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Abstract: The COVID-19 pandemic continues to spread globally at a rapid pace, and its rapid
detection remains a challenge due to its rapid infectivity and limited testing availability. One of the
simply available imaging modalities in clinical routine involves chest X-ray (CXR), which is often
used for diagnostic purposes. Here, we proposed a computer-aided detection of COVID-19 in CXR
imaging using deep and conventional radiomic features. First, we used a 2D U-Net model to segment
the lung lobes. Then, we extracted deep latent space radiomics by applying deep convolutional
autoencoder (ConvAE) with internal dense layers to extract low-dimensional deep radiomics. We
used Johnson–Lindenstrauss (JL) lemma, Laplacian scoring (LS), and principal component analysis
(PCA) to reduce dimensionality in conventional radiomics. The generated low-dimensional deep and
conventional radiomics were integrated to classify COVID-19 from pneumonia and healthy patients.
We used 704 CXR images for training the entire model (i.e., U-Net, ConvAE, and feature selection in
conventional radiomics). Afterward, we independently validated the whole system using a study
cohort of 1597 cases. We trained and tested a random forest model for detecting COVID-19 cases
through multivariate binary-class and multiclass classification. The maximal (full multivariate) model
using a combination of the two radiomic groups yields performance in classification cross-validated
accuracy of 72.6% (69.4–74.4%) for multiclass and 89.6% (88.4–90.7%) for binary-class classification.

Keywords: COVID-19 detection; deep convolutional autoencoder (ConvAE); 2D U-Net model;
imaging biomarker; deep-learning features; deep latent space radiomics; chest X-ray imaging

1. Introduction

The global pandemic associated with COVID-19 continues to spread across the world.
It has led to more than 151 million cases and 3.17 million deaths as of 30 April 2021, accord-
ing to the World Health Organization (WHO) statistics [1]. The WHO declared this to be a
Public Health Emergency of International Concern (PHEIC) on 30 January 2020, and finally,
on 11 March 2020, the situation was recognized as a global pandemic [2,3]. The highly
contagious nature of this virus, leading to infections similar to the severe acquired respira-
tory syndrome, increased the importance of early detection of COVID-19 to prevent the
further spreading of this disease. In clinical routine, simply available imaging modalities,
for instance, chest X-ray (CXR) and thoracic computed tomography (CT) offer significant
aid to clinicians for imaging diagnosis [4–13]. However, the current gold standard is the
reverse transcription–polymerase chain reaction (RT-PCR) to diagnose COVID-19 viral
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infection. However, RT-PCR, which relies upon nasopharyngeal or throat swabs, can
be influenced by low viral load or sampling errors [6,10] and thus presents a significant
challenge, particularly during the early stage of infection with low sensitivity [11–13].

Machine learning, as part of artificial intelligence (AI), has unequivocally revolu-
tionized modern medicine, significantly contributed to the medical imaging field, and
actively shown its strength for the battle against COVID-19 by enabling more accurate, safe,
reliable, and efficient solutions [14]. Several machine-learning-based pipelines are offered
for COVID-19, which aim to automatically segment the lung lobes [15–24] or provide diag-
nosis and clinical assessment [7,9,25,26], supporting the unequivocal performance of AI in
medical imaging. These approaches often used pretrained deep models or a variety of these
models or used conventional imaging biomarkers, which are concerned with the accuracy
of the models. However, here, we challenge such analysis by our own designed models to
extract deep-imaging throughputs and by independently valid models; all models used in
this study to prove the reproducibility of these models.

CT and CXR are two widely used imaging modalities to diagnose or screen for
COVID-19 [4–9]. Many studies focus on classifying COVID-19 patients from those with
other non-COVID-19-related diseases, such as pneumonia [22–28]. Indeed, there is some
degree of similarity between pneumonia and COVID-19 for radiological examinations.
Chen et al. [22] proposed a U-Net++-based approach to discriminate COVID-19 versus non-
COVID-19 patients on the segmented lung area with 106 chest CT images (51 COVID-19
patients). X-ray imaging modalities are less sensitive than CT imaging [27] while consider-
ing the first-line investigation method for COVID-19 screening. However, considering the
overwhelming number of COVID-19 cases, routine CT imaging places an immense load
on different radiology locations, increasing the necessity of employing CXR imaging to
detect COVID-19. To differentiate COVID-19 from pneumonia and healthy cases, Ghoshal
et al. [25] presented the Bayesian convolutional neural networks trained on 70 lung CXR im-
ages from available data sources with a detection accuracy of 92.9% [28]. This outperformed
the standard VGG16 model-based diagnosis, which showed 85.7% detection accuracy.

