
INVESTIGATION

Estimating Selection Coefficients in Spatially
Structured Populations from Time Series Data

of Allele Frequencies
Iain Mathieson*,1 and Gil McVean*,†

*Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom, and †Department
of Statistics, University of Oxford, Oxford OX1 3TG, United Kingdom

ABSTRACT Inferring the nature and magnitude of selection is an important problem in many biological contexts. Typically when
estimating a selection coefficient for an allele, it is assumed that samples are drawn from a panmictic population and that selection acts
uniformly across the population. However, these assumptions are rarely satisfied. Natural populations are almost always structured,
and selective pressures are likely to act differentially. Inference about selection ought therefore to take account of structure. We do this
by considering evolution in a simple lattice model of spatial population structure. We develop a hidden Markov model based
maximum-likelihood approach for estimating the selection coefficient in a single population from time series data of allele frequencies.
We then develop an approximate extension of this to the structured case to provide a joint estimate of migration rate and spatially
varying selection coefficients. We illustrate our method using classical data sets of moth pigmentation morph frequencies, but it has
wide applications in settings ranging from ecology to human evolution.

DETECTING selection and estimating selection coeffi-
cients are important questions in many areas of genet-

ics. In humans, genome-wide scans for selection identify
regions of the genome that have been important in human
evolution and provide clues about the location of important
functional variants (Bustamante et al. 2005; Nielsen et al.
2005; Voight et al. 2006; Sabeti et al. 2007). In pathogen
research, understanding selection can help to understand
and control the evolution and spatial spread of drug resis-
tance in both pathogens and vectors. In cancer, intra-tumor
selection is an important driver of tumor growth and de-
velopment (Bignell et al. 2010). With only a sample from
one timepoint, for example, with the human selection scans
described above, it is difficult to obtain quantitative esti-
mates of selection coefficients. However, with time series
data on allele frequencies, for example, from experimental
evolution experiments, ecological observations, or ancient

DNA, it is much easier (Bollback et al. 2008; Illingworth
and Mustonen 2011; Malaspinas et al. 2012).

Most natural populations are structured and to separate
out the effects of selection and demography, we need to take
this into account. We focus on spatial structure since it is
common and easily visualized. The spatial spread of
a selected mutation is usually described using the traveling
wave theory of Fisher (1937). This powerful tool can be
extended to more complex situations such as the spread of
multiple competing alleles (Ralph and Coop 2010) or the
existence of spatially varying selection pressures (see
Novembre and Di Rienzo 2009, box 1, for a brief review
of such models). However these models can be difficult to
fit to data. We analyze a lattice model of population sub-
division, which can provide complex population structure,
yet is simple enough that we can compute approximate max-
imum-likelihood estimates (MLEs) for the parameters.

Typically the analysis of time series data of allele
frequencies uses a hidden Markov model (HMM) framework
(Williamson and Slatkin 1999; Bollback et al. 2008). The
allele frequency trajectory is modeled as a Markovian pro-
cess, either a discrete process like the Wright–Fisher or
Moran models or as a diffusion (i.e., the limiting case of
the discrete models). The observations are modeled as bi-
nomial observations from this population. Williamson and
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Slatkin (1999) use this approach to compute a likelihood
surface for the effective population size Ne, assuming no
selection. A similar approach to estimating Ne is used by
Anderson et al. (2000) and Wang (2001). To estimate the
selection coefficient s, Bollback et al. (2008) use numerical
techniques to compute a likelihood surface and estimate
2Nes. Malaspinas et al. (2012) use an approximate transition
density to compute the likelihood. They do this for a grid of
parameter values to estimate s and other parameters. Our
method differs from these approaches in that we use an
expectation-maximization (EM) algorithm to maximize the
likelihood, rather than numerical search. We also show how
to extend our approach to the estimation of spatially varying
selection coefficients on a lattice, a problem that has not
been considered before, but that is important in the study
of naturally occurring populations.

Materials and Methods

In this section, we first describe the model and notation, and
then derive the approximate MLEs for the parameters given
complete observations of the allele frequency trajectory.
Then we explain how to set up the HMM and how to solve it
to obtain the MLE given incomplete observations. In each of
these subsections we describe both the single population
and the structured case.

Model

Single population: Consider a haploid Wright–Fisher pop-
ulation of constant size 2Ne. We are interested in the fre-
quency of a single allele with two types, A and a. Suppose
the a allele has frequency ft at generation t for t = 0, . . ., T.
The a allele has selection coefficient s so the relative finesses
of the A and a genotypes are 1 and 1 + s. Then at each
generation t, the number of type a individuals is drawn from
a binomial distribution with size 2Ne and probability
ð1þ sÞft21=½1þ sft21�. We observe a sample of nt individuals
at generation t of which at are of the selected type, so that
at=nt is an empirical estimate of ft. We can represent missing
observations by setting nt = 0. For sufficiently large 2Ne,
and ft not too small, we can approximate the distribution
of the difference ft+1 2 ft by a normal distribution with
mean sft(1 2 ft) and variance ftð12 ftÞ=2Ne.

