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Abstract: Recombination creates mosaic genomes containing regions with mixed ancestry, and the
accumulation of such events over time can complicate greatly many aspects of evolutionary inference.
Here, we developed a sliding window bootstrap (SWB) method to generate genomic bootstrap (GB)
barcodes to highlight the regions supporting phylogenetic relationships. The method was applied to
an alignment of 56 sarbecoviruses, including SARS-CoV and SARS-CoV-2, responsible for the SARS
epidemic and COVID-19 pandemic, respectively. The SWB analyses were also used to construct
a consensus tree showing the most reliable relationships and better interpret hidden phylogenetic
signals. Our results revealed that most relationships were supported by just a few genomic regions
and confirmed that three divergent lineages could be found in bats from Yunnan: SCoVrC, which
groups SARS-CoV related coronaviruses from China; SCoV2rC, which includes SARS-CoV-2 related
coronaviruses from Southeast Asia and Yunnan; and YunSar, which contains a few highly divergent
viruses recently described in Yunnan. The GB barcodes showed evidence for ancient recombination
between SCoV2rC and YunSar genomes, as well as more recent recombination events between SCoVrC
and SCoV2rC genomes. The recombination and phylogeographic patterns suggest a strong host-
dependent selection of the viral RNA-dependent RNA polymerase. In addition, SARS-CoV-2 appears
as a mosaic genome composed of regions sharing recent ancestry with three bat SCoV2rCs from
Yunnan (RmYN02, RpYN06, and RaTG13) or related to more ancient ancestors in bats from Yunnan
and Southeast Asia. Finally, our results suggest that viral circular RNAs may be key molecules for
the mechanism of recombination.

Keywords: RNA recombination; COVID-19 origin; reservoir host; viral circRNA; phylogenetic
support; tree reconstruction

1. Introduction

Many RNA viruses are known to evolve through recombination, a process resulting in
mosaic genomes containing regions from different parental viruses. A copy-choice model
(also named template switching model) has been proposed to account for recombination
in unsegmented RNA viruses: during RNA replication, the viral RNA-dependent RNA
polymerase (RdRp) can pause on the RNA template and switch to another template during
synthesis, thereby generating a recombinant RNA molecule with mixed ancestry [1]. RNA
recombination is assumed to be rare because it can only happen when a host cell is co-
infected by at least two genetically distinct viruses. However, this process can generate
a high diversity of recombinant viruses, and natural selection can favor some of them to
adapt to new environments and hosts [1,2].

RNA recombination seems particularly active in RNA viruses of the subgenus
Sarbecovirus [3,4], the taxonomic group including SARS-CoV and SARS-CoV-2, which
are the causal agents involved in the severe acute respiratory syndrome (SARS) epidemic
and coronavirus disease 2019 (COVID-19) pandemic, respectively. Although two sar-
becoviruses were recently discovered in Sunda pangolins (Manis javanaica), all major
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lineages of Sarbecovirus have been detected in horseshoe bats (Chiroptera, Rhinolophi-
dae, Rhinolophus) [5,6]. Most bat sarbecoviruses currently described were identified from
various Rhinolophus species captured in caves of several provinces of China [7]. In addi-
tion, a few sarbecoviruses were detected in Rhinolophus species from Southeast Asia [8,9],
Japan [10], Europe [11], and Africa [12], suggesting that horseshoe bats of the Old World
constitute the natural reservoir host in which sarbecoviruses have evolved and diversified
for several centuries [3,5,6]. Interestingly, Southeast Asia is a hot spot for the biodiversity
of Rhinolophus as more than half of the species occur in this region [13]. Despite the limited
number of field expeditions conducted in Southeast Asia, two SARS-CoV-2 related coron-
aviruses (SCoV2rCs) have already been described: one from two R. shameli of Cambodia
and the other from five R acuminatus of Thailand [8,9]. In China, bat sampling efforts
have been very important for the past fifteen years, and SARS-CoV related coronaviruses
(SCoVrCs) were collected mainly in R. sinicus and also, less frequently, in several other
bat species. However, a higher diversity of sarbecoviruses has been described from bats
of the Yunnan province, with three divergent lineages: (i) SCoVrCs were collected in
R. sinicus and several other species, such as R. affinis, R. malayanus, R. nippon, R. pusillus,
and R. stheno [7]; (ii) SCoV2rCs were detected in the three species R. affinis, R. malayanus,
and R. pusillus [14–16] and (iii) several divergent viruses, included in the YunSar group by
Hassanin [17], were recently described in the four species R. affinis, R. malayanus, R. pusillus,
and R. stheno [16,18] (but see paragraph 4.2). As shown in Hassanin [17], these three di-
vergent lineages exhibit different synonymous nucleotide compositions, suggesting that
most of their evolution took place in separate Rhinolopus species assemblages, with YunSar
in Yunnan, SCoVrC in China, and SCoV2rC in Southeast Asia (Cambodia, Laos, Thailand,
and Vietnam) [6]. However, genomic recombination between divergent viruses may have
occurred in the caves of Yunnan, where the three lineages can be found in sympatry.

Genomic recombination can be highly misleading for inferring phylogenetic relation-
ships. For instance, conflicting trees have been recently published using full-length genome
alignments of sarbecoviruses: in Zhou et al. [16], three YunSar genomes (RmYN05, RmYN08,
and RstYN04) were found to group with the pangolin virus from Guangxi; whereas, in
Guo et al. [18], eight YunSar genomes (RaTG15, Rst7896, Rst7905, Rst7907, Rst7921, Rst7924,
Rst7931, and Rst7952) appeared as the sister-group of the clade uniting SCoVrC, SCoV2rC,
and the bat virus from Japan (Rc-o319, [10]). Such topological discordance was not expected
as the three YunSar genomes of Zhou et al. [16] share 98% of genome identity with the
eight YunSar genomes of Guo et al. [18]. Although the two trees were reconstructed using
the maximum likelihood (ML) method, Zhou et al. [16] used the RAxML software and a
GTR model, whereas Guo et al. [18] used the MEGA6 software and a Jukes-Cantor model.
Therefore, the conflicting trees published by Zhou et al. [16] and Guo et al. [18] could
be explained by the use of different models of nucleotide evolution, which may manage
differently recombinant viral genomes during tree reconstruction.

To better interpret conflicting phylogenetic signals due to recombination, we report
hereinafter a sliding window bootstrap (SWB) method for generating genomic bootstrap
barcodes (GB barcodes) to highlight the regions of a genome alignment supporting phylo-
genetic relationships. The method was applied to a multiple alignment of 56 sarbecoviruses
sampled from 52 bats, two pangolins, and two humans (SARS-CoV and SARS-CoV-2). The
SWB analyses were also used to evidence the most reliable phylogenetic relationships using
the SuperTRI method [19]. Our five main aims were: (i) to design a new tool to visualize the
genomic regions supporting phylogenetic relationships; (ii) to reveal and interpret hidden
phylogenetic signals; (iii) to provide a more reliable method of tree reconstruction for
studying the evolutionary history of sarbecoviruses; (iv) to better characterize diversifying
recombination between divergent Sarbecovirus lineages; and (v) to improve our knowledge
on the mechanism of genomic recombination between RNA viruses.
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2. Materials and Methods
2.1. DNA Alignment of Genomic Sequences