A comparative analysis on three deep-learning models (i.e., InceptionV3, ResNet50,
and combined Inception-ResNetV2) used to detect COVID-19 showed that the ResNet50
model achieved the highest classification accuracy, followed by InceptionV3 and Inception-
ResNetV2 while testing on publicly available CXR images [7]. Another ResNet-based
COVID-19 detection model obtained an area under the curve (AUC) performance of 95.2%
in 1078 X-ray images (1008 non-COVID-19 pneumonia and 70 COVID-19 patients) [26].
Heidari et al. [27] proposed a convolutional neural network (CNN) model through transfer
learning to categorize CXR images into the classes of infected pneumonia, COVID-19, other
community-acquired no-COVID-19 pneumonia, and normal cases using 8474 diagnostic im-
ages and yielded an accuracy of 94.5%. In summary, CNN-based models to detect COVID-
19 using CXR imaging include but are not limited to ResNet18 [28–30], ResNet50 [7,30,31],
MobileNetV2 [8], CoroNet [32], Xception [33], Xception + ResNet50V2 [34], DarkCovid-
Net [35], COVID-Net [9], COVIDX-Net [36], Parallel-Dilated COVIDNet (PDCOVID-
Net) [37], and Deep-COVID [38]. Many of these methods rather used pretrained models to
tackle the classification problem or extracting features to be used with the classifier or did
not validate their model independently.

This study scrutinizes a hybrid machine learning approach involving a hierarchy of
models to computerize the diagnosis of COVID-19 from CXR images. We first applied an
intelligent system for automatic segmentation of the lung lobes using U-Net and then used
the models trained with conventional and/or deep radiomics to perform assessments on
several independent validation sets. U-Net is independently used for our testing datasets
after being trained by our training set, which makes it more interesting than previously
presented approaches (e.g., [28]). Our study investigates the plausibility of deep and
conventional radiomics as imaging biomarkers for diagnosing COVID-19 using CXR. Here,
we summarized the contributions of this study as follows:
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• The proposed approach trains and independently uses a 2D U-Net model for segment-
ing the lung lobes in CXR images;

• We proposed a convolutional deep autoencoder (ConvAE) to extract low-dimensional
deep-imaging features, called deep radiomics, from CXR images as potential diagnos-
tic biomarkers for COVID-19;

• Our study addresses the curse of dimensionality problem using high-dimensional
deep radiomics by utilizing a ConvAE to compress the feature space and combine
them with conventional radiomics for diagnostic purposes;

• The proposed model successfully classifies subjects into healthy, pneumonia, and
COVID-19 cases through binary- and multiclass classification, as validated with an
independent cohort of patients. We also provided comparative analyses of the different
combinations of feature categories.

In the next section, the methodology and application of U-Net and ConvAE to segment
lung lobes (https://www.kaggle.com/nikhilpandey360/chest-xray-masks-and-labels, ac-
cessed on 21 January 2019) and extract deep radiomics are presented. Sections 3 and 4
show experimental results and discussion, respectively. Section 5 concludes the study with
a summary of the results and overall performance.

2. Methods

The proposed methodology relies on a hierarchy of deep learning models for segment-
ing lung lobes, extracting deep radiomics, and detecting COVID-19 cases from extracted
features. The workflow of the proposed study is shown in Figure 1.

2.1. U-Net for Segmentation of Lung Lobes

Lung lobes segmentation has achieved reasonable accuracy using different config-
urations of deep neural networks [15–23]. Particularly, automatic segmentation of lung
lobes to diagnose COVID-19 uses deep-learning-based models. Among many structures,
the U-Net architecture has achieved exceptional capability in segmenting lung images in
CT and CXR modalities [15,21]. In this study, we used 2D U-Net to segment lung lobes in
CXR images.

The U-Net architecture [39] contains an encoding (contracting) path and decoding
(expanding) path in the model. The encoding path shrinks the input spatial dimension
to reduce the size, and the decoding pathway enlarges the dimensionality of the data
and then generates segmentation maps as the outcome. The initial design does not use
padding in convolutional layers, leading to a smaller output segmentation map. However,
as we would like to preserve the same initial spatial range of the input and the output, we
used padding in the model’s architecture. Our modified architecture had 32 convolutional
layers in the encoding (contracting) path. All the CXR images were normalized, and
for every convolutional layer, batch normalization and a rectified activation linear unit
(ReLu) layer were used. After every consecutive convolutional layer, three 2 × 2 pooling
layers decreased the input spatial dimension of 512 × 512 to a reduced dimensionality of
32 × 32 as the outcome of the contracting path (encoder). After that, these compressed data
were directed to a decoder (expanding path), which has an encoder with skip connection
(bridges) between two paths. This path was deconvolved by upsampling the data with a
constant kernel size (2 × 2). The transitional data from the encoder were then appended
to the upsampled data in each layer for the entire path, which facilitated the model to
reconstruct the information lost throughout the max-pooling process. Our model took a
CXR image with a single channel and spatial size of 512 × 512 for 2D and a cube size of
128 × 128 × 64 for 3D model. Figure 2 shows more details about the network architecture.
Additionally, the convolutional and deconvolutional layers with their filters are presented
in Figure 2, which can help the readers follow changes in data dimensionality through the
model. The overall trainable parameters in our network are 7,759,521.

https://www.kaggle.com/nikhilpandey360/chest-xray-masks-and-labels
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for diagnosis of COVID-19.