To consider the effects of nonadditive selection, we
consider a diploid population of size Ne (2Ne chromosomes).
Assume that the three genotypes AA, Aa, and aa have rela-
tive fitnesses 1, 1 + 2hs, and 1 + 2s, respectively, where h is
the heterozygous effect. The factor of 2 ensures that in the
case of additive selection (h ¼ 1

2) the dynamics are the same
as in the haploid case described above. h = 0 corresponds to
a fully recessive allele and h = 1 to a fully dominant allele.
In this case for large Ne we can approximate the distribution
of the difference ft+1 2 ft by a normal distribution with
mean 2sft(1 2 ft)(ft + h(1 2 2ft)) and variance
ftð12 ftÞ=2Ne. See Ewens (1979) for a fuller discussion of
this model.

Structured population: For the structured population we
consider a lattice model consisting of K2 single populations
each of size 2Ne, arranged in a K · K grid (Figure 1). Each
deme has two, three, or four neighboring demes, depending
on where it is located on the grid. At each generation, from
each population, M individuals migrate to each neighboring
deme. We also define the proportional migration rate
m ¼ M=2Ne. We index the demes by i, j 2 {1, . . . K} and
write kij for the set of indices of demes that neighbor deme i, j.
The frequency of the selected allele in population i, j at
generation t is f ijt . The migration rate is constant over all
demes and time. The selection coefficients are constant over
time, but not necessarily across demes. We write sij for the
selection coefficient in deme i, j. We also write nijt for the size
of the sample taken from deme i, j at generation t and aijt for
the number of that sample of the selected type.

Maximum-likelihood estimators

Single population: In the haploid model, or the diploid
model with h ¼ 1

2, if the allele frequency of the selected
allele in generation t is ft, then the allele count in generation
t + 1 has a binomial distribution

P
�
ftþ1 ¼ f j ft

� ¼
�

2Ne
2Ne f

��
ft þ sft
1þ sft

�2Ne f� 12ft
1þ sft

�2Neð12f Þ
:

(1)

From this we can write down the log-likelihood ℓ(s) of s
given the full trajectory (that is, sampling every individual
at every generation), dropping terms that do not depend on
s,

ℓðsÞ ¼ 2Ne
XT
t¼1

f ftlogð1þ sÞ2 logð1þ sft21Þg: (2)

Since we have assumed Ne to be constant, the log-likelihood
depends on Ne only though a constant multiple, and the
MLE does not depend on Ne. If Ne were varying (but
known), then in all the following analysis we could simply

Figure 1 The Wright–Fisher lattice model, shown for K = 4. Each deme
has a constant population size of 2Ne and in each generation, exactly M
individuals migrate to each of the neighboring demes.
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weight the terms in Equation 2 by Ne at each generation.
Differentiating Equation 2 and setting equal to zero, we
obtain the following equation satisfied by the MLE for s,
which we denote by ŝ,

XT
t¼1

�
ft21ð1þ ŝÞ
1þ ft21ŝ

�
2
XT
t¼1

ft ¼ 0: (3)

Writing qð̂sÞ for the expression on the left-hand side of
Equation 3 and assuming that 0 , ft , 1, we have
qð2 1Þ ¼ 2

PT
t¼1 ft , 0, limŝ/Nqð̂sÞ ¼ T2

PT
t¼1 ft . 0, and

q9ð̂sÞ ¼PT
t¼1½ ft21ð12 ft21Þ=ð1þ ft21 ŝÞ2�. 0" ŝ. 2 1.Since

q is continuous for ŝ. 2 1, this implies that there is exactly
one solution to Equation 3 in the range 2 1, ŝ,N, and
therefore, the MLE is unique. There is no simple analytic
solution to Equation 3 but assuming |s| , 1, we can obtain
an approximate solution by expanding the expression in
powers of ŝ. Expanding to first order yields the solution

ŝ ¼ fT 2 f0PT21
t¼0 ftð12 ftÞ

þ O
�
ŝ2
	
: (4)

In the diploid case, if the frequency of the a allele is ft then
the expected frequency of heterozygotes is ft(1 2 ft) and
Equation 4 is therefore simply the total change in allele
frequency, divided by the sum of the expected heterozygos-
ity over all generations. We can also expand Equation 3 to
second order in ŝ and obtain another estimator for s, accu-
rate to second order:

ŝ ¼
k1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 2 4k2ð fT 2 f0Þ

q
2k2

þ O
�
ŝ3
	
;  where 

ki ¼
XT21

t¼0

ð ftÞið12 ftÞ: ð5Þ

This expression seems not to have a simple interpretation,
compared to Equation 4. The estimator in Equation 4 can
also be obtained by considering an approximate process
in which frequency increments are normally distributed
(Watterson 1982). In this case, the estimator is obtained as
an exact solution to an approximate model, whereas we de-
rived it as an approximate solution to an exact model. Using
the approximate model of normal increments, we can con-
sider the case of a general dominance parameter h. Setting
ht = ft + h(1 2 2ft), the log likelihood of the observations is
given by

ℓðsÞ ¼ 2Ne
XT
t¼1

ð ft2ft2122sft21ð12ft21Þht21Þ2
ft21ð12 ft21Þ : (6)

Differentiating with respect to s and setting equal to zero
gives the MLE

ŝ ¼
PT21

t¼0 ht
�
ftþ12 ft

�
2
PT21

t¼0 h
2
t ftð12 ftÞ

; (7)

where ht = ft + h(1 2 2ft). Note that this reduces to Equa-
tion 4 when h ¼ 1

2 since then ht ¼ 1
2" t.