Full genomes of Sarbecovirus available in June 2021 in GenBank (https://www.ncbi.
nlm.nih.gov/ accessed on 1 June 2021), GISAID (https://www.epicov.org/ accessed on
1 June 2021), and NGDC (https://ngdc.cncb.ac.cn/ accessed on 1 June 2021) databases
were downloaded in Fasta format. Sequences with a large stretch of missing data were
removed. Only a single sequence was retained for similar genomes showing less than
0.1% of nucleotide divergence, such as those available for human SARS-CoV-2 (millions
of sequences), pangolin viruses from Guangxi (5 sequences), bat viruses from Cam-
bodia (two sequences), etc. The details on the 56 selected genomes are provided in
Supplementary Table S1. They include all viral lineages previously described within the
subgenus Sarbecovirus. The 56 genomes were aligned in Geneious Prime® 2020.0.3 (Biomat-
ters Ltd., Auckland, New Zealand) with MAFFT version 7.450 [20] using default parameters.
Then, the alignment was corrected manually on AliView 1.26 [21] based on translated and
untranslated nucleotide sequences using the three following criteria: (i) the number of
indels was minimized because they are rarer events than amino-acid or nucleotide sub-
stitutions; (ii) changes between similar amino-acids were preferred (using the ClustalX
color scheme available in AliView); and (iii) transitions were privileged over transversions
because they are more frequent. The insertion(s) found in only one virus and the regions
with large gaps (>50 nucleotides (nt)) were removed from the multiple genome alignment to
guarantee enough phylogenetic signal for the SWB analysis based on the smallest window
size (i.e., 250 nt; see next paragraph). For that reason, the open reading frame 8 (ORF8)
was excluded from the alignment because it is missing in the two sequences here used as
outgroup, i.e., RspKY72 and RbBM48-31 [11,12].

2.2. Construction of Genomic Bootstrap Barcodes

The python scripts of SWB and BBC programs were specially written to construct GB
barcodes. The SWB program was designed to conduct bootstrap analyses [22] on N sub-
datasets extracted from a multiple genome alignment (input file in Fasta format) using a
window of W nucleotides (W parameter) moving in steps of S nucleotides (S parameter)
along the alignment. Using W = 250 nt and S = 50 nt, the alignment of 28,845 nt was
transformed into N = 572 overlapping subdatasets (or windows). In the SWB program,
each of the 572 subdatasets of 250 nt were executed in RAxML [23] with a GTR+G model
and 100 bootstrap replicates using the ML method. The phylogenetic results were then
summarized in the SWB output, a CSV file containing the bootstrap percentages (BP) calcu-
lated from each of the 572 subdatasets for the 244,316 bipartitions (nodes) reconstructed
during the SWB250 analysis. Three other SWB analyses were performed using the same
S parameter (i.e., 50 nt) but different window sizes, i.e., W = 500 nt (SWB500, N = 567),
1000 nt (SWB1000, N = 557), or 2000 nt (SWB2000, N = 537).

The BBC program was written to construct the GB barcodes of a selection of bipartitions
(Figure 1). In the first step, only bipartitions supported by BP ≥ 70% in one or more
bootstrap analyses of the N subdatasets were selected. In this way, we further examined
only bipartitions showing a robust phylogenetic signal in at least one region (window) of
the alignment. By contrast, the bipartitions with no robust phylogenetic signal, i.e., with
BP < 70% in all bootstrap analyses of the subdatasets, were removed. Then, GB barcodes
were constructed only for the 294 bipartitions shared between the four SWB analyses based
on different window sizes.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.epicov.org/
https://ngdc.cncb.ac.cn/
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Figure 1. Diagram describing the programs used to construct genomic bootstrap barcodes and phylo-
genetic trees. The programs SWB, BBC, and LFG were specially written for this study (highlighted
in pale yellow). The SWB program was designed to generate bootstrap bipartitions from a sliding
window of a specific width (W) moving in steps of 50 nt along the genome alignment. With W
sets to 250 nt, N = 572 RAxML bootstrap analyses [23] were conducted (using a GTR+G model and
100 replicates), and the bootstrap percentages (BP) calculated in each of the 572 analyses were reported
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in a CSV file for all bipartitions (nodes). Then, each of the four SWB files generated with four different
window sizes (W = 250, 500, 1000, or 2000 nt) was used as input in two additional programs, BBC and
LFG. The BBC program was used to construct GB barcodes for the 294 bipartitions shared between
the four SWB analyses using the following color code: red for BP ≤ 30%; grey for 30% < BP < 70%;
and green for BP ≥ 70%. The LFG program was used to produce the bootstrap log files, which were
further transformed into an MRP (Matrix Representation with Parsimony) file with the SuperTRI v57
program [19]. In the MRP file, each character represents a bipartition with its assigned BP calculated in
one of the window bootstrap analyses (e.g., N = 572 with W = 250 nt). The MRP file was then executed
in PAUP version 4.0a [24] using bootstrap percentages as weights to construct the SuperTRI bootstrap
50% majority-rule consensus (SB) tree (weighted parsimony method, 1000 replicates). Finally, mean
bootstrap percentages (MBP) were calculated under SuperTRI v57 for all nodes of the SB tree.

For each selected bipartition, four GB barcodes were constructed with the four SWB
files based on different window sizes. A GB barcode can be viewed as a simplified repre-
sentation of the SWB results. With W = 250 nt, the alignment of 28,845 nt was separated
into N = 572 overlapping windows of 250 nt, which were used for bootstrap analysis. In
the genome alignment, the first window bootstrap analysis represents its 5′ terminal region,
whereas the 572nd window bootstrap analysis represents its 3′ terminal region. A given
bipartition can be supported by different BP values (from 0 to 100) in the 572 window
bootstrap analyses. After calculating the median positions (pos.) of all the 572 windows,
the 294 GB250 barcodes were constructed by replacing the intervals between two posi-
tions (5′ and 3′ windows) by one of the following colored bars: red if BP5′ ≤ 30%, grey if
30% < BP5′ < 70%, and green if BP5′ ≥ 70%. We proceeded similarly for GB500, GB1000, and
GB2000 barcodes.

The alignment positions of the genomic regions containing robust phylogenetic signal
(GRPS) were deduced from the SWB2000 output (SWB analysis based on a sliding window
of 2000 nt). For each bipartition, the 5′- and 3′-ends of GRPS were defined by the positions
of the 5′- and 3′-terminal windows showing BP2000 ≥ 70%. To be conservative, the extension
of GRPS was conducted by accepting BP2000 values between 50 and 70%. Pairwise nu-
cleotide distances were calculated for all GRPS detected in GB barcodes shown in Section 3.
The software PAUP version 4.0a (Sinauer Associates: Sunderland, MA, USA) [24] was
used to calculate p distances, and the data were exported in Microsoft® Excel (Microsoft,
Albuquerque, NM, USA) to analyze maximum and minimum values. By comparing the
alignment positions of GRPSs between nested bipartitions, we constructed a network show-
ing interactions between ’nested GB barcodes’. Considering two bipartitions linked by
nested phylogenetic relationships, with the descendant bipartition B + C phylogenetically
nested within the parental bipartition A + B + C, the two GB barcodes constructed for these
two bipartitions were identified as ’nested GB barcodes’ only if they were found to share
overlapping GRPS positions.

