc-
ing (RNA-seq) and small RNA sequencing (smRNA-seq)

for each sample were obtained from the TCGA data por-
tal (https://gdc-portal.nci.nih.gov/). The gene annotation,
which was used for TCGA RNA-seq and miRNA-seq an-
notation, was downloaded from the GENCODE (version
22) website (https://www.gencodegenes.org/) and miRBase
(http://www.mirbase.org/). According to the annotation, we
removed all the protein-coding genes from the profiles. In
each cancer type, lncRNAs with an average expression of
≥ 0.01 FPKM and miRNAs with an average expression of
≥0.01 TPM were retained. To minimize the effect of outliers
on the regression scores, the expression values for each gene
across all samples were transformed into a standard normal
based on rank (24) (Figure 1B).

Global expression data may be influenced by several fac-
tors, such as batch effects (26) and genetic and non-genetic
biases (27). Thus, covariates are often included to correct
known and unknown confounders and increase the sensi-
tivity of eQTL analyses (24). To adjust the global effect of
population structure, we first used smartpca in the EIGEN-
SOFT program (28) to perform principal component anal-
ysis (PCA) for each cancer type. The top five principal com-
ponents in the genotype data were selected as covariates.
To eliminate the possible batch effects and other confusions
hidden in the expression data, we used PEER software (29)
to select the first 15 PEER factors from the expression data
as covariates. Other factors, such as tumour stage (30), gen-
der (24) and age (12), were also counted as additional co-
variates (Figure 1A).

Identification of cis- and Trans-eQTL using Matrix eQTL

Cis-eQTL and trans-eQTL analyses were performed in our
study. The cis-eQTLs were defined if the SNP was within 1
Mb from the gene transcriptional start site (TSS) and reg-
ulating the corresponding gene expression (24), and trans-
eQTLs were defined if the eQTL was beyond that region
or on another chromosome. To perform cis-eQTL analyses
and trans-eQTL analyses, we first downloaded SNP anno-
tations (GRCh38) (https://www.ncbi.nlm.nih.gov/projects/
SNP) from the dbSNP database. We analysed the associ-
ations between each ncRNA and autosomal SNP through
linear regression by employing a computationally efficient
eQTL analysis called Matrix eQTL (31), controlling for
population bias, sex, age, tumour stage and unobserved fac-
tors in the expression data for each cancer type (29,31). We
defined eQTLs as SNPs with false discovery rates (FDRs)
calculated by MatrixEQTL < 0.05 (Figure 1C).

Identification of GWAS-associated eQTLs

Overlaps between ncRNA-eQTLs and SNPs in GWAS re-
gions were identified to explore the possible target genes of
existing GWAS loci. To achieve that, we first downloaded
all the known risk tag SNPs identified by GWAS from
the National Human Genome Research Institute (NHGRI)
GWAS Catalog (32) (http://www.ebi.ac.uk/gwas, accessed
September 2018), a collection of data from GWAS for var-
ious human diseases and traits. Then, we obtained the
SNPs in linkage disequilibrium (LD) with these tag SNPs
from SNAP (33) (https://personal.broadinstitute.org/plin/
snap/ldsearch.php). The parameters were set as follows:
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Figure 1. Flowchart of the ncRNA-eQTL database. (A) Data collection of sequencing, genotype and GWAS data. (B) Processing of sequencing and gene
expression data. (C) Database content of four types of eQTLs (cis-eQTLs, trans-eQTLs, survival-eQTLs, GWAS-eQTLs).

SNP dataset: 1000 Genomes; r2 (the square of the Pearson
correlation coefficient of linkage disequilibrium) threshold:
0.5; population panel: CEU (Utah residents with northern
and western European ancestry); distance limit: 500 kb. Fi-
nally, these GWAS tag SNPs and LD SNPs were mapped to
ncRNA-eQTL results.

Identification of survival-associated eQTLs

To prioritize promising ncRNA-eQTLs, we identified
ncRNA-eQTLs that may be associated with patient survival
times. The clinical data, including patient overall survival
times, were downloaded from the TCGA data portal. For
each ncRNA-eQTL, we divided the samples into three dif-
ferent groups: AA (homozygous genotype), Aa (heterozy-
gous genotype) and aa (homozygous genotype), and re-
moved the group with samples fewer than three for reliable
survival analysis and Kaplan–Meier (KM) P-value calcu-
lation. Then, the differences in survival times between the
groups were detected by log-rank test, and KM curves were
introduced to visualize the survival time difference of each
group. In addition, survival-associated eQTLs were con-
firmed for ncRNA-eQTLs that fulfilled the condition of
FDR < 0.05.