Structured population: In the structured case, we would
like an expression for the joint MLE of m and the sij. This
does not have a simple form, but by considering a slightly
simplified process we can obtain an expression for the MLE’s
of sij and m, similar to those derived for single populations.

Assume h ¼ 1
2 and consider the process in which, rather

than allele counts in each generation being binomially dis-
tributed, we model the changes in frequency as being nor-
mally distributed, with a constant flux with the neighboring
demes. So f ijt is normally distributed with mean m

ij
t and var-

iance ðsij
t Þ2 and

m
ij
t ¼ �12m



kij

�f ijt21 þ sijf ijt21

�
12 f ijt21

	
þm

X
i9;j92kij

f i9j9t21 (8)

and 

�
s
ij
t

	2¼ f ijt21

�
12 f ijt21

	
2Ne

: (9)

Here we make four approximations. First, we model allele-
frequency changes as normally rather than binomially
distributed. This approximation is valid in the diffusion
limit of large Ne. Second, we ignore the contribution of
selection and migration to the variance of the change in
frequency. The contribution from selection disappears in
the diffusion limit. The contribution from migration is of
order m times the difference in frequency between neigh-
boring demes. This disappears in the limit of an infinite
number of demes, as long as allele frequencies vary contin-
uously in space. Third, we assume that selection and migra-
tion are independent, so there is no sijm term in m

ij
t . Finally,

we assume that the frequency changes in one generation are
independent across demes, where in fact changes in neigh-
boring demes are negatively correlated due to the conserva-
tive migration. By making these approximations, the log-
likelihood for the trajectory has a simple form:

ℓðs;mÞ ¼
XT
t¼1

Xk
i; j¼1

�
f ijt 2m

ij
t

	2
�
s
ij
t

	2 : (10)

Equation 10 is quadratic in sij and m, therefore, has a unique
solution. We can solve for the MLE of sij with m known:

ŝij ¼ f ijT 2 f ij0PT21
t¼0 f ijt

�
12 f ijt

	þm

0
@
PT21

t¼0

�

kij

 f ijt 2
P

i9; j92kij
f i9j9t

	
PT21

t¼0 f
ij
t

�
12 f ijt

	
1
A:

(11)

Note that the first term in Equation 11 is the same as that in
Equation 4, which is the estimator for the selection co-
efficient if we ignored the other demes. The second term is
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a correction for the migration from other demes. If the allele
frequency in neighboring demes is higher than that in the
deme ij, then our estimate of sij is reduced since some of the
increase in allele frequency is likely due to migration rather
than selection. Similarly, we can obtain the MLE for m with
sij known:

m̂ ¼
PT

t¼1
PK

i;j¼1

n�
sij f ijt21

�
12 f ijt21

	
þ f ijt21 2 f ijt

	�

kij

 f ijt21 2
P

i9;j92kij
f i9j9t21

	
=f ijt21

�
12 f ijt21

	o
PT

t¼1
PK

i; j¼1

n�

kij

f ijt212
P

i9;j92kij
f i9j9t21

	2
=f ijt21

�
12 f ijt21

	o :

(12)

This expression does not have a simple interpretation like
Equation 11 but the numerator is close to the covariance of
the observed movements in allele frequency with the
expected change due to migration (weighted by f(1 2 f)).
That is, if the observed changes in allele frequency were
uncorrelated with the relative frequencies in neighboring
demes, we would estimate the migration rate to be zero.
Conversely, if the allele frequency always increases when
neighboring demes have higher frequency, we estimate the
migration rate to be large.

If we constrain sij to be a constant, say sij ¼ ~s " i; j, then

~̂s ¼
PK

i; j¼1

�
f ijT 2 f ij0

	
PK

i; j¼1
PT21

t¼0 f ijt
�
12 f ijt

	; (13)

which no longer depends on m.
If both sij and m are unknown, we could either solve for

the maximum of Equation 10 directly or iterate computation
of the two individual estimators. If h 6¼ 1

2, then the MLEs for
sij and m are

ŝij ¼
PT21

t¼0 h
ij
t

�
f ijtþ1 2 f ijt

	
2
PT21

t¼0

�
hijt
	2

f ijt
�
12 f ijt

	

þm

0
@
PT21

t¼0 h
ij
t

�

kij

f ijt 2
P

i9;j92kij
f i9j9t

	
2
PT21

t¼0

�
hijt
	2

f ijt
�
12 f ijt

	
1
A (14)

m̂ ¼
PT

t¼1
PK

i;j¼1

n�
2hijt21s

ij f ijt21

�
12 f ijt21

	
þ f ijt21 2 f ijt

	�

kij

f ijt212
P

i9;j92kij
f i9j9t21

	
=f ijt21

�
12f ijt21

	o
PT

t¼1
PK

i;j¼1

n�

kij

f ijt212
P

i9;j92kij
f i9j9t21

	2
=f ijt21

�
12 f ijt21

	o ;

(15)

where hijt ¼ f ijt þ hð12 2f ijt Þ.
Estimation using hidden Markov models

Single population: To apply standard HMM theory, we
discretize the allele frequency space, assuming that ft 2 G =
{g0, . . . gD}, and the interval between points dg= gi+1 2 gi is
constant for all i. We typically use a grid size of D= 100. We
define the HMM as follows:

1. The hidden states are the frequencies ft. The observations
are the number of alleles of the selected type at. The
parameters Ne and nt are known, and we have an esti-
mate of s, which we take as fixed for this iteration.