2.3. SuperTRI Analyses

The bootstrap bipartitions generated from the four SWB analyses based on different
window sizes (250, 500, 1000, and 2000 nt) were used for SuperTRI analyses [19] to construct
the trees showing the most reliable phylogenetic relationships. The LFG program was
written to convert the SWB output file into bootstrap log files, which were then used as
inputs in SuperTRI v57 [19] to construct an MRP (Matrix Representation with Parsimony)
file. For example, the SWB250 file generated using a window of 250 nt was converted
with the LFG program (python script) into N = 572 bootstrap log files (lists of bootstrap
bipartitions), and these files were further transformed into an MRP file using SuperTRI v57.
In the MRP250 file, each of the 614,634 characters represents a bipartition with its assigned
BP calculated in one of the 572 window bootstrap analyses. The MRP250 file was then
executed in PAUP version 4.0a [24] using 1000 bootstrap replicates of weighted parsimony
(with bootstrap percentages assigned as weights) to construct the SuperTRI bootstrap 50%
majority-rule consensus (SB250) tree (see [19] for more details on the method). Finally, the
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mean bootstrap percentage (MBP) and reproducibility index (proportion of the N bootstrap
analyses supporting the bipartition) were calculated automatically in SuperTRI v57 for
all nodes of the SB trees. The MBP of hidden phylogenetic relationships (i.e., bipartitions
not shown in the SB trees) were calculated using the SWB output files for all GB barcodes
shown in Section 3.

3. Results
3.1. Phylogenetic Signal in Windows Moving along the Alignment of Sarbecovirus Genomes

In this study, 56 genomes of the subgenus Sarbecovirus (Supplementary Table S1) were
aligned to infer phylogenetic relationships. The positions of the coding sequences were
the following in our final alignment of 28,845 nucleotides (nt): 190–21,196 for ORF1ab,
including the RNA-dependent RNA polymerase gene (RdRp) at positions 13,096–15,885;
21,198–24,836 for the spike (S) gene; 24,845–25,669 for ORF3a; 25,694–25,924 for the envelope
(E) gene; 25,975–26,643 for the membrane (M) gene; 26,654–26,845 for ORF6; 26,846–27,214
for ORF7a; 27,211–27,318 for ORF7b; 27,335–28,603 for the nucleocapsid (N) gene; and
28,628–28,744 for ORF10.

The dataset was bootstrapped using a window of W nucleotides (W parameter) mov-
ing in steps of 50 nt along the genome alignment in order to examine the distribution of the
phylogenetic support (SWB program, Figure 1). The window size is a key parameter for
bootstrap analyses because the amount of phylogenetic signal depends on both the number
of nucleotide sites and their evolutionary rates. For that reason, we decided to perform
four SWB analyses with the same step parameter of 50 nt but using four different window
sizes, i.e., 250 nt, 500 nt, 1000 nt, or 2000 nt. The smallest window size (W = 250 nt) was
applied to detect possible changes in phylogenetic relationships due to the recombinant
origin of small genomic regions, whereas the largest window size (W = 2000 nt) was used
to guarantee enough phylogenetic signal (i.e., informative sites) for bootstrap analyses. The
two intermediate window sizes (500 and 1000 nt) were used to better interpret possible
differences between the results based on the two extreme values.

The number of phylogenetically informative sites (IS) was firstly compared between
the four SWB analyses (Figure 2A): the 537 windows of 2000 nt contain between 557 and
1372 IS, which is much more than the 557 windows of 1000 nt (between 264 and 769 IS), the
567 windows of 500 nt (between 123 and 404 IS), and the 572 windows of 250 nt (between
47 and 217 IS). In addition, the amount of phylogenetic signal appeared to be variable
along the alignment, and this was particularly evident for the analysis based on the largest
window size (2000 nt), for which the greatest number of IS (1372) was found in window
N◦ 425 (pos. 21,201–23,200, S gene), while the smallest number of IS (557) was found in
windows N◦ 282 and N◦ 283 (pos. 14,051–16,100, including the RdRp gene). These results,
therefore, confirmed that the S gene evolves faster than other protein-coding genes of the
genome [25].

Figure 2. Number of informative sites (A) and bipartitions (B) found in the SWB analyses based
on four window sizes. The alignment of 56 Sarbecovirus genomes was analyzed using four sliding
window sizes: 250 nt (blue), 500 nt (orange), 1000 nt (green), and 2000 nt (red). The scale in abscissa
shows the positions in the alignment.
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The number of IS is expected to impact the number of bootstrap bipartitions. Indeed, a
weak phylogenetic signal (i.e., low number of IS) can generate many possible phylogenetic
hypotheses, i.e., several bipartitions supported by very low BP, whereas a strong phyloge-
netic signal (i.e., a high number of IS) can provide support for one specific phylogenetic
hypothesis, i.e., one bipartition supported by BP ≥ 70%. This was confirmed by the results
of Figure 2B, as the SWB2000 analysis produced fewer bipartitions (between 118 and 712)
than the SWB250 analysis (between 360 and 2350). As a consequence, we conclude that
the windows of 2000 nt contain enough phylogenetic signal for studying relationships
at different depths (both shallow and deep evolutionary relationships), whereas the win-
dows of 250 nt can be less efficient for studying shallow relationships (i.e., the most recent
divergences) due to insufficient amount of phylogenetic signal (not enough available IS).

3.2. Topological Congruence between the Four SuperTRI Bootstrap Consensus Trees

The four SuperTRI bootstrap consensus (SB) trees reconstructed from the SWB analyses
based on different window sizes (250, 500, 1000, and 2000 nt) are available in Supplementary
Figure S1. Most nodes of the trees were supported by maximum SuperTRI bootstrap values
(SBP = 100). Since a strong overall topological congruence was found between the four SB
trees, we decided to show in Figure 3 a 75%-majority consensus tree, in which topological
differences between SB250, SB500, SB1000, and SB2000 trees are indicated by dash branches.
As previously found by Ropiquet et al. [19], our SuperTRI analyses confirmed that the
reproducibility index (Rep) (here the proportion of the N bootstrap analyses supporting
a bipartition) is linearly correlated with the mean branch support (here MBP, calculated
using all N bootstrap analyses) (Supplementary Figure S2). Since it was much easier to
calculate MBP than Rep values for hidden phylogenetic relationships, only MBP values
were used in this study.

In the synthesis tree of SuperTRI analyses (Figure 3), three main clades of Sarbecovirus
were found monophyletic with high MBP values, indicating that they were supported by
most overlapping subdatasets (windows) extracted from the multiple genome alignment:
(i) the western clade (62% ≤MBP ≤ 98%), grouping RspKY72 from Africa and RbBM48-31
from Europe; (ii) the SCoVrC clade (28% ≤MBP ≤ 47%), which includes all SCoVrCs found
in different provinces of China; and (iii) a composite clade (28% ≤ MBP ≤ 46%), which
contains the Japanese virus Rc-o319, the four YunSar viruses (RaTG15, RmYN05, Rst7931,
and RstYN04), all SCoV2rCs, the two pangolin viruses (MjGuangdong and MjGuangxi),
and the three RecSar viruses (showing evidence of past recombination between SCoVrC
and SCoV2rC, i.e., RpPrC31, RsZXC21, and RsZC45; see paragraph 4.2). The GB barcodes
associated with these three main Sarbecovirus clades (Figure 3) showed that the composite
and SCoVrC clades were mainly supported by the 5′ region of the genome alignment,
whereas the western clade was highly supported by all regions.

Within the composite clade, YunSar was found monophyletic with very high MBP
values (≥98%), indicating that the phylogenetic signal was distributed in all regions of
the alignment (see GB barcode N◦ 2 in Figure 3). Other relationships were less supported
(MBP < 50%), including SCoV2rC (14% ≤MBP ≤ 31%), RecSar (14% ≤MBP ≤ 22%), the
clade uniting MjGuangdong, SCoV2rC and RecSar (23% ≤ MBP ≤ 45%), and the clade
herein referred to as SCoV2rC sensu lato (s.l.), which is composed of SCoV2rC, RecSar and
the two pangolin viruses (19% ≤MBP ≤ 36%).