Database construction

We organized all results in MySQL (version 5.6) relation
tables and constructed a web interface using HTML, CSS
and PHP (version 5.4) running on an Apache web server
(version 2.4.6). A highly flexible and editable plug-in for
the jQuery JavaScript library called DataTables (https://
datatables.net/) was integrated to display the data content
in a dynamic way.

DATABASE CONTENT AND THE WEB INTERFACE

Database content and statistics of lncRNA-related eQTLs

Using genotype data and RNA-seq data, we first per-
formed lncRNA-related cis-eQTL and trans-eQTL associ-
ation analyses in each of the 33 cancer types independently.
The sample sizes of cancer types ranged from 36 in cholan-
giocarcinoma (CHOL) to 1067 in breast invasive carcinoma
(BRCA), with a median of 177 (Table 1). After genotype im-
putation, the incorporated SNPs ranged from 2 745 615 in
BRCA to 5 078 753 in acute myeloid leukaemia (LAML),
with a median of 4 525 414. There were 40 670 ncRNAs
in the expression profiles of each cancer type. We filtered
the ncRNAs with expression >0.01 FPKM, resulting in a
median of 12 554 ncRNAs included in the analyses. All
SNPs within the ±1 Mb region of the TSS of each gene
were tested in cis-eQTL analyses, while others were used for
trans-eQTL analyses.

We identified a total of 6 045 445 eQTL-lncRNA pairs in
33 cancer types of cis-eQTL analyses at a per-tissue FDR of
< 0.05, which corresponded to a median P-value = 5.28 ×
10−6. No cis-eQTL or trans-eQTL were identified in CHOL
because of the low sample size of 36. Among other cancer
types, the number of cis-eQTLs ranged from 51 in uterine
carcinosarcoma (UCS) to 465 249 in lower grade glioma
(LGG). GTEx multi-tissue eQTL studies have reported a
directly proportional relationship of egenes (genes associ-
ated with eQTLs) with sample size, and no plateauing has
been reported at a maximum 300 sample size (24,34). In our
study, we also observed that the number of cis-eQTLs was
significantly positively correlated with the sample size, even
after adjusted numbers of genotype and ncRNAs (P-value
= 6.12 × 10−8, Rs = 0.79, Supplementary Figure S1A), and
a similar trend was exhibited for egenes (P-value = 8.66 ×
10−10, Rs = 0.85, Supplementary Figure S1B).

The distribution of cis-eQTLs relative to the transcrip-
tion start site shows that the majority of eQTLs are ap-

https://datatables.net/
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Figure 2. Case study of eQTLs in survival-eQTLs and GWAS-eQTLs. (A) nc-eQTL rs10965295 and rs3131997 affect patient overall survival times in LGG.
(B) egene CDKN2B-AS1 of rs10965295 and egene hsa-miR-5699–5p of rs3131997 were significantly differentially expressed among genotypes in LGG.
(C) nc-eQTL rs17191861 located in BRCA GWAS locus. (D) egene LINC01235 of rs17191861 was significantly differentially expressed in paired tumour
and normal samples.
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Figure 3. Web interface of the ncRNA-eQTL database. (A) ncRNA-eQTL database header with navigation bar. (B) Four different searching modules we
offer. (C) The results of a quick search. (D) Heat map of cis-eQTLs across 33 cancer types. The colour of each box indicates the values of the correlation
coefficient (r). (E) Heat map of trans-eQTLs across 33 cancer types.

proximately symmetrically centred around the TSS (Sup-
plementary Figure S1C), with 90% within ±300 kb of the
TSS. Overall, 80.2% of lncRNA-eQTLs only regulate the
expression of one lncRNA, and 19.8% of lncRNA-eQTLs
can regulate the expression of more than two genes (Sup-
plementary Figure S1D).

Across all cancer types, we identified a total of 715 952
eQTL–lncRNA pairs in trans-eQTL analyses at per-tissue
FDR of <0.05, which corresponded to a median P-value =
3.45 × 10−13. The number of trans-eQTLs/egenes was also
significantly positively correlated with the sample size (P-

value = 5.52 × 10−9, R = 0.83 for eQTLs, P-value = 2.38 ×
10−11, R = 0.88 for egenes, Supplementary Figure S1E and
F).