2. The emission probabilities are binomial: at � Bin(nt, ft).
3. The transition probabilities are defined by integrating the

approximate normal continuous transition density be-
tween the midpoints of the intervals of the discretized
points:

P
�
ftþ1 ¼ gj ft

�¼Z gþdg=2

g2dg=2
f

�
x2mt
st

�
dx; (16)

where

 mt ¼ ft þ sftð12 ftÞ and s2
t ¼ ftð12 ftÞ

2Ne
: (17)

We can proceed in several ways from here. Given a value of
s, we can compute the likelihood of the observations, so we
could just find the value of s that maximizes this likelihood,
either by searching or by standard numerical maximization
techniques. However, this would become impractical in the
structured case, and a more efficient way to find the MLE is
with an EM algorithm, where, at each iteration, we update
the estimate of s using the value that maximizes the
expected log-likelihood under the posterior distribution on
the hidden variables ft, conditional on the previous estimate
of s. Supose at iteration r, we have an estimate sr of s; then
taking the expectation of Equation 2, expanding to first or-
der in s, and maximizing yields the EM update rule for the
next estimate of s, analogous to Equation 4,

srþ1 ¼ E½ fT �2E½ f0�
ST21
t¼0 E½ ftð12 ftÞ�

; (18)

where the expectations are taken with respect to the
posterior distribution of paths, conditional on the observa-
tions, and the selection coefficient sr. These posterior prob-
abilities can be computed using the forward–backward
algorithm. This expression is identical to Equation 4 but
with expectations replacing the actual frequencies. Taking
into account the discretization of the frequencies, our algo-
rithm is as follows:

1. Initialization: Choose s0 to be some reasonable starting
value. We linearly interpolate the frequency estimates
and apply Equation 4.

2. Recursion: Given an estimate sr for s, apply the forward–
backward algorithm to the HMM described above to com-
pute the probabilities pgt ¼ Pf ft ¼ gja0; . . . ; aT ; srg. Then
set

srþ1 ¼ Sg2G
�
pgTg
�
2Sg2G

�
pg0g
�

ST21
t¼0 Sg2G

�
pgt gð12 gÞ� : (19)

3. Termination: Stop when |sr+1 2 sr| , e for some prede-
termined tolerance e and set our estimate of s equal to
sr+1.
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The algorithm also naturally computes (as part of the
forward algorithm) the likelihood of the data at each
iteration given the observations and the current parameter
values. Using the final likelihood, and the fact that the
difference in likelihood between two models is asymptoti-
cally x2 distributed, we can compute confidence intervals
and P-values against various null hypotheses for our
estimates.

If the dominance parameter h 6¼ 0.5, then the update rule
in Equation 18 becomes

srþ1 ¼ ST21
t¼0 E

�
ht
�
ftþ12 ft

��
2ST21

t¼0 E
h
h2t ftð12 ftÞ

i; (20)

where ht = ft + h(1 2 2ft). Since ht depends on ft, the
numerator now contains a E[ft+1ft] term that makes this
expression harder than Equation 19 to compute in the dis-
cretized model. Fortunately, using the forward and back-
ward probabilities, it is possible to compute the conditional
transition probabilities qgg9t ¼ Pfftþ1 ¼ g9jft ¼ g; a0; . . . ; aT ; srg
and using these, we compute E[ft+1ft] in the discretized step
using Sg2G½ pgt g½Sg92G½qgg9

t g9���. Equation 19 is then replaced
by

srþ1 ¼
hSg2G

�
pgTg
�
2 hSg2G

�
pg0g
�þ ð122hÞST21

t¼0

h
Sg2G

h
pgt g
h
Sg92G

h
qgg9
t g9

ii
2 g
ii

2ST21
t¼0 Sg2G

h
pgt hðgÞ2gð12 gÞ

i ; (21)

where h(g) = g + h(1 2 2g).

Structured population: Directly extending the EM algo-
rithm to the structured case is difficult for two reasons. First,
the likelihood depends on both the sij and m, making the EM
step difficult to calculate. Second, the state space of the
HMM increases rapidly with the number of demes. If there
are K2 demes and D discretized states, then the full HMM
has DK2

states, making it impractical to compute for any-
thing but the smallest number of demes. Therefore, we pres-
ent an algorithm that makes two approximations to make
the solution tractable. First, we update sij and m separately.
The update rule for sij has the form of the EM update rule
from the single population case and the update rule for m
can be computed similarly. Second, when updating any fre-
quency in any particular deme, we assume that the allele
frequencies in all the other demes are fixed to their most
likely values from the previous iteration, which makes the
HMM calculations independent across demes, reducing the
complexity to DK2.