Within the SCoVrC clade, we found a basal dichotomy separating two geographic
groups: (i) SCoVrC-SW, which includes SARS-CoV and bat viruses collected in the provinces
of Southwest China (Guangxi, Guizhou, Sichuan, and Yunnan) (10% ≤MBP ≤ 20%); and
(ii) SCoVrC-CE, which includes bat viruses collected in the provinces of Central and East
China (Henan, Hong-Kong, Hubei, Shaanxi, and Zhejiang) (4% ≤MBP ≤ 8%).
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Figure 3. Synthesis tree showing the most reliable relationships reconstructed from SWB analyses
of an alignment of 56 Sarbecovirus genomes. Bootstrap analyses were conducted on an alignment of
56 Sarbecovirus genomes (28,845 nt) using the SWB program and four different window sizes (250,
500, 1000, or 2000 nt). Then, the SWB outfiles were tranformed into bootstrap log files using the
LFG program. The 572 bootstrap log files generated with a window size of 250 nt were coded by the
SuperTRI v57 program [19] into an MRP file, which was then executed in the PAUP version 4.0a [24] to
construct a SuperTRI bootstrap 50% majority-rule consensus (SB250) tree using the weighted parsimony
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method and 1000 bootstrap replicates. Three other SB trees were constructed using the same approach:
SB500 with the 567 bootstrap log files generated with a window size of 500 nt; SB1000 with the
557 bootstrap log files generated with a window size of 1000 nt; and SB2000 with the 537 bootstrap
log files generated with a window size of 2000 nt. The tree shown here is a 75% majority-rule
consensus tree of SB250, SB500, SB1000, and SB2000 trees (shown in Supplementary Figure S1). The
nodes were recovered in all the four SB trees, except those indicated by dash branches, which
were found monophyletic in only three of the four SB trees. The GB barcodes were constructed for
all nodes showing at least one Bootstrap Percentage (BP) ≥ 70% in the four SWB analyses using
different window sizes. Thick branches highlight the nodes supported by Mean Bootstrap Percentage
(MBP) ≥ 33% with a window size of 2000 nt. The symbol “+” indicates the nodes also supported
by the SWB analyses of a reduced alignment of 49 genomes, i.e., after exclusion of recombinant
genomes between divergent lineages (RecSar and YunSar) (Supplementary Figure S2). The colors
of sarbecoviruses indicate to which group of synonymous nucleotide composition they belong [17]:
black for SARS-CoV related coronaviruses (SCoVrC); green for coronaviruses related to SARS-CoV-2
(SCoV2rC); light blue for the two pangolin viruses (PangSar); dark blue for the three bat RecSar
viruses showing evidence of genomic recombination between SCoV2rC and SCoVrC; red for the four
divergent bat viruses from Yunnan (YunSar); and orange for the bat virus from Japan.

Since RecSar and YunSar have originated from recombination between divergent Sar-
becovirus lineages (see paragraph 4.2 for details), the four SWB analyses were also carried
out by removing these two groups (reduced alignment of 49 genomes). The synthesis tree
of SuperTRI analyses (Figure S2) was found to be very similar to that of Figure 3. In particu-
lar, all nodes were recovered monophyletic with higher MBP values, including the western
clade (66% ≤MBP ≤ 99%), SCoVrC (38% ≤ MBP ≤ 74%), SCoVrC-CE (9% ≤MBP ≤ 32%),
SCoVrC-SW (11% ≤ MBP ≤ 40%), the composite clade (46% ≤MBP ≤ 83%), SCoV2rC s.l.
(48%≤MBP≤ 76%), SCoV2rC + MjGuangdong (48%≤MBP≤ 75%), SCoV2rC (30%≤MBP≤ 62%),
the monophyly of SCoV2rCs from Yunnan (SCoV2rC-YU; 17% ≤MBP ≤ 40%), and the
sister-group relationship between SARS-CoV-2 and RmYN02 + RpYN06 (15% ≤MBP ≤ 31%).

3.3. Comparison between GB Barcodes Constructed Using Four Sliding Window Sizes

As shown in Figure 1, 294 bipartitions were recovered in all the four SWB analyses based
on different window sizes. Some of these bipartitions correspond to the tree nodes of Figure 3,
but most of them represent hidden phylogenetic relationships, i.e., less reliable phylogenetic
hypotheses (not shown in the tree) generally supported by smaller genomic regions. For
convenience, they were numbered from 1 to 294 after a classification based on decreasing
values of MBP2000 (from 100 to 1%; calculated using the N = 572 bootstrap analyses performed
with a window of 2000 nt). The four SWB output files reduced to the 294 bipartitions were
then used as inputs in the BBC program to construct 294 × 4 = 1176 GB barcodes.

A barcode can be defined as a small image in which numbers, letters and/or other
symbols were coded to represent a series of vertical bars of varying width. In our study, the
GB barcodes were constructed for the 294 selected bipartitions to summarize the results of
SWB analyses along the genome alignment. A GB barcode is a small image representing the
genome alignment and in which the N BP values (N = 572 with a window size of 2000 nt)
obtained for a bipartition (i.e., a phylogenetic hypothesis) were transformed into N colored
vertical bars using the following code: green for BP≥ 70%; grey for 70% > BP > 30%; and red
for BP ≤ 30%. In a GB barcode, the genomic region(s) containing robust phylogenetic signal
(hereinafter referred to as GRPS) for the bipartition of interest are therefore shown in green,
whereas the region(s) of the genome alignment with no robust support are shown in red.

The GB2000 barcodes were constructed from the SWB2000 analysis, and they were
compared to GB1000, GB500, and GB250 barcodes built from the SWB1000, SWB500, and
SWB250 analyses, respectively. As expected, the MBP and maximum window BP values
were found to be higher for the SWB2000 analysis, i.e., based on the largest window size
(2000 nt): an increase was found for 77%, 84%, and 87% of the 294 bipartitions when
the MBP2000 values were compared to those calculated from the SWB analyses based on
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window sizes of 1000 nt (MBP1000), 500 nt (MBP500) and 250 nt (MBP250), respectively. A
similar trend was found for maximum window BP values: an increase was found for 72, 74,
and 84% of the 294 bipartitions when the maximum window BP2000 values were compared
to those calculated from the SWB1000, SWB500, and SWB250 analyses, respectively.

Some genomic regions supported by BP≥ 70% (green regions) in GB2000 barcodes can be
absent or much more reduced in GB1000, GB500, and GB250 barcodes (e.g., bipartitions N◦ 6,
8, and 18 in Figure 3). These differences can be explained by the limited amount of
phylogenetic signal (number of IS) in some windows of 1000, 500, 250 nt. However, using
the largest window size is not necessarily the panacea, as an incongruent phylogenetic
signal located in a genomic region much smaller than the window size cannot be detected.
This is the case for several bipartitions for which small regions supported by BP ≥ 70% in
GB1000, GB500, and/or GB250 barcodes (in green) were found hidden (i.e., in red, BP ≤ 30%)
in GB2000 barcodes (e.g., bipartitions N◦ 11, 22, and 63 in Figure 3). This explanation may
also hold for several other bipartitions for which small regions showing no robust signal
(BP ≤ 30%) in GB1000, GB500, and/or GB250 barcodes were found hidden (i.e., in green this
time) in GB2000 barcodes (e.g., bipartitions N◦ 3, 4 and 9 in Figure 3). Using the smallest
window size (250 nt) can be therefore crucial to detect changes in phylogenetic relationships
due to the recombinant origin of small genomic fragments.