Dice loss: The Dice loss function originated from the Sørensen–Dice similarity coef-
ficient in the 1940s and was used to measure the similarity between two samples [40,41].
The Dice loss is used for 3D segmentation of medical imaging in 2016 [42]. Dice similarity
coefficient (DSC)’s definition is represented as follows:

DSC =
2 ∑N

i p(yi)gi

∑N
i p(yi)

2 + ∑N
i g2

i

(1)

where p(yi) is the predicted probability value of the segmented label i, and gi represents
the actual label value to be segmented by our model. i changes according to the number of
segments (here we have two labels lung lobes and background).
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Binary cross-entropy loss function/log loss: Binary, or sigmoid, cross-entropy (BCE) [43]
is a cross-entropy loss function modified by adding a sigmoid activation function in the
overall loss as follows:

LBCE = − 1
R

R

∑
i=1

yi log(p(yi)) + (1− yi)log(1− p(yi)) (2)

where y represents the actual label and p(y) is the predicted probability value of the
segmented label for all R points. The use of a sigmoid function, 1

1+e−y , allows the function’s
binarization, representing the existing class against the background class.
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2.2. Deep Radiomics

Convolutional neural networks (CNNs) are recognized deep neural network struc-
tures that have been widely used for a variety of applications, especially in medicine [44].
The convolution layers made by additive adaptive filters that control the receipt field of the
layers have increased the popularity and efficiency of the model [45–48]. We have already
used CNN in the U-Net to segment the lung lobes in the previous section. Another known
form of utilizing such models is to extract hidden layer weights of a pretrained model and
use them as features, called deep radiomics, or deepomics. Some successful pretrained
models used for this purpose are AlexNet [45], deep residual network (ResNet) [49], VGG
network [50], and GoogleNet (also codenamed Inception_v1) [51]. In medical imaging and,
specifically, COVID-19 imaging research, many CNN models were used as pretrained, fine-
tuned, or slightly modified models, which showed promising results to detect COVID-19.
Pretrained ResNet and InceptionV3 models were used in various versions either individ-
ually or combined to detect COVID-19 infection in CXR imaging [10,28]. The transfer
learning method was applied to one or a combination of several pre-trained CNN models
(i.e., Xception) for detecting COVID-19 [8,10,34]. An application of deep learning to deal
with the high dimensionality of deep radiomics using Xception + ResNet50V2 involves
convolutional and drop-out layers [34], which has some similarities with a parallel-dilated
convolutional neural network architecture [37], despite the fundamental differences that
come from using two distinct deep-learning pathways instead of pretrained models. Simi-
larly, there are some other variations of pretrained models labeled with other names (i.e.,
CoroNet [30] and COVIDX-Net [36]), which achieved considerable performance in differen-
tiating COVID-19 from pneumonia and normal cases. Several deep-learning-interconnected
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models used a hierarchy of CNN models with more innovative configurations to conduct
classification, such as DarkCovidNet [35] and COVID-Net [9].

The extraction of radiomics-based features also has sparked great interest among
researchers in the field, in which a large number of features from CXR images are extracted
through deep-learning models (e.g., ResNet) and SVM [31] or conventional radiomics
approaches [52,53] used to perform computer-aided diagnosis. Although better diagnos-
tic/prognostic decisions are made by having higher dimensional features to capture the
characteristics of the medical data better, the abundance of attributes creates a problem
called the curse of dimensionality. It lowers the accuracy while showing pseudo improve-
ment in the overall accuracy of the system due to the increased collinearity among the
features. To alleviate this problem, one potential solution is to use deep-learning feature
selection for deep radiomics [54].

In this study, a deep convolutional autoencoder modified with dense layers was used.
Several initial layers are convolutional layers with 3 × 3 filter size and dense layers to con-
vert the input images to latent space and extract the representation code of the input [52,55].
Such a stacked autoencoder encodes the input CXR image into compressed latent space
radiomics, also known as code, within the lower-dimensional space. With these codes, the
autoencoder reconstructs the original input similar to decoder path modules [56,57]. The
proposed architecture carries out the self-learning representations from CXR images and
analyzes the latent space-compressed radiomic features in terms of their discriminative
capacity. By training the autoencoder, the model learns how to reconstruct the compact
representation of input data.