As in the single population case, we discretize frequency
space so that f ijt 2 fg0; . . . gDg. We can then write the emis-
sion probabilities as before, aijt � Binðnijt ; f ijt Þ. These are in-
dependent across demes. As mentioned above, in order to
reduce the complexity, we look at each deme in turn and
assume that the allele frequency in all the other demes is
fixed at the frequency from the previous iteration of the
algorithm. In other words, we update the frequency trajec-
tory in each deme independently in turn, conditional on all

the others, rather than updating them all simultaneously.
We define the HMM for each deme as in the single popula-
tion case, except that we set the mean in Equation 17 to

m
ij
t ¼ �12m



kij

�f ijt21þ sijf ijt21

�
12 f ijt21

	
þm

X
i9;j92kij

~f
i9j9
t21;

(22)

where ~f
ij
t is fixed. This is identical to the true mean from

Equation 8, except that ~f
ij
t has replaced f ijt , which is what

makes the demes independent. Analogous to Equation 18,
the update rule for sij is given by

sijrþ1 ¼
E

h
f ijT
i
2E

h
f ij0
i

ST21
t¼0 E

h
f ijt
�
12 f ijt

	i

þmr

0
BB@
PT21

t¼0



kij

Ehf ijt i2Pi9;j92kij
~f
i9j9
tPT21

t¼0 E

h
f ijt
�
12 f ijt

	i
1
CCA; (23)

where the expectations are taken with respect to the
posterior distribution of allele frequencies conditional on
the current estimate of sij and m, denoted sijr and mr. They
can be computed over the discretized values of ft using a sim-
ilar expression to Equation 19. Similarly, if m is not known,
the EM update rule is

mrþ1 ¼

PT
t¼1
PK

i;j¼1E

"�
sij f ijt21

�
12 f ijt21

	
þ f ijt21 2 f ijt

	 

kij

 f ijt212
P

i9;j92kij
~f
i9j9
t21

!,
f ijt21

�
12 f ijt21

	#

PT
t¼1
PK

i;j¼1E

h�

kij

 f ijt212
P

i9;j92kij
f i9j9t21

	2
=f ijt21

�
12 f ijt21

	i :

(24)

Note that this estimator can be negative, which, although it
makes sense within the model with small Gaussian updates
defined in Equation 8, does not have a sensible interpreta-
tion. We allow it to be negative at intermediate steps of the
algorithm, but if the final iteration is negative, we set it to
zero. The algorithm proceeds as follows:

1. Initialization: Compute an initial guess for the f ijt , by tak-
ing the observed frequencies and linearly interpolating
missing values. Call this ~f

ij
t and make initial guesses for

sij and m.
2. Recursion: Given estimates sijr , mr and ~f

ij
t for sij, m and f ijt ,

solve the HMM for each deme as in the single pop-
ulation case. Compute the posterior probabilities
pgij;t ¼ Pf f ijt ¼ gjaij0 . . . aijt ; sijg as before, and the most
likely path vijt , using the Viterbi algorithm. Compute
new estimates sijrþ1 and mr+1 using the EM update
rules above, and set ~f

ij
t11 ¼ vijt .

3. Termination: Stop when the change in log-likelihood be-
tween successive iterations is less than some specified
amount e.

Note that the calculation for each of the K2 demes is in-
dependent, so it would be easy to parallelize this computa-
tion and compute the recursion step for each deme on
a separate core.
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Data sets

To test our algorithms, we simulated data from both the single
and structured Wright–Fisher models described above and
checked whether we could recover the parameters used to
simulate. We investigated the behavior of our algorithms for
a range of parameter values (see Results). To test the algorithm
on real data, we turned to classical data sets of morph frequen-
cies in two moth species. These data sets are described below.

Single population: For a data set of allele frequencies in
a single, closed population, we used observations of
frequencies of the medionigra morph in a population of Pan-
axia dominula (scarlet tiger moth) at Cothill Fen near Ox-
ford. Observations of this colony were first made in 1939 by
E. B. Ford and R. A. Fisher and were collected annually, with
some gaps, until at least 1999. The data are reported in
Cook and Jones (1996) and Jones (2000) and have most
recently been analyzed by O’Hara (2005). P. dominula is
a colorful day-flying moth, which has exactly one generation
per calendar year. The medionigra morph is the result of
a heterozygous polymorphism and is observed as a reduction
of the size and number of white spots on the moths wings
(see Fisher and Ford 1947 for a photograph of the various
morphs). A moth that is homozygous for the variant allele is
much darker, but this bimacula morph is much rarer and
almost never observed. When the study was started, the
medionigra morph was present in the Cothill colony at a fre-
quency of �10%, but subsequently dropped sharply. The
question of whether this rapid decline in frequency repre-
sented the effect of natural selection was the subject of
a spirited debate between Fisher and S. Wright (Fisher
and Ford 1947; Wright 1948). In our analysis, we assumed
that the frequency of the medionigra morph corresponded
exactly with the frequency of the allele. We also made the
assumption that the effective population size is constant. As
part of the collection of moth frequencies, the population size
has been estimated using capture–recapture methods. Esti-
mates have ranged from 216 to 60,000. Even if the census
population really took this range, it is not clear what relation
this has to the effective population size. We therefore assumed
that the effective population size, 2Ne was constant, but checked
whether different values of Ne had an effect on our results.

Structured population: For our structured population data
set, we turned to another classical data set on moth morph
frequencies, this one of the species Biston betularia (pep-
pered moth). The morph of interest here is the carbonaria
morph, which appears very dark or black, in contrast to the
typica morph, which has a complex speckled pattern on
a light background. A full discussion of the extensive litera-
ture on this species is beyond the scope of this article (but
see Cook 2003 for a review). Briefly, the carbonaria morph
was identified in the north of England by 1848 and by 1958
was present at a frequency of �100% in the northwest, and
at varying frequencies throughout the rest of the country
(Kettlewell 1958). Starting in the early 1970s, the frequency

of the carbonaria morph began to decline until today it is
found very rarely. The change in frequency of the morph is
almost certainly the result of a strong selective pressure,
initially positive and changing direction some time in the mid
20th century. The exact nature of the selective pressure is still
debated, but is generally considered to be related to indus-
trial pollution caused by the burning of coal. There is also an
intermediate form, insularia, controlled by different alleles at
the same locus (Lees and Creed 1977). It is relatively rare
(,10% of observations), and we excluded it from our analysis.