Data summary of miRNA-related eQTLs

Using genotype data and miRNA-seq data, we further
performed analyses of miRNA-related eQTLs (miRNA-
eQTLs) across 33 cancer types. In the cis-eQTL analysis,
we identified a total of 87 833 eQTL–miRNA pairs at a
per-tissue FDR < 0.05, and the number of pairs ranged
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Table 1. The summary of samples and lncRNA related eQTLs in this study

Cis Trans

Cancer
type

No. of
samples

No. of
ncRNAs

No. of
genotypes Pairs ncRNAs eQTLs Pairs ncRNAs eQTLs

ACC 77 10 673 3 567 953 6906 229 6547 1030 49 934
BLCA 403 12 090 4 191 159 205 824 4077 156 228 29 840 935 23 714
BRCA 1067 13 170 2 745 615 498 969 8124 308 016 62 764 2 328 46 137
CESC 242 12 410 4 276 554 101 968 2626 82 242 20 779 735 17 555
CHOL 36 12 217 4 012 151 0 0 0 0 0 0
COAD 282 11 063 4 505 758 169 256 3558 129 931 25 618 859 20 423
DLBC 47 11 447 4 819 767 122 8 121 82 4 82
ESCA 148 19 921 4 431 385 44 450 1238 37 484 6177 218 4723
GBM 139 15 247 4 525 414 74 593 1743 61 211 6109 202 5518
HNSC 492 11 768 4 249 925 294 234 4698 217 470 38 283 1 075 31 312
KICH 65 11 736 3 755 519 9 289 265 8 075 382 26 320
KIRC 520 14 537 4 578 071 558 380 7216 380 619 57 962 1 492 47 020
KIRP 287 12 554 4 881 400 228 243 4350 175 762 28 242 905 22 640
LAML 96 19 856 5 078 753 44 537 1069 34 233 5570 148 4802
LGG 498 14 213 4 626 469 723 868 7844 465 249 71 517 1 595 54 899
LIHC 367 9691 4 157 271 171 255 3333 128 444 22 425 764 17 725
LUAD 506 13 624 4 384 017 347 537 5714 249 589 39 040 1 130 31 147
LUSC 495 14 319 3 745 439 321 036 5556 226 779 44 235 1 236 38 111
MESO 81 12 393 4 759 523 15 045 372 14 140 2152 97 1779
OV 251 16 660 2 966 217 102 136 3423 79 467 11 534 515 9317
PAAD 177 13 298 4 991 769 139 332 2623 112 129 16 561 494 13 926
PCPG 174 11 971 4 709 166 119 083 2571 93 599 16 630 552 14 066
PRAD 478 12 945 4 822 300 604 359 7181 412 073 69 412 1 686 56 307
READ 91 11 298 4 540 674 18 312 539 16 750 4645 153 4138
SARC 257 11 454 4 087 361 105 751 2607 85 278 17 121 600 14 261
SKCM 103 11 315 4 854 570 14 150 427 13 014 4856 159 4501
STAD 371 19 117 4 300 207 175 519 3637 128 258 21 276 635 15 847
TGCT 148 14 304 4 811 363 95 579 1989 79 971 11 477 325 9839
THCA 495 12 874 4 876 701 702 674 7426 464 482 57 645 1 353 44 077
THYM 119 13 223 4 930 920 92 773 1907 74 540 9355 330 7028
UCEC 173 11 548 4 957 767 44 594 1327 38 605 9933 411 8385
UCS 55 13 439 3 871 537 51 5 51 0 0 0
UVM 77 9182 4 692 767 15 620 405 14 530 3300 128 2993
Total 8817 26 839 7 169 904 6 045 445 98 087 4 294 887 715 952 21 139 573 526

from six in lymphoid neoplasm diffuse large B-cell lym-
phoma (DLBC) to 11 779 in THCA (Supplementary Ta-
ble S2). There was only one cis-regulated miRNA in UCS
and DLBC, while 301 egenes were identified in THCA. For
trans-eQTL analysis, a total of 5170 eQTL–miRNA pairs
were identified, and the number of trans-eQTLs ranged
from two in adrenocortical carcinoma (ACC) to 658 in lung
squamous cell carcinoma (LUSC). The number of miRNA-
related cis-eQTLs and trans-eQTLs was also significantly
correlated with the number of samples (P-value = 1.41 ×
10−7, R = 0.79 for cis and P-value = 7.75 × 10−5, R = 0.69
for trans, respectively).