Here, we propose the CNN-based radiomics through a stacked autoencoder trained
exclusively for such high-dimensional input CXR images. Autoencoders are data specific,
spontaneously learned from training input CXR images, with a completely independent
dataset, instead of achieving by human interference and lossy. This model is trained
based on the loss function comparing the original input and decompressed representations.
The parameters of the compression (encoding)/decompression (decoding) functions are
updated in such a way that they minimize the reconstruction loss using stochastic gradient
descent (SGD) [56,57].

Consider a 10-layer convolutional autoencoder model, as depicted graphically in
Figure 2. Let x ∈ RM×M with M = 512 be the CXR input image that passes through the
5-layer convolutional encoder. In each encoder layer, there is a filter bank Kf ∈ R3×3, with a
dilation rate of 1 and fixed f = 1, 2, . . . , F, (F = 32) number of filters for the entire model [58].
The convolution layer creates a feature map Yf ∈ RḾ×Ḿ, by 2D discrete convolution, and
is shown by the following:

Yfi,j =
2

∑
x=0

2

∑
y=0

Kf2−x,2−y X1+s(i−1)−2,1+s(j−1)−2

where Ḿ = M, and s ≥ 1 is called a stride. In general, a single layer model is an affine

transformation of x by a nonlinear function
^
y = f (Wx + b), where the weight matrix is

W ∈ RD×M, b ∈ RD is a bias term, and f (.) is a nonlinear function. The output hp of a
layer, p is presented by the following:

hp+1 = fp+1
(
Wphp + bp

)
= fp+1(Wp fp

(
. . . ( f1(W0x + b0)) . . . + bp−1) + bp

)
(3)

where h1 = f1(W0x + b0) is the first layer’s output, and hp is known as a feature vector
at the path layer. The proposed autoencoder consists of a multiple-layer encoder denoted
as E.

h = fE(x;θE) (4)
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where h is the output of the encoder or the features (CNN-based radiomics) and θ ={
Wp, bp

}p−1
p=0. A decoder network showed as D also reconstructs the input x by the fol-

lowing:
^
x = fD(h;θD) (5)

Training this autoencoder then involves calculating the expected reconstruction loss
over all the training samples [58] as follows:

θ∗E,θ∗D = argmin
θE ,θD

E(x,y)∼P [L( f (x;θ), y)] (6)

where P is data generating distribution and L
(

^
y, y

)
is discrepancy loss of the recon-

structed and input data. We use BCE loss here, as presented in Equation (2). Neural
networks are often trained using SGD or its variations [59,60] in which gradients are com-
puted with the backpropagation procedure [61]. The proposed ConvAE model has a 3× 3
kernel filter, 2× 2 kernel stride, same padding, with no residual connection, and dese layer
between contraction and expansion paths (see Figure 2).

2.3. Conventional Radiomics Features

Decoding tumor imaging information into subvisual and quantitative features through
the extraction of radiomics features as mineable data follows four steps: image acquisi-
tion; selection of the region of interest (ROI); extraction of features; decision making
(predictive/prognosis method) [62–64]. The proposed approach employed 354 radiomics
features in 9 families: first-order statistics (FO), shape-based expression (SB), gray level co-
occurrence matrix (GLCM), gray level dependence matrix (GLDM), gray level run length
matrix (GLRLM), gray level size zone matrix (GLSZM), neighboring gray-tone difference
matrix (NGTDM), Laplacian of Gaussian (LOG), and three-layer filtering wavelet. The
dimension of these conventional radiomics renders the data analysis prone to the curse of
dimensionality problem.

This study used three different unsupervised feature selection approaches trained on
our training set and independently tested our targeted cohorts. We applied the Johnson–
Lindenstrauss (JL) lemma [65,66], Laplacian scoring [67], and principal component analysis
(PCA) [68] to reduce the dimensionality of conventional radiomics extracted by spanning
the current manifold of data onto low-dimensional space using a sparse Achlioptas matrix.
All three of these approaches were applied to the Shenzhen set (n = 704) in the discovery
stage. Then, the entire parameters of the system were frozen for the independent validation
step (n = 1597). Having our deep and conventional radiomics compressed, we used a
random forest to classify COVID-19 patients from pneumonia and healthy cases using
each category of the radiomics (i.e., ConvAE latent space, conventional radiomics, or a
combination of both) (Figure 1).

3. Results

Our models (U-Net and ConvAE) were trained and independently validated with
three other datasets to examine the proposed systems. In the next section, we describe all
datasets in detail. We used only COVID-19 cases that have confirmed lung manifestation.
These datasets were selected randomly and based on having a higher number of COVID-
19 patients. Table 1 presents number of patients used for training and validation of the
proposed approach.
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Table 1. Training and validation scheme for the proposed approach.