We searched the literature for observations of the fre-
quency of the carbonaria morph across England since 1958
(we were able to extract data from 8 of these 12 references:
Kettlewell 1958; Lees and Creed 1975; Bishop et al. 1978;
Mani and Majerus 1993; West 1993; Clarke et al. 1994; Grant
et al. 1996, 1998; Cook et al. 1999, 2002, 2005; Cook and
Turner 2008; supporting information, File S1). Many data
points had been reported more than once, and we attempted
to remove duplicate observations. For each observation we
extracted the number of moths collected, the numbers of
typica and carbonaria observed, and the location of the
observation. Assuming a single dominant allele and Hardy–
Weinberg equilibrium, we converted the carbonaria fre-
quency to an allele frequency as f ¼ 12

ffiffiffiffiffiffiffiffiffiffiffiffi
12 fc

p
, where fc

is the carbonaria frequency. We then assigned the observa-
tions to large UK Ordnance Survey grid squares. One of the
corner grid squares lies entirely in the North Sea and had no
observations. We filled this in by averaging over the two
adjacent squares, reasoning that this would have the least
disruption on the dynamics of the rest of the grid.

Results

Simulated data

Single population: We simulated observations from single
populations using the model described above. For each
simulation, given a fixed population size and selection
coefficient, we sampled allele frequencies at each generation
using the binomial sampling probabilities in Equation 1.
Then, given these frequency trajectories, we simulated
samples of fixed sizes at known timepoints, by drawing
a sample of fixed size, with replacement, with probability
equal to the sample allele frequency.

First (Figure 2A) we investigated the effect of changing
the sample size while the frequency of sampling remained
constant. As expected, the error decreases with sample size,
although for all effective population sizes, the expected er-
ror remains more or less constant above a given sample size.
This constant error is larger when the effective population
size is smaller. In Figure 2B, we show the effect of changing
the frequency of sampling, ranging from sampling just the
start and end points, to sampling at every generation, while
keeping the sample size fixed. We see that the error
decreases as the sampling frequency increases, but this re-
ally makes a difference only when the effective population
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size is small. For 2Ne = 104, for example, changing the
sampling frequency from every 20 generations to every gen-
eration makes virtually no difference to the error. One ca-
veat is that this result relies on the start and end points
being at some intermediate (between 0 and 1) frequency.
If all we observed was that f0 = 0 and fT = 1 for some T,
then it would be impossible to make a sensible estimate of s.
We can see this further by varying the initial frequency (Fig-
ure 2C). Conditional on eventual fixation, the error
increases as the initial frequency increases, demonstrating
that it is the observations at intermediate allele frequencies
that give us precision in our estimates. Again, this is partic-
ularly true when the effective population size is small.

We also investigated the effect that s has on the error
(Figure 2D). As s increases, the expected error increases, for
all population sizes, although the relative error is decreasing.
For large Ne and large s, the estimator begins to perform
poorly beacause although the variance of ŝ decreases, the
bias increases (Figure 2D inset). The bias comes from the
fact that our estimator is accurate only to O(s2).

Overall, it seems that the main determinant of the accuracy
of the estimator is the effective population size of the underlying
population and that, provided we have a sufficiently large
population and at least some observations at intermediate allele
frequencies, we require neither large nor frequent samples.

Finally, we checked whether the discretization and ap-
proximate transition density had a large influence on the
result. In the single population model, if we set D = 2Ne + 1
and use the exact binomial transition probabilities (Equation
1) in the HMM rather than the approximate normal transition
probabilities in Equation 17, then our model is exactly the
one from which we simulated. We compared the estimates
from this exact model to those from our approximate model.
Using the same parameters as in Figure 2D, we found that the
error increased with s, although modestly. When s = 0 the
expected error in s due to discretization was �3 · 1025 and
when s = 0.1 the expected error was �3 · 1023.

Structured population:We simulated trajectories under the
structured Wright–Fisher model, with selection coefficients
varying across space and investigated the distribution of our
estimates. We find that, as in the one-dimensional case, the
estimates are more accurate the more of the trajectory we
see. When we set f0 = 0.5 so that each deme saw roughly
the same change in trajectory, we found that our estimates
for both s and m were unbiased (Figure 3A), but that when
we set f0 to 0.1, so that we saw less of the trajectory in
demes with lower selection coefficients, we found that our
estimates of the low selection coefficients were significantly
worse (Figure 3B), consistent with what we would expect
from the results in Figure 2C. We assumed that we could
guess an initial value for m within 0.01 of the true value. If
we set the initial value for m much further from the true
value, then the estimator performed poorly.

We investigated the performance of the estimator for different
values of m (Figures 3, C and D). As m increased, the error

in our estimates of s andm increased. We also investigated the
error in our estimates of s when m was known and fixed
(Figure 3D). In this case, there is a modest improvement in accu-
racy, particularly for smallm (comparing Figures 3, C and D).