Case study of eQTLs associated with patient survival times
and GWAS loci

To prioritize promising ncRNA-eQTLs, we linked our
eQTLs with TCGA patients’ clinical data and identified
eQTLs that may be associated with overall survival times.
We identified a total of 8235 lncRNA-eQTLs and 116
miRNA-eQTLs associated with patient overall survival
times across 33 cancer types at FDR < 0.05. For exam-
ple, rs10965295 and rs3131997 were significantly associated
with patient overall survival times in LGG (Figure 2A), and
these two SNPs could regulate CDKN2B-AS1 expression
and hsa-miR-5699-5p in LGG, respectively (Figure 2B).

These survival-eQTLs and related ncRNAs may play im-
portant roles in cancer development and could serve as pre-
dictive and prognostic biomarkers.

To explore ncRNA-eQTLs and possible causal genes in
known GWAS loci, we identified overlaps between ncRNA-
eQTLs and SNPs in GWAS regions. A total of 45 826
tag SNPs were downloaded from the GWAS Catalog;
920 379 SNPs in LD with these tag SNPs were obtained,
and all these SNPs were defined as GWAS SNPs. By
mapping ncRNA-eQTLs to GWAS SNPs, we identified
253 080 lncRNA-eQTLs and 9252 miRNA-eQTLs over-
lapping with known disease/traits associated loci. To pro-
vide an example of a GWAS-eQTL application, we further
mapped BRCA ncRNA-eQTL results to GWAS SNPs of
corresponding breast cancer. Among breast GWAS SNPs,
we found a total of 1989 eQTLs, which could regulate the
expression of 161 ncRNAs. We further analysed the expres-
sion of these ncRNAs in tumours and their matched nor-
mal samples and found that several ncRNAs were signifi-
cantly differentially expressed between paired tumour and
normal samples at FDR < 0.05. These ncRNAs could be
possible causal targets of BRCA GWAS loci. For example,
Michailidou et al. found that rs77457752 on chromosome
9p23 is significantly associated with breast cancer risk (P-
value = 8 × 10−7), but they did not report its possible tar-
get genes (35). rs77457752 is located in the intron of the
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lncRNA LINC00583. We retrieved the expression level of
LINC00583 and found that it is not expressed in 91% of
breast cancer samples. In the upstream and downstream re-
gions of rs77457752, there are only a few genes (Figure 2C),
and we did not find any correlated protein-coding genes of
rs77457752 and its LD SNPs. In our results, we found that
rs17191861, which is in LD with rs77457752 (LD r2 = 0.73),
is significantly correlated with LINC01235. Differential ex-
pression analysis shows that the expression of LINC01235
in tumours is significantly lower than that of adjacent nor-
mal samples (P-value < 2 × 10−16, fold change = -2.44,
Figure 2D), suggesting that LINC01235 may be a potential
causal gene in this risk locus.

Web interface

To facilitate broad access to these ncRNA-eQTLs and
associated data, we developed a user-friendly data por-
tal, ncRNA-eQTL (http://ibi.hzau.edu.cn/ncRNA-eQTL/
index.php) (Figure 3A), which includes two sub-databases,
lncRNA-eQTL home and miRNA-eQTL home. The two
sub-databases can be switched from the button on the top
right of our data portal. Each sub-database provides four
major datasets: cis-eQTLs, trans-eQTLs, survival-eQTLs
and GWAS-eQTLs (Figure 3B). On the homepage, we
designed a quick search option in which users can in-
put their interested SNPs or genes. Then, four dynamic
tables displaying cis-eQTLs, trans-eQTLs, survival-eQTLs
and GWAS-eQTLs with related information will be pre-
sented (Figure 3C). The cis-eQTL and trans-eQTL table dis-
play SNP ID, SNP genomic position, SNP alleles, ncRNA,
ncRNA position, �-value (effect size of SNP on gene ex-
pression), r-value (correlation coefficient between SNP and
expression) and P-value of eQTLs. For each record, a vector
diagram of a boxplot is provided to display the association
between SNP genotypes and gene expression. The survival-
eQTL table displays SNP ID, SNP genomic position, SNP
alleles, log-rank test P-value and median survival times of
different genotypes. For each record, a vector diagram of
the Kaplan–Meier plot is embedded to display the associa-
tion between SNP genotypes and overall survival times. The
GWAS-eQTLs table will return the SNP information, gene
information and related GWAS traits.