Scheme of Model Training and Independent Validation

Purpose Model Learning Stage Number of Cases
and Dataset

Segm
entation

ofLung
Lobes

U-Net 1

Training 704 The Shenzhen set

Independent Validation

417 COVID-19

1125 ChestX-ray8

55 Figure 1

C
O

V
ID

-19
Identification

ConvAE 2

Training 704 The Shenzhen set

Independent Validation

417 COVID-19

1125 ChestX-ray8

55 Figure 1
1 This is a 2D U-Net model. 2 ConvAE was designed and trained on our training cohort of patients to generate
CNN-based radiomics (i.e., deepomics).

The resulting U-Net to segment the lung area and ConvAE to extract CNN-based
radiomics were subsequently evaluated in terms of the ability to diagnose COVID-19
versus healthy and pneumonia patients.

3.1. Study Population
3.1.1. Pulmonary Chest X-ray Disease Detection

To design and test the U-Net model for the segmentation of the lung lobes, we used
704 chest X-ray images from the Pulmonary Chest X-Ray Defect Detection, Montgomery
County X-ray set, and China set—The Shenzhen set—Chest X-ray Database provided by
the National Library of Medicine, National Institutes of Health, Bethesda, MD, USA, and
Shenzhen No. 3 People’s Hospital, Guangdong Medical College, Shenzhen, China [69,70].
For the Montgomery County X-ray set, images were acquired from the Department of
Health and Human Services (the tuberculosis control program) of Montgomery County,
MD, USA. The dataset contains 138 posterior–anterior X-rays, of which 58 cases are abnor-
mal with manifestations of tuberculosis, and 80 cases are normal. The rest of the data were
from the Shenzhen set, which contains 336 cases with tuberculosis and 326 normal cases.
From the data, we selected 566 cases based on the availability of their masks. Figure 3a–c
presents some examples of this dataset.

3.1.2. COVID-19 Cases Collected from Multiple Sources

In total, 417 frontal chest X-rays of COVID-19 cases were selected from the dataset,
761 images with 679 frontal chest and 82 lateral views. Of the 679 frontal images, 518
were standard frontal posteroanterior–anteroposterior (PA/AP) views, and 161 were AP
laying down supine all of which were collected from different hospitals across 26 countries.
In total, there were 468 COVID-19 (SARSr-CoV-2), 16 SARS (SARSr-CoV-1), 10 MERS-
CoV, 5 Varicella, 4 Influenza, 3 Herpes viral cases, 13 Streptococcus spp., 9 Klebsiella spp.,
4 Escherichia coli, 4 Nocardia spp., 5 Mycoplasma spp., 7 Legionella spp., 2 Unknown, 1 Chlamy-
dophila spp., 1 Staphylococcus spp. bacterial cases, 24 Pneumocystis spp., 2 Aspergillosis spp.
fungal cases, 8 Lipoid, 1 Aspiration, and 59 unknown cases in the age of 20 to 90 years
old [71–80] (Figure 3j–l).
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the Shenzhen set; (d–l) images are used to independently validate our system.

3.1.3. Pneumonia, Healthy Controls, and COVID-19

In total, 1125 chest X-ray cases were collected from multiple data sources. Of those,
125 COVID-19 cases were selected from [81], whereas 500 normal and 500 pneumonia
cases [35] were selected from the ChestX-ray8 database [80] (Figure 3d–f).
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3.1.4. Figure 1 COVID-19 Chest X-ray Dataset Initiative

A total of 55 frontal chest X-ray images of COVID-19 cases were selected from Figure 1
database. DarwinAI and the University of Waterloo have launched an open-source project
as a part of the COVIDx dataset to develop the models for COVID-19 detection (COVID-
Net) and COVID-19 risk stratification (COVID-RiskNet) [9,82–84]. Figure 3g–i shows three
examples of this dataset.

All the data above were collected from multiple sources, which are publicly available
through online websites, such as Figure 1 [84,85], Radiopaedia.org, the Italian Society of
Medical and Interventional Radiology [86], and the Hannover Medical School [85,87]. The
data are also accessible in the form of images from online publications, websites, or directly
from PDFs using tools, such as pdf images [88]. All the images used for different parts of
the proposed approach were frontal X-rays with an overall size of 512 × 512 pixels.