Four categories of GB barcodes were defined according to the genomic location of the
phylogenetic support: (i) GB barcodes S5, in which the phylogenetic support was located
in the 5′ region, i.e., the first third part of the genome alignment; (ii) GB barcodes SC, in
which the phylogenetic support was located in the central region, i.e., the second third
part of the genome alignment; (iii) GB barcodes S3, in which the phylogenetic support was
located in the 3′ region, i.e., the last third part of the genome alignment; and (iv) other
GB barcodes in which the phylogenetic support was distributed in several regions of the
alignment. Several examples are described in the next three paragraphs.

3.4. GB Barcodes of Bipartitions Including YunSar Viruses

All the 15 GB barcodes including YunSar viruses are presented in Figure 4. Among
them, there are five GB barcodes SC, four GB barcodes S5, and one GB barcode S3. The
results revealed three different evolutionary histories for 5′, central, and 3′ genomic regions.
The 5′ and central regions indicated a close relationship between YunSar and SCoV2rC
s.l. (14% ≤ MBP ≤ 23% and 16% ≤ MBP ≤ 31%, respectively). However, a small zone
of the 5′ region, located between pos. 1150 and 3300 showed a sister-group relationship
between YunSar and Rc-o319 (10% ≤MBP ≤ 12%), but the high nucleotide distance (33.0%)
rather suggests a long-branch attraction artefact. The region located between pos. 10,900
and 12,700 appeared more similar to MjGuangxi (12% ≤MBP ≤ 14%), with a nucleotide
distance of 17.4%. By comparison, the nucleotide distances calculated for the GRPSs of the
central region were much smaller, suggesting a more recent separation: between 7.3 and
8.1% with SCoV2rC (pos. 15,600–16,500) and between 9.7 and 11.0% with MjGuangdong
(pos. 13,550–15,250 and 18,000–19,700). In the 3′ region (pos. 21,500–28,800), the four
YunSar genomes appeared highly divergent from all other sarbecoviruses (29.7–30.1%),
whereas other genomes found in Asia (11% ≤MBP ≤ 21%) were found more similar to
each other (SCoVrC versus SCoV2rC s.l. + Rc-o319 = 17.8–22.0%). All these comparisons,
therefore, indicate that the common ancestor of YunSar has emerged from recombination
between divergent parental viruses.

3.5. GB Barcodes of Bipartitions Including RecSar Viruses

The three RecSar viruses showing evidence of past recombination between SCoVrC
and SCoV2rC are RpPrC31, RsZXC21 and RsZC45 [26,27]. Although RecSar appeared as
a monophyletic group in the tree of Figure 3, the GB barcode associated with this node
(bipartition N◦ 39; 14% ≤ MBP ≤ 22%) belongs to the S3 category, meaning that the
phylogenetic support was only found in the 3′ region of the genome alignment (2 GRPSs in
pos. 19,750–21,800 and 22,950–26,500).
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Figure 4. Genomic bootstrap (GB) barcodes generated for the bipartitions including YunSar viruses.
For all the 15 bipartitions including the four YunSar viruses, four GB barcodes were constructed from
SWB analyses based on the following window sizes: from bottom to top, 250, 500, 1000, and 2000 nt.
In GB barcodes, genomic regions in green were supported by bootstrap percentages (BP) ≥ 70%,
those in red by BP ≤ 30%, and those in grey by 30% < BP < 70%. For each GB barcode, the value at
the left is the mean bootstrap percentage (MBP). The values above GB barcodes are minimum and
maximum distances calculated in the genomic region(s) containing robust phylogenetic signal (GRPS)
between YunSar and other viruses included in the bipartition. Four categories of GB barcodes were
defined based on the genomic location of the phylogenetic support (BP ≥ 70%, green regions): pale
yellow for the 5′ region; pale olive green for the central region; light blue for the 3′ region; and white
when the phylogenetic support was distributed in different genomic regions. Only the bipartitions
surrounded by a solid black line were found monophyletic in the tree of Figure 3. The bipartitions
surrounded by a dashed black line represent hidden phylogenetic signals. As in Figure 3, the colors
of sarbecoviruses indicate to which group of synonymous nucleotide composition they belong. The
isosceles triangles show nested GB barcodes, the vertex point indicating the nested bipartition, i.e., the
one containing fewer viruses. The symbol “≈” was used to show compatible bipartitions considering
the recombinant nature of RecSar genomes.
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All the 30 GB barcodes including RecSar viruses and supported by MBP2000 > 7%
are shown in Figures 5 and 6. The 7% threshold was chosen based on two opposing
constraints: on the one hand, our desire for completeness results, and on the other, the
lack of space in the figures (the 19 GB barcodes with MBP2000 < 7% were not shown).
The results showed strong evidence for past recombination between SCoVrC and SCoV2rC
lineages, as the analysis of nested GB barcodes revealed three different evolutionary histories
for 5′, central, and 3′ genomic regions. In addition to the monophyly of RecSar viruses,
the 3′ region provided support for their close relationship to RpYN06 within SCoV2rC
(8% ≤MBP ≤ 13%; 2 GRPSs in pos. 20,650–23,750 and 24,300–24,400). The 5′ region also
showed that RecSar viruses belong to the SCoV2rC group (8% ≤ MBP ≤ 18%; 4 GRPSs
in pos. 3050–4750, 5600–5750, 6600–7650, and 24,300–24,400): RpPrC31 appeared more
closely related to RmYN02 (12% ≤MBP ≤ 19%; 1 GRPS in pos. 2150–6600), whereas the
position of RsZXC21 and RsZC45 was found to be unstable within the SCoV2rC group (see
GB barcodes S5 in Figure 5). By contrast, the central region showed that the three RecSar
viruses belong to the SCoVrC group (7% ≤MBP ≤ 25%): RpPrC31 was found in the group
of Southwest China (SCoVrC-SW) (10% ≤MBP ≤ 20%; 2 GRPSs in pos. 12,900–14,150 and
15,600–18,450), where it appeared in the SCoVrC-SW2 subgroup (6%≤MBP≤ 14%; 2 GRPSs
in pos. 12,900–14,800 and 16,850–18,400); RsZXC21 and RsZC45 were found in the group of
Central and East China (SCoVrC-CE) (4% ≤MBP ≤ 20%; 1 GRPS in pos. 14,200–19,500), in
which they appeared into a clade containing three viruses from Hong-Kong (RsHKU3-1,
-7, and -12) and RmoLongquan140 from Zhejiang (15% ≤ MBP ≤ 28%; 1 GRPS in pos.
12,200–19,700), the latter virus being their sister-group (8% ≤MBP ≤ 13%; 1 GRPS in pos.
15,200–18,300). All these results, therefore, indicate that the ancestor of RpPrC31 and the
common ancestor of RsZXC21 and RsZC45 have emerged from two independent events of
recombination between SCoVrC and SCoV2rC parental viruses.

3.6. GB Barcodes of Bipartitions Containing SARS-CoV-2

Most GB barcodes including SARS-CoV-2 and supported by MBP2000 > 7% are pre-
sented in Figure 7 (25/33 GB barcodes; the eight barcodes N◦ 17, 37, 41, 46, 54, 117, 120,
and 129 were shown in previous figures).