Real data

Single population: The P. dominula data are shown in Fig-
ure 4, along with the likelihood surface for the true allele
frequency trajectory and the likelihood function for s. We
stopped the algorithm when successive iterations of s dif-
fered by,1023. Taking 2Ne = 1000, we estimate a selection
coefficient of 20.057, although with a fairly wide 95% con-
fidence interval of (20.113, 20.003). We thus reject the
null hypothesis that s = 0 at the 5% level, but only just
(twice the change in log-likelihood, 2Dℓ = 4.2, approximate
x2
1 P-value = 0.04) and more or less agree with the original

conclusion of Fisher and Ford (1947) that “the observed
fluctuations in gene frequency are much greater than could
be ascribed to random survival only.” Our estimate is similar
to the estimate given by Cook and Jones (1996) and is
consistent with results from other P. dominula colonies
given in the same source. Wright (1948) argued that 2Ne

might be of the order of 100 and O’Hara (2005) estimated it
to be of the order of a few hundred. If 2Ne = 100, we would
not reject s = 0 (2Dℓ = 0.45, approximate x2

1 P-value =
0.50). A recessive model fits with a higher likelihood,
(change in log-likelihood, Dℓ = +2.5 for h = 0 compared
to h ¼ 1

2), but fits a large negative selection coefficient
ŝ � 2 1, which is outside the range for which our approx-
imations are valid, but may indicate that a model of recessive
lethality (or near lethality) is the best explanation for the data.

Structured population: To analyze the B. betularia data, we
used m = 0 as an initial value and stopped when successive
log-likelihoods differed by ,0.005. If we assume that 2Ne =
1000, we estimate selection coefficients for the carbonaria
allele varying spatially between 0 and 20.12. We also esti-
mate that m̂ ¼ 0:00. If we constrain s to be constant across
the range, we estimate that ŝ ¼ 2 0:068; however, we strongly
reject the hypothesis that s is constant (2Dℓ = 67, approximate
x2
15 P-value = 1.7 · 1028). Cook (2003) gives estimates for s

from different sites ranging from20.018 to20.208. There are
three data points, all consisting of observations from Kettlewell
(1958), which have a large influence on the result that selec-
tion is not constant. If these are removed, then the P-value is
less significant (2Dℓ = 36, approximate x2

15 P-value = 1.9 ·
1023). The model of dominant selection fitted better than ad-
ditive or recessive selection (Dℓ = 236 and +10 for h = 0 and
h = 1 compared to h ¼ 1

2). The fit of the dominant model is
shown in Figure 5. In this case we reject the hypothesis of
constant selection even more strongly (2Dℓ= 111, approximate
x2
15 P-value = 9.6 · 10217).

Discussion

We developed an HMM-based maximum-likelihood estima-
tor for selection coefficients in a panmictic population.
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Although this estimator cannot practically be extended to
the structured case, we presented an approximate algorithm
inspired by it that can estimate selection coefficients,
migration rates, and allele frequencies in the Wright–Fisher
lattice model. There are many effects, such as time- or state-

varying parameters, that we do not include. A model incor-
porating all of these effects would probably be ill specified.
However, any one of these effects could individually be in-
corporated into the model without much difficulty, to test
specific hypotheses. For example, to test whether selection

Figure 2 Performance of the single population estimator. (A–D) Median absolute error of estimates of s, for a range of different parameter values. In
each case, results are shown for effective population sizes 2Ne = 102, 103 and 104. Simulations were performed in a standard Wright-Fisher model and
each point is the median of 100 independent simulations. If not otherwise specified, parameters are constant as follows: initial frequency f0 = 0.5,
number of generations T = 100, selection coefficient s = 0.05, samples taken every 10 generations, size of each sample = 100. We stopped the
algorithm when successive estimates of s differed by less that e = 1023. (A) The size of the sample varies from 1 to 1000. (B) The frequency of sampling
varies from 0.01 (once every 100 generations, i.e., two observations), to 1 (every generation). (C) The initial frequency f0 varies from 0.1 to 0.9. (D) The
selection coefficient s varies from 0 to 0.1. Inset: density of ŝ for s = 0.1.
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was constant across space, we used the estimator in Equa-
tion 13 rather than that in Equation 11 in our algorithm and
compared the likelihoods.

Although our structured estimator is not a maximum-
likelihood estimator, it has the property that it reduces to the
one-dimentional estimator in the case where the migration
rate is zero, or there is only a single deme. It is difficult to

say much in general about the behavior of the estimator,
other than we expect that its performance will worsen as m
increases. Simulations supported this view, although the
performance was still acceptable even for relatively large
values of m (Figure 3, C and D).

To demonstrate these methods, we analyzed data about
two British moth species. First, in an unstructured population,