3.1.5. U-Net-Based Segmentation of the Lung Lobes

A total of 704 CXR images were randomly stratified into two training and testing
groups, having 566 and 138 cases, respectively. We used the U-Net structure for 2D CHX
imaging segmentation [89]. The input CXR images had a 512 × 512 dimension. All input
images were normalized, and for every convolutional layer, batch normalization and a
rectified activation linear unit (ReLu) layer were used. Every consecutive convolutional
layer with a filter size of 3 × 3, 2 × 2 pooling layers decreased the input spatial dimension
of 512 × 512 to a smaller dimension of 32 × 32 at the end of the encoder (contracting path).
In the convolution layer, 16 filters were convolved with the input CXR images. The model
used the same size padding with a 2 × 2 stride. In the decoder (expanding path), the
model was a mirrored architecture of the encoder with skip connection (bridges) between
two paths, as shown in Figure 1. This path was deconvolved with the upsampled data
with a 3 × 3 kernel size. The intermediate data from the encoder was appended to the
upsampled data in each layer for the entire path, which helps the model to reconstruct some
of the information lost during the max-pooling operation. The overall number of trainable
parameters in our network was 7,759,521, and the maximum number of channels was 512.
The Adam optimizer trained all models with a modifying learning rate of 2× 10−4 to 10−6.
The models were trained for 100 epochs with a batch size of 16 for the described cohort of
patients. The proposed approach was implemented with the TensorFlow library in Python
programming language [90,91] (for training and testing the model). The segmentation
results were achieved throughout the inference process by applying the binary accuracy
to the predicted similarity with ground truth (GT) labels, which reached close to 98%
for the validation set. Then, this trained model was used to segment the lung lobes for
other cohorts of patients and generated masks for 1597 CXR images preparing the data for
extracting radiomics.

3.1.6. Conventional and Deep Latent Space Radiomics

We extracted 354 conventional radiomics [64] using the original CXR images, and the
U-Net obtained their corresponding masks for the validation sets. These datasets were
used to extract radiomics for their 2D targeted ROI (i.e., solely the lung lobes area) using
the trained model. Out of all conventional radiomics, seven descriptors were selected
using three different JL, LS, and PCA approaches. These seven descriptors were chosen
based on the elbow method of choosing the best number of grouping features (Figure A1
in Appendix A).

Our proposed ConvAE model comprised 5 convolutional blocks and had 636,929 train-
able parameters, with a preferred signal channel input image dimension of 512 × 512. The
input image then passed through 16 filters with 3 × 3 kernels. The rescaling dimensions of
the input image are from 512, 256, 128, 64, 32, and 16, while the fourth dimension grew
from 1, 16, 32, 64, and 128. In the middle of the model, the hierarchy of dense layers
compressed the dimensionality from 16,384 to 16, which generated 16 deep latent space
features. The proposed ConvAE model has a 3× 3 kernel filter, 2× 2 kernel stride, same
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padding, with no residual connection with batch normalization and dese layer between
contraction and expansion paths (see Figure 2). Out of 16, 2 features (FC-8 and FC-16) were
discarded due to zero, and 14 other features were used for classification.

Figure 4 presents the separation power of each selected conventional radiomics to
categorize COVID-19 (CVD), pneumonia (Pnmn), and no finding (NO) cases concerning
the GT using the Kruskal–Wallis test to show the statistical significance. Similarly, Figure 5
shows the classification of 14 deep-radiomics obtained from the ConvAE model. The
separation among different groups was more statistically significant for PCA (Figure 4a)
and LS (Figure 4b). However, JL and deep radiomics also showed reasonable separation
between different cases. For instance, FC2 responds only for COVID-19 cases and no
response for pneumonia and healthy cases.
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(CVD), pneumonia (Pnmn), and no finding (NO) cases with respect to ground truth are demonstrated using Kruskal–Wallis
test to show the statistical significance of the classification.

3.2. Random Forest Classification of COVID-19

To calculate the quantitative accuracy, we employed clinical diagnosis as the GT for
our calculation. The GTs were labeled as 1 for COVID-19, 2 for pneumonia, and 0 for
healthy cases. In binary-class classification, we labeled COVID-19 as 1 and the other two
groups as 0.

We created three categories of patients based on imaging biomarkers to perform classi-
fication using a random forest classifier. Three imaging biomarkers included conventional
radiomics, deep radiomics, and a combination of both groups. We classified 1597 cases
based on 14 ConAE deep latent space radiomic descriptors, 7 conventional radiomics, and
finally, a combination of both while comparing them with the gold standard data (GT) from
clinical assessment. To investigate which type of imaging biomarkers is more appropriate
for classifying COVID-19 patients, we performed both binary and multi-class classification
and trained our multivariate random forest classifier with leave-one-out cross-validation in
which we randomly split the data into training and testing sets. Table 2 and Figure 6 show
the cross-validated accuracy of each method and their receiver operating characteristic
(ROC) curves.
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Table 2. Results of diagnosis based on the classification of symptomatic versus asymptomatic patients
with the leave-one-out cross-validation.