The results revealed the mosaic origin of SARS-CoV-2, as several genomic parts of
SARS-CoV-2 were found to share recent ancestry with several viruses recently described
from Rhinolophus bats collected in Yunnan. The close relationship between SARS-CoV-2 and
RmYN02 + RpYN06 (9% ≤MBP ≤ 21%) was supported by three GRPSs (in pos. 1–1650,
7950–8700, and 17,950–20,200) showing between 1.5 and 3.0% of nucleotide divergence.
Several other genomic regions provided support for a sister-group relationship of SARS-
CoV-2 with either RaTG13 (14% ≤ MBP ≤ 21%; 2 GRPSs in pos. 4650–4950 (2.3%) and
20,300–23,300 (7.2%)), RmYN02 (8% ≤MBP ≤ 11%; 1 GRPS in pos. 19,500–20,150 (1.8%)),
or RpYN06 (7% ≤MBP ≤ 8%; 1 GRPS in pos. 9150–10,350 (1.4%)). The SARS-CoV-2 was
also found to have a common ancestry with the following groups of viruses from Yunnan:
RmYN02 + RpYN06 + RaTG13 (7%≤MBP≤ 17%; 2 GRPSs in pos. 18,500–20,250 (2.2–2.9%)
and 24,800–26,950 (2.6–3.2%)), and RmYN02 + RpYN06 + RpPrC31 (6% ≤ MBP ≤ 15%;
2 GRPSs in pos. 1–2900 (2.7–3.6%) and 6250–7700 (1.6–2.3%)).

Several other genomic regions of SARS-CoV-2 were found to have a more ancient ancestry
with several viruses from Yunnan, such as RmYN02 + RpYN06 + RaTG13 (7% ≤MBP ≤ 17%;
2 GRPSs in pos. 18,500–20,250 (2.2–2.9%) and 24,800–26,950 (2.6–3.2%)), and RmYN02
+ RpYN06 + RpPrC31 (6% ≤ MBP ≤ 15%; 2 GRPSs in pos. 1–2900 (2.7–3.6%) and
6250–7700 (1.6–2.3%)). Three GRPSs showed a common ancestry between SARS-CoV-2 and
four viruses (7% ≤MBP ≤ 18%), three from Yunnan (RmYN02 + RpYN06 + RaTG13) and
one from Cambodia (RShSTT200): in pos. 7950–8350 (1.0–3.5%), 14,100–16,350 (1.9–2.5%),
and 24,750–25,700 (3.4–5.0%). Among bipartitions with MBP2000 < 7% (not shown in
Figure 7), we also found some traces of common ancestry between SARS-CoV-2 and
viruses from Southeast Asia in pos. 11,200–12,450 (RShSTT200 + RacCS203; MBP2000 = 5%;
distance = 2.2–2.4%) and 24,150–24,200 (RShSTT200; MBP2000 = 5%; distance = 7.8%), but
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these regions remains more divergent and represent much less phylogenetic signal than
the sum of regions related to viruses from Yunnan (4.5 vs. 52.8% of the total genomic
alignment). We did not find any GRPS shared only between SARS-CoV-2 and pangolin
viruses, MjGuangdong and/or MjGuangxi.

Figure 5. Genomic bootstrap (GB) barcodes generated for the bipartitions including RsZC45 and
RsZXC21. The GB barcodes are shown for the 18 bipartitions including RsZC45 and RsZXC21 found
in the SWB analyses based on four window sizes (250, 500, 1000, or 2000 nt) and supported by
MBP2000 > 7%. For more details on GB barcodes, read the legend of Figure 4. Here, the GB barcodes
with MBP2000 < 7% were not shown.
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Figure 6. Genomic bootstrap (GB) barcodes generated for the bipartitions including RpPrC31. The
GB barcodes were examined for the 26 bipartitions including RpPrC31 found in the SWB analyses
based on four window sizes (250, 500, 1000, or 2000 nt) and supported by MBP2000 > 7%. For more
details on GB barcodes, read the legend of Figure 4. Here, the GB barcodes with MBP2000 < 7% were
not shown.
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Figure 7. Genomic bootstrap (GB) barcodes generated for the bipartitions including SARS-CoV-2.
The GB barcodes were examined for the 33 bipartitions including SARS-CoV-2 found in the SWB
analyses based on four window sizes (250, 500, 1000, or 2000 nt) and supported by MBP2000 > 7%. The
GB barcodes of the eight largest bipartitions (N◦ 17, 37, 41, 46, 54, 117, 120, and 129) are not shown;
they are available in Figures 4–6. For more details on GB barcodes, read the legend of Figure 4. Here,
the GB barcodes with MBP2000 < 7% were not shown.
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3.7. Length Estimation of GRPSs Involving Viruses of the SCoV2rC s.l. Lineage

The succession of recombination events between Sarbecovirus genomes over time
can result in a high fragmentation of phylogenetic signals distributed along the genomic
alignment. In theory, the phylogenetic signal informing an ancient recombination (black B1
fragment in the recombinant genome R1 of Figure 8) can be partially lost when subsequent
recombination has occurred in a nested location (blue B2 fragment in the recombinant
genome R1′ of Figure 8). Such nested recombination events can greatly complicate the
identification of ancient recombinant fragments. Therefore, we selected only the GB2000
barcodes showing a single GRPS to estimate the median size of putative recombinant
fragments in the SCoV2rC s.l. lineage. For that purpose, we analyzed all the 183 bipartitions
of the SWB2000 analysis including at least one of the 11 viruses of the SCoV2rC s.l. lineage
and the 80 bipartitions showing a single GRPS (e.g., bipartitions N◦ 26, 100, and 127 in
Figure 7) were selected to estimate GRPS lengths. The results revealed a high variation of
GRPS lengths, from 50 nt to 8300 nt, and the median length was calculated to be 875 nt.

Figure 8. Model of recombination between different Sarbecovirus lineages. The two parental genomes
are defined as acceptor and donor. We assumed that the donor parental genome was preserved in the
host cell as circular RNA molecules (see Section 4.4), whereas the cell was subsequently infected with
the acceptor parental genome. Then, the process of homologous recombination can generate different
patterns of recombinant genomes, which are selected based on their capacity to replicate efficiently in
the bat reservoir host, i.e., through the sequence of their RNA-dependent RNA polymerase (RdRp).
According to this model, the accumulation of recombination events over time has led to mosaic
genomes in which different regions can carry incongruent phylogenetic signals.
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4. Discussion
4.1. Further Evidence for Four Divergent Sarbecovirus Lineages in Asia

Several studies have shown evidence for multiple recombination events during the
evolutionary history of sarbecoviruses [3,28]. Consequently, different regions of recombi-
nant genomes can bring discordant phylogenetic signals (Figure 8). For that reason, several
phylogenetic trees based on different genes are generally compared in genomic studies on
sarbecoviruses [8,9,16,17,29]. However, the reconstruction of separate gene trees implic-
itly assumes that recombination occurs between genes. Our results confirmed that this
assumption is wrong as the high fragmentation of the phylogenetic support indicates that
recombination has occurred everywhere in the genome and independently of the start and
stop codons of ORFs (see also Supplementary Figure S3). In a recent study, Boni et al. [3]
have developed a two steps approach for phylogeny: firstly, recombination breakpoints
were detected in the genomes using 3SEQ and GARD methods [30,31], and secondly, the
genomic regions more likely to be non-recombinant were selected for tree reconstruction
and molecular dating. Although these methods can be used to determine the regions less
impacted by recent recombination, they cannot guarantee an efficient discovery of ancient
recombination breakpoints.

In this study, we adopted a third phylogenetic approach in which the SuperTRI
method [19] was used to construct an SB consensus tree showing the most reliable (repeated)
relationships found in the SWB analysis. Our underlying assumptions for this approach
can be formulated as follows: closely related viruses share robust phylogenetic signals in
several large genomic regions, whereas more distantly related viruses have fewer genomic
regions in common, most of them being reduced in size due to successive recombination
events in overlapping or nested locations (Figure 8). It is important to note that the four SB
trees constructed from the SWB analyses based on four different window sizes were found
to be very similar, and that the topology remained very stable when recombinant viruses
between divergent lineages (RecSar and YunSar) were removed from the analyses (Figure 3
vs. Supplementary Figure S2). Such stability of phylogenetic relationships deeply contrasts
with the discordant trees recently published for the subgenus Sarbecovirus [16,18].