We also designed a ‘Pancan-eQTL’ page, where users can
submit a batch of SNPs and/or gene symbols. Then, two
interactive heat maps of cis-eQTL (Figure 3D) and trans-
eQTL (Figure 3E) will display all the values of the correla-
tion coefficient (r). Users can download all four datasets for
each cancer type from the ‘Download’ section. The ‘Help’
page provides information for data collection, processing
and result summary. ncRNA-eQTL welcomes any feedback
by email to the address provided in the ‘Contact’ page. We
have tested the database on various web browsers, including
Chrome (recommended), Firefox, Opera, Windows Edge
and Safari of macOS.

DISCUSSION

In summary, ncRNA-eQTL is a comprehensive ncRNA
(lncRNA and miRNA)-related eQTL resource that uses
large cancer samples to evaluate the effects of genetic vari-
ants on ncRNA expression. It comprises cis/trans-eQTLs,

survival-eQTLs and GWAS-eQTLs and provides a user-
friendly interface for users to query, browse and download
data of interest. To the best of our knowledge, this is the first
database specifically identifying ncRNA-eQTLs in multiple
cancer types. In addition, we observed that the number of
eQTLs increased with the sample size. The sample sizes of
most of the other eQTL studies were below 300 (30,36), but
in our analyses, 12 cancer types had more than 300 sam-
ples, indicating that the ncRNA-eQTL database would be
the most comprehensive resource for ncRNA-eQTLs.

Two important features of our resource are linking
ncRNA-eQTLs to patient survival times and known GWAS
loci, which will help users narrow down their candidate
eQTLs and egenes. Many researchers have been looking for
genetic biomarkers related to disease susceptibility, devel-
opment and prognosis and have committed to analysing
the biological mechanisms behind genetic determinations.
In our study, we found that thousands of genetic variants
could influence cancer prognosis and provided their related
non-coding egenes. By integrating ncRNA-eQTL data with
known GWAS data, we identified thousands of ncRNA-
eQTLs in known GWAS regions. ncRNAs and related ge-
netic determinations are still poorly functionally charac-
terized. These survival and GWAS-related ncRNA-eQTLs
and egenes could be important candidates for further ex-
perimental validation. Our database will facilitate the fine
mapping of post-GWAS and identification of therapeutic
biomarkers for cancer. We believe that this valuable re-
source will be of significant interest to the research com-
munity, especially in the field of ncRNA and cancer-related
studies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank all members in Zhang lab for helping in paper
writing and website construction. Server support from the
Hubei Key Laboratory of Agricultural Bioinformatics is
also appreciated.

FUNDING

Huazhong Agricultural University Scientific & Techno-
logical Self-innovation Foundation [11041810351 to J.G.,
W.Z]. Funding for open access charge: Huazhong Agricul-
tural University Scientific & Technological Self-innovation
Foundation [11041810351].
Conflict of interest statement. None declared.

REFERENCES
1. Dang,Y., Wang,Y., Ouyang,X., Wang,L. and Huang,Q. (2015) High

expression of IncRNA-PCNA-AS1 in human gastric cancer and its
clinical significances. Clin. Lab., 61, 1679–1685.

2. Do,H. and Kim,W. (2018) Roles of oncogenic long non-coding RNAs
in cancer development. Genomics Informatics, 16, e18.

3. Chen,S., Wu,D.D., Sang,X.B., Wang,L.L., Zong,Z.H., Sun,K.X.,
Liu,B.L. and Zhao,Y. (2017) The lncRNA HULC functions as an
oncogene by targeting ATG7 and ITGB1 in epithelial ovarian
carcinoma. Cell Death Dis., 8, e3118.

http://ibi.hzau.edu.cn/ncRNA-eQTL/index.php
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkz711#supplementary-data


Nucleic Acids Research, 2020, Vol. 48, Database issue D963

4. Huang,J.Z., Chen,M., Chen,Gao, X.C., Zhu,S., Huang,H., Hu,M.,
Zhu,H. and Yan,G.R. (2017) A peptide encoded by a putative
lncRNA HOXB-AS3 suppresses colon cancer growth. Mol. Cell, 68,
171–184.

5. Schork,N.J., Fallin,D. and Lanchbury,J.S. (2000) Single nucleotide
polymorphisms and the future of genetic epidemiology. Clin. Genet.,
58, 250–264.