Figure 3 Performance of the structured population estimator. We simulated observations from the structured Wright–Fisher model described in the
main text, with 16 demes. Here 2Ne = 1000, s ranges across space from20.06 to +0.06,m ranges from 0 to 0.1, samples of size 100 are taken every 10
generations. The algorithm is terminated when successive log-likelihoods differ by ,0.1. The initial value for m is uniformly distributed on [m 2 0.01,
m + 0.01]. (A) Density plots of the results of 100 simulations, with m = 0.04 and f0 = 0.5. Solid vertical lines show the true values, and dashed lines the
mean of the density Top: Density of estimates of s. We combined the results across all demes with the same values of s, so the dark green density shows
the results for 400 observations, i.e., 4 demes in each of 100 simulations. The inset shows the spatial distribution of selection coefficients, and an
example path. Bottom: Density of estimates of m. (B) As A except f0 = 0.1 and m = 0.05. (C and D) Median absolute error of the estimates of s in each
deme, with different lines for each true value of s, for different values of m. f0 = 0.1. (C) Error when m is unknown (but guessed to within 0.01),
including error in m. (D) Error in s when m is known and fixed.
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we investigated the evidence for selection on the medionigra
allele in the Cothill P. dominula colony. We find that our
conclusion depends largely on the assumptions that we make
about effective population size, which is essentially the con-
clusion we reach by reading Fisher and Ford (1947) and
Wright (1948). It is not surprising, given the form of our
estimator, that the past 50 years of observations when f is
very small do not add much to this estimate. However, the
fact that the allele was still present after 60 years does give
more support to the idea of a selection on recessive pheno-
type. Simulating under a Wright–Fisher model of diploid se-
lection using f0 = 0.1, we find that under a fully recessive
lethal model, �58% of trajectories have not fixed at 0 by T =
60, compared to 41% under our best-fit additive model.

When we analyzed the B. betularia data, we found strong
evidence that selection was not constant across the range,
a conclusion that is robust to the assumptions we make
about population size. However, it seems likely that several
of our assumptions are violated in this population. In partic-
ular, given the rapid increase in carbonaria frequencies in
the first half of the 20th century followed by the rapid
decrease observed since, it seems likely that the sign of s
switched from positive to negative at some point, making our
assumption of time-constant s since 1953 implausible. The
highly significant P-values we obtained are likely due, at least
in part, to poor model fit. To incorporate time-varying selec-
tion into this model, we could include an additional HMM
step to fit s as a function of t, subject to some assumptions

about the rate of change of s. Model comparisons indicated
that selection was dominant, which is consistant with the fact
that the allele is dominant for the carbonaria trait (although
note that this does not imply that selection must act domi-
nantly, since the allele may have pleiotropic effects).

Our estimator generally converges rapidly. In the single
population case, we found that the difference between sr
and the final estimate of s was roughly proportional to some-
where between r2

1
2 and r21, depending on the observations.

In practice, all our simulations converged within five itera-
tions, and our P. dominula data converged after three. Con-
vergence in the structured case was slower, particularly
when m was unknown. Our B. betularia data took 17 iter-
ations to converge. It would be easy to run each deme in
parallel, although we have not implemented this. If we did,
then each iteration of the structured case would take
roughly the same time as the unstructured case, although
it would still take more iterations to converge.

In general our estimates of s perform better than our
estimates of m. In practice we have assumed that we have
a reasonably good prior on the value of m, whereas we have
made no such assumptions about s. In particular, if our ini-
tial value of m is far from the true value, then we noted that
the algorithm can sometimes fail to converge to the correct
value. In this case, because estimates of s and m are corre-
lated, the estimates of s are biased. In particular, if m is too
small, then the estimates of sij shrink toward their mean. To
see why this is true, consider the limiting behavior of the
allele frequencies in the lattice case. In this case, unlike in
a single population, it is possible (if some of the sij have
different signs) for the allele frequencies to reach an internal
equilibrium value in which the frequencies �f

ij
satisfy

sij�f ij
�
12�f ij

� ¼ m
X

i9;j92kij

n
�f ij2�f i9j9

o
: (25)

Since the sum of the RHS of the above equation over all
demes is 0, this gives usX

i;j
sij�f ij

�
12�f ij

� ¼ 0: (26)

However, this does not fully determine all the sij andm. It deter-
mines the sij relative to each other but to know the absolute
values, we need to know m and there is no information
aboutm in these equilibrium values. Power to estimatem comes
from observing fluctuations around the equilibrium value, but
when 2Ne is large, these fluctuations are small, and if the sample
size is small then the fluctuations due to sampling error are
much greater than those due to changes in allele frequency.
Therefore, the best chance to estimate m using this method
might be when we have very large samples from a very small
population, a situation that is rarely encountered. Fortunately
for most applications there are likely to be independent esti-
mates ofm, which we can use as starting points. For example,
Bishop (1972) investigated migration rates in B. betularia
using capture–recapture methods.

Figure 4 Panaxia dominula data. Main plot:medionigra frequency across
generations. Blue dots show observed points with shaded support inter-
vals. Red lines show posterior confidence intervals for the true frequency,
from 10% (darkest) to 90% (lightest). Inset: log-likelihood as a function
of s. For each value of s, we computed the likelihood of the observations
using the forward algorithm for HMMs. Red solid and dashed lines show
the MLE and the 95% confidence interval respectively. This figure shows
the results for a model of additive selection although, as discussed in the
main text, a recessive model may fit better.
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Finally we consider other data sets for which our
methods could provide useful analysis. Ecological data sets
about the spatial spread of alleles are the most obvious
example, for example, data about the spread of drug
resistance alleles in pathogens or vectors. Another interest-
ing area, where data are just starting to become available, is
the analysis of ancient DNA to learn about the recent
evolution of humans and other species. In principle,
relatively little data would be required to make inference
in this setting, the critical requirement being that sampling
density is sufficient to observe the frequency trajectory at
intermediate values. Finally we note that our methods are
very general in scope and could be applied not only to
genetic data, but to the spread of any variation in space. We
could use exactly the same techniques to analyze the spread
of invasive species in a new ecosystem or the spread of
cultural variation in a population.
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