Our synthesis tree provided high support for the four following Sarbecovirus lineages in
Asia (Figure 3): (i) SCoVrC, including SARS-CoV and many bat viruses collected in different
provinces of China; (ii) SCoV2rC s.l., the lineage uniting SCoV2rC (SARS-CoV-2 + bat viruses
from Yunnan and Southeast Asia), the two pangolin viruses (MjGuangdong and MjGuangxi
from unknown origins in Southeast Asia), and the three RecSar viruses discovered in bats
from two Chinese provinces, Yunnan (RpPrC31) and Zhejiang (RsZXC21 and RsZC45);
(iii) the four YunSar viruses from Yunnan; and (iv) the Japanese virus Rc-o319. The SCoVrC
and YunSar lineages were found to be monophyletic in recent studies [16,18]. By contrast,
SCoV2rC s.l. was found to be paraphyletic in most trees shown in Zhou et al. [16] due to the
inclusive placement of YunSar, which appeared as the sister-group of either MjGuangxi or
MjGuangdong. In Guo et al. [18], both SCoV2rC s.l. and YunSar were found monophyletic,
but YunSar appeared highly divergent from other sarbecoviruses. Our analysis of GB
barcodes revealed that these topological incongruences resulted from past recombination
events between YunSar and SCoV2rC s.l. lineages (involving MjGuangdong, MjGuangxi,
and SCoV2rC; see GB barcodes N◦ 71, 90, and 145 in Figure 4). Importantly, all the four
Sarbecovirus lineages supported by our phylogenetic analyses were found to have different
synonymous nucleotide composition (SNC) in third codon-positions, dinucleotides, and
degenerate codons [17]. Currently available data suggest that they have evolved in different
biogeographic regions and/or distinct Rhinolophus reservoirs: Rc-o319 in Japan (reservoir:
R. cornutus), SCoVrC in China (main reservoir: R. sinicus), SCoV2rC s.l. in Southeast Asia
and Yunnan (main reservoir: several Rhinolophus species that do not hibernate, such as
R. acuminatus, R. malayanus, R. shameli), and YunSar in Yunnan and maybe in Southeast Asia
(most likely reservoir: R. stheno; see below for more explanations) [6,17].



Viruses 2022, 14, 440 18 of 23

4.2. RdRp Selection of Recombinant Genomes in Bat Reservoirs

Since the three divergent lineages SCoVrC, SCoV2rC s.l., and YunSar can be found at
least occasionally in sympatry in the caves of Yunnan, recombination between them may
have occurred in the Chinese province at multiple times during the evolutionary history of
sarbecoviruses. Our analyses of nested GB barcodes showed strong evidence that the three
RecSar viruses (RpPrC31, RsZC45, and RsZXC21) have emerged through two independent
events of recombination between SCoVrC (donor parental genome; Figure 8) and SCoV2rC
(acceptor parental genome, the one accepting a genomic fragment from the donor parental
genome), confirming some results from previous studies [3,26,27]: one resulted in the
ancestor of RpPrC31, and the other led to the ancestor of RsZC45 and RsZXC21.

The RpPrC31 virus was recently described from an intestinal sample of R. pusillus
(subspecies blythi) collected in 2018 in Yunnan [27]. The analysis of GB barcodes showed
that its genome contains highly discordant phylogenetic signals (Figure 6): based on both 5′

and 3′ genomic regions, it appeared related to bat SCoV2rC viruses from Yunnan (RmYN02
and RpYN06); based on the central genomic region, it appeared within SCoVrC-SW2, the
clade including SARS-CoV and several bat viruses detected in Yunnan and three other
provinces of Southwest China (Guangxi, Guizhou, and Sichuan). Biogeographically, the
most parsimonious scenario therefore implies that recombination between SCoVrC (donor)
and SCoV2rC (acceptor) genomes took place in Yunnan or adjacent regions. Such a scenario
is also corroborated by the fact that the ecological niches of SCoVrC and SCoV2rC overlap
only in the zone including southern Yunnan, northern Laos, and northern Vietnam [6].

The two viruses RsZXC21 and RsZC45 were discovered in R. sinicus samples collected
in the Zhejiang province in 2015 and 2017, respectively [26]. As for the RpPrC31 genome,
the analysis of GB barcodes showed that the genomes of RsZC45 and RsZXC21 contain
highly discordant phylogenetic signals: based on both 5′ and 3′ regions, their common
ancestor appeared related to bat viruses from Yunnan (RaTG13, RmYN02, RpYN06, and
RpPrC31); based on the central genomic region, it was found within SCoVrC-CE as the
sister-group of RmoLongquan140 from Zhejiang (Figure 5). Biogeographically, it can be
therefore proposed that the parental SCoV2rC strain (acceptor genome) of the common
ancestor of RsZXC21 and RsZC45 may have originated in Yunnan a few generations ago,
and that recombination with a virus related to RmoLongquan140 (donor genome) occurred
in the Zhejiang province.

The YunSar viruses were recently described from one R. affinis and seven R. stheno
sampled in Mojiang County in 2015 [18] and from one R. stheno and two R. malayanus
sampled in Mengla county (southern Yunnan) between 2019 and 2020 [16]. However, the
re-analyses of SRA data have shown that all the three viruses published by Zhou et al. [16]
were collected from R. stheno (AH, paper in preparation), meaning that RmYN05 and
RmYN08 should be renamed RstYN05 and RstYN08, respectively. The YunSar genomes
were found to evolve with higher rates of substitutions and with atypical asymmetric
mutational constraints [17], suggesting a bat reservoir different from that of the two other
lineages currently found in Yunnan, SCoVrC and SCoV2rC. Obviously, the species R. stheno
seems to be the most likely reservoir candidate for this lineage, as YunSar was found with
higher prevalence in this species (10 out of 11 samples). Another interesting point is that
currently available data on the distribution of R. stheno suggest that the population from
Yunnan may be isolated from other populations found in southern Vietnam, Malaysia, and
Indonesia [13]. The analysis of GB barcodes showed that YunSar genomes contain highly
discordant phylogenetic signals: based on the 5′ region, they appeared as the sister-group of
SCoV2rC s.l.; based on the 3′ region, they were found divergent from all other Sarbecovirus
lineages; and based on the central region, they appeared closely related to either MjGuangxi,
MjGuangdong or the common ancestor of SCoV2rC (Figure 4). The results therefore suggest
that the central genomic region has been acquired through recombination with several
SCoV2rC s.l. viruses.

It is relevant to note that the central region from a donor parental genome has been
selected in all current sarbecoviruses showing evidence of past recombination between
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divergent lineages: the recombinant pattern SCoV2rC-SCoVrC-SCoV2rC has been selected in
the Zhejiang ancestor of RsZC45 and RsZXC21 and independently in the Yunnan ancestor
of RpPrC31; and the recombinant pattern YunSar-SCoV2rC s.l.-YunSar has been selected in
the Yunnan (or possibly Southeast Asian) ancestor of YunSar. The convergent acquisition
of three similar patterns of recombination is indicative of strong selective pressure in the
central genomic region. In agreement with that hypothesis, Figure 2A shows that the
number of IS is lower in the central region than in the 5′ and 3′ regions, indicating that the
genes of the central region have evolved under stronger selective pressure. Importantly,
the central region contains the protein-coding sequence of the RdRp, which plays a crucial
role in the replication and transcription of the viral RNA genome [32], and has evolved
under strong negative selection throughout the COVID-19 pandemic [25].