Accuracy of Multivariate Models

Methods Classification
Accuracy 1 (%)

t-Test 2; t-Statistic,
Two-Tailed p-Value

B
inary

C
lassification

Deep-radiomics 88.7 (88.7–88.9) 8.6, <0.0005
JL-PyRad 79.3 (77.2–80.3) >90, <0.0005
PCA-PyRad 89.6 (88.4–90.7) -
LS-PyRad 83.6 (82.9–84.3) 55.4, <0.0005
Deep-JL 88.7 (88.7–88.8) 8.6, <0.0005
Deep-PCA 88.8 (88.7–89.0) 7.9, <0.0005
Deep-LS 88.9 (88.7–93.2) 1.05, 0.29

M
ulticlass

C
lassification

Deep-radiomics 63.5 (61.3–65.1) >90, <0.0005
JL-PyRad 63.9 (62.5–65.2) >90, <0.0005
PCA-PyRad 72.6 (69.4–74.4) -
LS-PyRad 65.7 (65.1–66.2) 72.6, <0.0005
Deep-JL 67.7 (64.9–71.4) 42.1, <0.0005
Deep-PCA 72.5 (71.2–73.4) 2.3, 0.02
Deep-LS 66.8 (65.9–73.4) 32.3, <0.0005

1 Classification accuracy reported by median (±QR). 2 t-test calculated for each method versus maximal accuracy.
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conventional radiomics using JL, LS, and PCA, and a combination of both deep and conventional
radiomics are shown.

The best multivariate binary-class classification model for COVID-19 versus non-
COVID-19 (i.e., pneumonia and no-finding) cases was PCA, which resulted in an accuracy
of 89.6% (88.4–90.7%), and deep-LS and deep-PCA for the combination of both radiomic
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types (conventional radiomics and deep radiomics) resulted in 88.9% (88.7–93.2%, and
88.8% (88.7–89.0%), respectively.

JL radiomics showed the lowest binary-class classification accuracy 79.3% (77.2–80.3%)
to detect COVID-19 versus other cases. This might be due to spanning features onto a
lower-dimensional space that preserves the Euclidean distance between features but not
selecting the most effective radiomics, increasing the accuracy of classification. This trend
is also observed in multiclass classification and JL 63.9% (62.5–65.2%), which showed
the lowest classification accuracy after deep radiomics, 63.5% (61.3–65.1%). PCA alone
showed the highest accuracy for both binary 89.6 (88.4–90.7) and multiclass 72.6 (69.4–74.4)
classification. Once combined with deep radiomics, PCA resulted in 88.8 (88.7–89.0) and
72.5 (71.2–73.4) for binary and multiclass classifications, respectively. Deep-LS showed the
lowest accuracy, 66.8% (65.9–73.4%), in multiclass COVID-19 classification when both types
of features are combined. We also calculated the statistical difference of the maximal accu-
racy (PCA) with other approaches using a two-tailed t-test (see Table 2). Deep-LS showed
considerable similarity to PCA covariates (t-statistic = 1.05, p-value = 0.29), and there was
a marginal statistical significance for deep-PCA (t-statistic = 2.3, p-value = 0.02). The rest
of the methods showed significant statistical differences. Figure 6 shows the confusion
matrices for binary- and multiclass classification of COVID-19. For binary-class classifica-
tion, we stratified patients into COVID-19 cases versus “other” cases (i.e., no finding and
pneumonia). Among the five groups, conventional radiomic PCA (Figure 7c—left column),
deep radiomics (Figure 7d—left column), and their combination (Figure 7e—left column)
showed the highest accuracy of COVID-19 detection. In multiclass classification, LS ra-
diomics (Figure 7b—right column) and deep-radiomics-PCA (Figure 7e—right column)
showed the highest accuracy of detecting COVID-19. PCA-radiomics (Figure 7c—right
column) showed the highest accuracy of finding healthy and Pneumonia cases.

The application of deep ConvAE created deep radiomics and provided a low-dimensional
representation of ROI. It also demonstrated a substantial increase in model performance for
classifying COVID-19 patients from healthy or pneumonia patients (Figure 6, and Table 2).
Deep radiomics is known for its tendency of having high dimensionality, thereby intensi-
fying the possibility of overfitting a decision-making unit (i.e., the random forest model
in this study) and the curse of dimensionality problem. The proposed ConvAE provided
low-dimensional deep radiomics by spanning the imaging features to a lower-dimensional
space [54]. We applied dimensionality reduction for the conventional radiomics by fol-
lowing the traditional way to shrink features while preserving the image characteristics.
Despite having a different structure and mechanism, our proposed model is comparable in
terms of the accuracy of COVID-19 detection. It shows a slight difference from previously
reported models such as CoroNet [32] (89.6% accuracy), COVID-Net (93.3% accuracy),
ResNet-50 (90.6% accuracy), and VGG-19 (83.0% accuracy) [83].