6. Visscher,P.M., Wray,N.R., Zhang,Q., Sklar,P., McCarthy,M.I.,
Brown,M.A. and Yang,J. (2017) 10 years of GWAS Discovery:
Biology, function, and translation. Am. J. Hum. Genet., 101, 5–22.

7. Wu,C., Miao,X., Huang,L., Che,X., Jiang,G., Yu,D., Yang,X.,
Cao,G., Hu,Z., Zhou,Y. et al. (2011) Genome-wide association study
identifies five loci associated with susceptibility to pancreatic cancer
in Chinese populations. Nat. Genet., 44, 62–66.

8. Hindorff,L.A., Sethupathy,P., Junkins,H.A., Ramos,E.M.,
Mehta,J.P., Collins,F.S. and Manolio,T.A. (2009) Potential etiologic
and functional implications of genome-wide association loci for
human diseases and traits. Proc. Natl. Acad. Sci. U.S.A., 106,
9362–9367.

9. Hua,J.T., Ahmed,M., Guo,H.Y., Zhang,Y.Z., Chen,S.J., Soares,F.,
Lu,J., Zhou,S., Wang,M., Li,H. et al. (2018) Risk SNP-Mediated
Promoter-Enhancer switching drives prostate cancer through
IncRNA PCAT19. Cell, 174, 564–575.

10. Kasagi,Y., Oki,E., Ando,K., Ito,S., Iguchi,T., Sugiyama,M.,
Nakashima,Y., Ohgaki,K., Saeki,H., Mimori,K. et al. (2017) The
expression of CCAT2, a novel long noncoding RNA transcript, and
rs6983267 Single-Nucleotide polymorphism genotypes in colorectal
cancers. Oncology, 92, 48–54.

11. Shah,M.Y., Ferracin,M., Pileczki,V., Chen,B., Redis,R., Fabris,L.,
Zhang,X., Ivan,C., Shimizu,M., Rodriguez-Aguayo,C. et al. (2018)
Cancer-associated rs6983267 SNP and its accompanying long
noncoding RNA CCAT2 induce myeloid malignancies via unique
SNP-specific RNA mutations. Genome Res., 28, 432–447.

12. Grundberg,E., Small,K.S., Hedman,A.K., Nica,A.C., Buil,A.,
Keildson,S., Bell,J.T., Yang,T.P., Meduri,E., Barrett,A. et al. (2012)
Mapping cis- and trans-regulatory effects across multiple tissues in
twins. Nat. Genet., 44, 1084–1089.

13. Nica,A.C., Montgomery,S.B., Dimas,A.S., Stranger,B.E., Beazley,C.,
Barroso,I. and Dermitzakis,E.T. (2010) Candidate causal regulatory
effects by integration of expression QTLs with complex trait genetic
associations. PLoS Genet., 6, e1000895.

14. Westra,H.J., Peters,M.J., Esko,T., Yaghootkar,H., Schurmann,C.,
Kettunen,J., Christiansen,M.W., Fairfax,B.P., Schramm,K.,
Powell,J.E. et al. (2013) Systematic identification of trans eQTLs as
putative drivers of known disease associations. Nat. Genet., 45,
1238–1243.

15. Zhu,Z., Zhang,F., Hu,H., Bakshi,A., Robinson,M.R., Powell,J.E.,
Montgomery,G.W., Goddard,M.E., Wray,N.R., Visscher,P.M. et al.
(2016) Integration of summary data from GWAS and eQTL studies
predicts complex trait gene targets. Nat. Genet., 48, 481–487.

16. Branco,P.R., de Araujo,G.S., Barrera,J., Suarez-Kurtz,G. and de
Souza,S.J. (2018) Uncovering association networks through an eQTL
analysis involving human miRNAs and lincRNAs. Sci.Rep., 8, 15050.

17. Ning,S., Yue,M., Wang,P., Liu,Y., Zhi,H., Zhang,Y., Zhang,J.,
Gao,Y., Guo,M., Zhou,D. et al. (2017) LincSNP 2.0: an updated
database for linking disease-associated SNPs to human long
non-coding RNAs and their TFBSs. Nucleic Acids Res., 45,
D74–D78.

18. Yue,M., Zhou,D., Zhi,H., Wang,P., Zhang,Y., Gao,Y., Guo,M.,
Li,X., Wang,Y., Zhang,Y. et al. (2018) MSDD: a manually curated

database of experimentally supported associations among miRNAs,
SNPs and human diseases. Nucleic Acids Res., 46, D181–D185.