Both viruses RsZC45 and RsZXC21 were found in R. sinicus bats from Zhejiang, sug-
gesting their common ancestor originated in the same species and province. As previously
exposed, we hypothesized that recombination occurred in Zhejiang between an acceptor
SCoV2rC genome, coming originally from Yunnan, and a donor SCoVrC-CE genome related
to RmoLongquan140. Importantly, R. sinicus is likely to be the main reservoir species for
SCoVrC, as most viruses of this lineage have been sampled in this species [7]. Moreover,
the geographic range of R. sinicus [13] includes Zhejiang and most other provinces of
China, which fits very well with the ecological niche recently inferred for SCoVrC [6]. Taken
together, these elements imply that the ancestor of RsZC45 and RsZXC21 has emerged in a
SCoVrC environment, both in terms of geography and bat reservoir, and that the selection
of an RdRp gene of the SCoVrC type (previously adapted to R. sinicus) was determinant for
its viral replication and proliferation in the bat species in which recombination occurred,
i.e., R. sinicus. Based on the observed recombination patterns, we similarly propose that
the ancestor of RpPrC31 has also been selected in a SCoVrC environment, while the an-
cestor of YunSar has originated in a SCoV2rC s.l. environment. The hypothesis involving
a strong host-dependent selection of the viral RNA-dependent RNA polymerase is also
corroborated by the phylogeographic patterns found in both SCoVrC and SCoV2rC lineages
(Figure 3 and Supplementary Figure S3): within SCoVrC, we found a basal dichotomy
separating two geographic groups, SCoVrC-SW in Southwest China and SCoVrC-CE in
Central and East China; within SCoV2rC, all bat viruses sampled in Yunnan were grouped
(SCoV2rC-YU), with the two bat viruses from southern Southeast Asia (Cambodia and
Thailand) at the outside.

4.3. SARS-CoV-2 Is a Mosaic Genome Closely Related to Bat Viruses from Yunnan

There are several hypotheses regarding the origin of SARS-CoV-2, including direct
transmission from horseshoe bats to humans, indirect transmission via the Sunda pangolin
or another intermediate host species [5], or a laboratory escape [33]. The two viruses previ-
ously described from Sunda pangolins [31,34], here named MjGuangdong and MjGuangxi,
were found to share a similar SNC (characterized by the highest percentage of A nucleotide
at third codon-positions), which was different from that observed in SARS-CoV-2 and bat
SCoV2rCs (characterized by the highest percentages of U nucleotide and lowest percentages
of C nucleotide at third codon-positions) [17]. Since MjGuangdong and MjGuangxi were
never found as sister-groups, Hassanin [17] concluded that the two independent host
switches from Rhinolophus bats to pangolins have led to convergent mutational constraints
and that SARS-CoV-2 has emerged directly from a bat virus, without a pangolin interme-
diate host. In agreement with this view, our analysis of GB barcodes (Figure 7) showed
that many genomic regions of SARS-CoV-2 were found closely related to viruses recently
described from Rhinolophus bats collected in Yunnan, including RmYN02, RpYN06, and
RaTG13. Our results therefore suggest that the ancestor of SARS-CoV-2 emerged in bats
from Yunnan, a hypothesis also corroborated by the consensus tree of our SuperTRI analyses
(Figure 3), in which SARS-CoV-2 appeared as the sister-group of RmYN02 + RpYN06 from
Yunnan, with RaTG13 from Yunnan in more basal position. The same phylogeographic
pattern was recovered with more robustness (higher MBP values) when recombinant
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viruses between divergent lineages, RecSar and YunSar, were removed from the analyses
(Supplementary Figure S2). Although an origin in Yunnan is currently the best hypothesis,
northern regions of Southeast Asia adjacent to Yunnan, such as northern Myanmar, north-
ern Laos, and northern Vietnam, cannot be completely ruled out. In agreement with that
hypothesis, viruses closely related to SARS-CoV-2 were recently discovered in northern
Laos [35]. However, to date, none of these viruses were found to contain the insertion of
four amino acids (PRRA motif) at the cleavage site of the spike protein, which is known to
have a critical role in SARS-CoV-2 infection and pathogenesis [36].

4.4. Are CircRNAs Involved in Homologous Recombination?

Circular RNAs (circRNAs) form a large class of RNA molecules widespread in eukary-
otes [37]. They play important functions in gene regulation as they can have interactions
with RNA-binding proteins, serve as translation templates, and act as microRNA sponges
or transcriptional regulatory factors [37–39]. DNA-genome viruses are also capable of
generating circRNAs [40,41], and recent studies have also reported that circRNAs can
be generated from RNA-genome viruses [42,43]. In SRA data generated from three pan-
golin lung samples, Hassanin et al. [42] found 10 circRNAs of 278-776 nt derived from the
MjGuangdong virus. In addition, thousands of circRNAs encoded by SARS-CoV and SARS-
CoV-2 were recently described in Cai et al. [43]. They were detected in all genomic regions,
and most of them had lengths ranging from 200 nt to 2000 nt, some of them being much
longer. Although the roles of viral circRNAs remain poorly known, Ungerleider et al. [41]
have found that the Epstein Barr virus expressed circRNAs during latent infection and
under reactivation conditions.

By assuming that GB barcodes showing a single isolated GRPS represent a good
proxy of phylogenetic signals inherited by recombination, we calculated a median length
of 875 nt for the 80 bipartitions involving at least one virus of the SCoV2rC s.l. lineage.
The value is very similar to the median length of viral circRNAs recently estimated by
Cai et al. [43] for SARS-CoV and SARS-CoV-2, with 812 nt and 791 nt, respectively. These
comparisons therefore suggest that viral circRNAs may be involved in the mechanism of
genomic recombination. Three other arguments are in favor of this hypothesis. Firstly, most
representations of the copy-choice model assume that the product of RNA recombination
is composed of two genomic regions: the 5′ region is inherited from one parental genome,
and the 3′ region is inherited from another parental genome [1,44,45]. However, such a
recombination pattern is generally not observed in GB barcodes (except for some rare
bipartitions, such as nested bipartitions N◦ 41 and N◦ 54 in Figure 5, which are however
compatible with the ’circRNA model’ of Figure 8), suggesting that a different mechanism
operates in the case of sarbecoviruses. Indeed, most GB barcodes showed a pattern with
one or several GRPS(s) (e.g., bipartitions N◦ 9, 17, 18, 32, 86, 117, 154 in Figure 5), indicating
that the recombination mechanism rather involves a full-length acceptor parental genome
and the fragment(s) (potentially circular) from a donor parental genome (as assumed by
the ’circRNA model’ of Figure 8). Secondly, viral circRNAs are expressed in the late stage
of viral infection [41,43], and their circular nature confers much more stability than linear
RNAs [46], suggesting that they can stay in latency in the bat host cells for a longer period.
This makes the co-occurrence of two different viral sequences more likely in the same bat
cell (i.e., circRNAs derived from an ancient infection and full-length RNA genomes result-
ing from a new infection), a sine qua non condition for genomic recombination. Thirdly,
many studies have concluded that RNA secondary structures are essential to promote
template switching of the RdRp during replication [1,47,48]. Importantly, all circRNAs gen-
erated from the MjGuangdong pangolin virus were found to form highly stable secondary
structures [42]. These elements, therefore, suggest that template switching may be caused
by RdRp interactions with the secondary structure of viral circRNAs.
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