J. Clin. Med. 2021, 10, 3100 15 of 21J. Clin. Med. 2021, 10, x FOR PEER REVIEW 15 of 21 
 

 

 

 
Figure 7. Confusion matrices for binary-class (upper row) and multiclass (lower row) classification 
of COVID-19 are presented for conventional radiomics (a–c); deep radiomics (d), and a combination 
of both groups of radiomics for the best conventional radiomics (e). 

Figure 7. Confusion matrices for binary-class (upper row) and multiclass (lower row) classification
of COVID-19 are presented for conventional radiomics (a–c); deep radiomics (d), and a combination
of both groups of radiomics for the best conventional radiomics (e).



J. Clin. Med. 2021, 10, 3100 16 of 21

4. Discussion

This study proposed an automated system to diagnose COVID-19 using standard
and deep radiomics in chest X-ray imaging. Specifically, this study demonstrated a deep-
learning-based dimensionality reduction model, which integrates with selected conven-
tional radiomics for diagnostic purposes. We showed the possibility of independently
validating two deep-learning models to segment the lung lobe areas and identify potential
COVID-19 patients enabling fast, noninvasive, and more cost-effective CXR-imaging-based
diagnosis of COVID-19. The training of our models was absolutely independent of our
training cohorts of patients. These datasets are selected randomly and based on having a
higher number of COVID-19 patients. Overall, the study impartially validated with ap-
proximately the same size patients’ cohorts (597: COVID-19 and 500: Pneumonia patients,
and 500 healthy cases), which increased the possibility of fair and unbiased assessment.

One limitation of the presented approach is the lack of clinical information in our data.
Even with the substantial number of cases used for model development, there is a need for
the models to incorporate clinical input to develop a more reliable diagnostic system. Ad-
ditionally, there is a need for more data from various sources to further validate the present
work and assess the model’s generalizability, or association to some demographics and
clinical factors such as race (similar to [92]). Although our data are relatively large, there are
only three label categories: COVID-19, pneumonia, and healthy. Having a more significant
cohort of patients with more categories will enhance the statistical power of our analysis
by improving the benchmarking system. Furthermore, there are more configurations for
extracting deep radiomics. These configurations may allow us to find a better compression
scheme that captures deep-imaging biomarkers with superior discriminative capability,
efficiently representing the disease characteristics in CXR imaging. For conventional ra-
diomics, the current random projection of high-dimensional manifold to low-dimensional
representative radiomic signatures can be made through a more established, selective, and
systematic approach. There is also an option to make diagnostic decisions directly using
the trained deep learning model instead of using it for deep radiomic extraction. However,
this would involve different configurations for training the model.

The techniques presented in the current study offer several advantages. First, applying
ConvAE to extract deep radiomics provides an effective way of projecting CXR imaging
biomarkers to lower-dimensional radiomic signatures, which avoids pretrained models
with higher dimensional features and overfitting the decision-making unit. Second, the
ConvAE eliminates the human-engineering feature selection to decrease the dimensionality
of deep radiomics. Third, the proposed method successfully showed good performance
on the independent validation sets for lung lobe segmentation and generation of deep ra-
diomics.

5. Conclusions

This study proposed an automatic diagnosis of COVID-19 in CXR imaging using deep
and conventional radiomics features. A 2D U-Net model was trained to segment the lung
lobes, and from these regions of interest, radiomic features were extracted. We performed
dimensionality reduction using a convolutional deep autoencoder (ConvAE) to extract low-
dimensional deep radiomics (14 features) and Pyradiomics library to extract conventional
imaging biomarkers. Johnson–Lindenstrauss (JL) lemma, Laplacian scoring, and principal
component analysis (PCA) were used to reduce the dimensionality of features from 354
to 7 radiomics for conventional radiomics. We trained the entire system using 704 CXR
images then independently tested our system on 1597 patients with COVID-19, pneumonia,
or no finding. We compared the performance of each type of radiomic feature to detect
COVID-19 cases through multivariate binary-class and multiclass classification. We trained
and tested a random forest model for detecting COVID-19 cases through multivariate
binary-class and multiclass classification. The maximal (full multivariate) model using a
combination of the two radiomic groups showed excellent performance in classifying cases
with a cross-validated accuracy of 72.5 (71.2–73.4) for multi-class and 88.8 (88.7–89.0) for
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binary-class classification. For future work, other deep-learning-based configurations can
be explored to increase the system’s overall accuracy.
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Appendix A

The Elbow approach has been established to determine the optimum number of
features to alleviate collinearity. As shown in the graph (Figure A1), the point for selecting
is less than 10% variance of the graph. This indicates somewhere around k = 7. We used
this analogy for our feature selection approaches in this study and picked 7 radiomics out
of 354 conventional radiomics.
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