19. Miao,Y.R., Liu,W., Zhang,Q. and Guo,A.Y. (2018) lncRNASNP2: an
updated database of functional SNPs and mutations in human and
mouse lncRNAs. Nucleic Acids Res., 46, D276–D280.

20. Cancer Genome Atlas, N. (2012) Comprehensive molecular portraits
of human breast tumours. Nature, 490, 61–70.

21. Gong,J., Mei,S., Liu,C., Xiang,Y., Ye,Y., Zhang,Z., Feng,J., Liu,R.,
Diao,L., Guo,A.Y. et al. (2018) PancanQTL: systematic identification
of cis-eQTLs and trans-eQTLs in 33 cancer types. Nucleic Acids Res.,
46, D971–D976.

22. Howie,B.N., Donnelly,P. and Marchini,J. (2009) A flexible and
accurate genotype imputation method for the next generation of
genome-wide association studies. PLoS Genet., 5, e1000529.

23. Genomes Project,C., Auton,A., Brooks,L.D., Durbin,R.M.,
Garrison,E.P., Kang,H.M., Korbel,J.O., Marchini,J.L., McCarthy,S.,
McVean,G.A. et al. (2015) A global reference for human genetic
variation. Nature, 526, 68–74.

24. The GTEx Consortium. (2015) Human genomics. The
Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene
regulation in humans. Science, 348, 648–660.

25. Graffelman,J. (2015) Exploring diallelic genetic markers: the
HardyWeinberg package. J. Stat. Softw., 64, 1–23.

26. Kang,H.M., Ye,C. and Eskin,E. (2008) Accurate discovery of
expression quantitative trait loci under confounding from spurious
and genuine regulatory hotspots. Genetics, 180, 1909–1925.

27. Williams,R.B., Cotsapas,C.J., Cowley,M.J., Chan,E., Nott,D.J. and
Little,P.F. (2006) Normalization procedures and detection of linkage
signal in genetical-genomics experiments. Nat. Genet., 38, 855–856.

28. Price,A.L., Patterson,N.J., Plenge,R.M., Weinblatt,M.E.,
Shadick,N.A. and Reich,D. (2006) Principal components analysis
corrects for stratification in genome-wide association studies. Nat.
Genet., 38, 904–909.

29. Stegle,O., Parts,L., Piipari,M., Winn,J. and Durbin,R. (2012) Using
probabilistic estimation of expression residuals (PEER) to obtain
increased power and interpretability of gene expression analyses. Nat.
Protoc., 7, 500–507.

30. Ongen,H., Andersen,C.L., Bramsen,J.B., Oster,B., Rasmussen,M.H.,
Ferreira,P.G., Sandoval,J., Vidal,E., Whiffin,N., Planchon,A. et al.
(2014) Putative cis-regulatory drivers in colorectal cancer. Nature,
512, 87–90.

31. Shabalin,A.A. (2012) Matrix eQTL: ultra fast eQTL analysis via large
matrix operations. Bioinformatics, 28, 1353–1358.

32. MacArthur,J., Bowler,E., Cerezo,M., Gil,L., Hall,P., Hastings,E.,
Junkins,H., McMahon,A., Milano,A., Morales,J. et al. (2017) The
new NHGRI-EBI Catalog of published genome-wide association
studies (GWAS Catalog). Nucleic Acids Res., 45, D896–D901.

33. Johnson,A.D., Handsaker,R.E., Pulit,S.L., Nizzari,M.M.,
O’Donnell,C.J. and de Bakker,P.I.W. (2008) SNAP: a web-based tool
for identification and annotation of proxy SNPs using HapMap.
Bioinformatics, 24, 2938–2939.

34. The GTEx Consortium. (2017) Genetic effects on gene expression
across human tissues. Nature, 550, 204–213.

35. Michailidou,K., Lindstrom,S., Dennis,J., Beesley,J., Hui,S., Kar,S.,
Lemacon,A., Soucy,P., Glubb,D., Rostamianfar,A. et al. (2017)
Association analysis identifies 65 new breast cancer risk loci. Nature,
551, 92–94.

36. Popadin,K., Gutierrez-Arcelus,M., Dermitzakis,E.T. and
Antonarakis,S.E. (2013) Genetic and epigenetic regulation of human
lincRNA gene expression. Am. J. Hum. Genet., 93, 1015–1026.


