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Abstract: A series of C3-symmetric fully substituted benzenes were prepared based on alkyl triamino-
benzene-tricarboxylates. Starting with a one step-synthesis, the alkyl triamino-benzene-tricarboxylates
were synthesized using the corresponding cyanoacetates. The reactivity of these electronically sophis-
ticated compounds was investigated by the formation of azides, the click reaction of the azides and
a SANDMEYER-like reaction. Caused by the low stability of triaminobenzenes, direct N-alkylation
was rarely reported. The use of the stable alkyl triamino-benzene-tricarboxylates allowed us total
N-alkylation under standard alkylation conditions. The molecular structures of the C3-symmetric
structures have been corroborated by an X-ray analysis.
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1. Introduction

The symmetry of molecular building blocks plays a pivotal role in the overall ge-
ometry of the materials that are formed. Besides many examples of C2-symmetric [1]
building blocks, the C3-symmetrical ones have found fewer applications, other than in
life sciences [2] or material sciences. However, C3-symmetrical-based geometries can be
found in star-shaped molecules, dendrimers, and molecular cages [3], thus allowing the
formation of columnar structuring due to strong π-π interactions in the case of appropri-
ately functionalized monomers [4] (for reviews, see Ref. [5]). The applications range from
discotic liquid crystals [6,7]; mesogens [8]; OLED emitters featuring thermally-activated de-
layed fluorescence; [9–11] gels; [12] metal-organic frameworks (MOFs) (trimesic acid/BTC:
MOF-177 [13]; MOF-199; 2D-covalent organic frameworks (COFs) [14,15]; hole-transporting
materials for photovoltaics; [16] materials for second harmonic generation/non-linear op-
tics by generating octopoles [17–19]; hydrogels [20,21] and many more [22]. Noteworthy in
this context are functionalized truxenes [23,24] such as truxenones [25–27], or triazatrux-
enes [28,29] (e.g., D, Figure 1), which exhibit outstanding photophysical properties [30–33].

Fully substituted derivatives of type A (X, Y are non-hydrogen atoms, Figure 1)
also exhibit additional properties due to steric crowding. The non-planarity of some
derivatives leads to different functionalization of the side groups, e.g., carboxylic acids
(Figure 1, Structure B) [34].

The synthesis of such molecules can either start from condensation reactions (mostly
carbonyl compounds in aldol-like reactions), the cyclotrimerization reactions of alkynes
(Reppe-type chemistry) [35], or by the functionalization of appropriately equipped building
blocks of type A, such as triesters, triamines and trihalides [36] (Figure 1).
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Figure 1. Generic structure of C3-symmetric benzenes (A), 2,4,6-triiodobenzene-1,3,5-tricarboxylic 
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and 5,10,15-trihexyl-10,15-dihydro-5H-diindolo [3,2-a:3’,2’-c] carbazole (D); precursor dipyrimido 

[4,5-f:4’,5’-h] quinazoline-2,4,6,8,10,12¬(1H,3H,5H,7H,-9H,11H)-hexone (E) [35]. 
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carboxylate—the only derivative known so far—was used in only one patent, wherein 

2,4,6,8,10,12-hexacyano-1,3,5,7,9,11-hexa-azatriphenylene, a derivative of HAT-CN was 

prepared from trimethyl 2,4,6-triaminobenzene-1,3,5-tricarboxylate (2a) via thermal cy-

clocondensation with urea; halogenation with POCl3 in PhNMe2; and cyanolysis with 

KCN in MeCN [37]. 

Herein, it is our intention to report the syntheses, structures and reactivities of novel 
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Figure 1. Generic structure of C3-symmetric benzenes (A), 2,4,6-triiodobenzene-1,3,5-tricarboxylic
acid (B), [34] two prominent C3h-symmetric disk-like structures triquinolonobenzene (TQB) (C) [9]
and 5,10,15-trihexyl-10,15-dihydro-5H-diindolo [3,2-a:3′,2′-c] carbazole (D); precursor dipyrimido
[4,5-f:4′,5′-h] quinazoline-2,4,6,8,10,12-(1H,3H,5H,7H,-9H,11H)-hexone (E) [35].

In particular, cores featuring nitrogen and/or carbon-based functionalized groups
have been successfully used in many materials. An overview is given in Table S1.

Most of the syntheses for aminocarboxy-substituted arenes start with an internal acyla-
tion of triaminobenzene. However, the combination of nitrogen and oxidized carbon-based
functionalized groups have not been reported in depth. Methyl triaminobenzenetricarboxy-
late—the only derivative known so far—was used in only one patent, wherein 2,4,6,8,10,
12-hexacyano-1,3,5,7,9,11-hexa-azatriphenylene, a derivative of HAT-CN was prepared
from trimethyl 2,4,6-triaminobenzene-1,3,5-tricarboxylate (2a) via thermal cyclocondensa-
tion with urea; halogenation with POCl3 in PhNMe2; and cyanolysis with KCN in MeCN [37].

Herein, it is our intention to report the syntheses, structures and reactivities of novel
C3-symmetric fully substituted benzenes with the tandem amino/alkylcarboxylate groups,
based on the easily manageable cyclotrimerization of alkyl cyanoacetates. These electroni-
cally sophisticated structures of alkyl triamino-benzene-tricarboxylates led to extremely
challenging subsequent reactions of the amine group. However, azide formation and a
SANDMEYER-like reaction were studied within this report. Due to the low stability of
triaminobenzenes, direct N-alkylation was rarely reported. Using the stable alkyl triamino-
benzene-tricarboxylates allowed us total N-alkylation. An overview of the synthesized
building blocks is given in Scheme 1.
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2. Results
2.1. Syntheses of C3-Symmetric Alkyl Triamino-Benzene-Tricarboxylates

According to the literature-known synthesis for 2a, starting with the methylcyanoac-
etate, methyl triamino-benzene-tricarboxylate was synthesized in a moderate yield [38]. De-
spite extensive experimentation, the yield of the methyl triamino-benzene-tricarboxylate 2a
could not be improved in our hands. However, this atom-economic reaction is scalable
and provides the required building block in multi-gram amounts. Besides the methyl
triamino-benzene-tricarboxylate 2a, cyclotrimerization of the alkylcyanoacetates 1b–g led
to the derivatives 2b–g in moderate yields (Table 1).

Table 1. Scope of the various alkyl triamino-benzene-tricarboxylates 2a–g.
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Starting Material R Product Temp. [◦C] Yields [%]

1a Me 2a 130 35 a

1b Et 2b 130 28
1c i Pr 2c 130 18
1d t Bu 2d 100 15
1e i Bu 2e 100 12
1f n Pent 2f 100 22
1g Bn 2g 130 23

In comparison to 1,3,5-triaminobenzene and several other derivatives, which darken
slowly after being left in air, the synthesized alkyl triamino-benzene-tricarboxylates do not
show a color change after several months stored in air [39].

2.2. Diazotation and Azide Formation

The diazotization and conversion of triaminobenzenes have been reported [40]. Al-
though 1,3,5-triaazidobenzenes are known and reported to be stable, most publications
only deal with the theoretical calculations of these molecules [41–48], and there are only
around 20 reported examples (including tetra/penta/hexa-azides) [40,43,44,49–55].

Herein, we report the syntheses of 1,3,5-triazidobenzenes, substituted with ester
groups in a 2,4,6-position. The syntheses of triazides 3a–g proceeded from the triamines 2a–g
under established conditions through a diazotization reaction. The triazides 3a–g were ob-
tained in yields of 36% to 60% (Table 2). The yields that were achieved for the triazides 3a–g
were in the range of other reported triazides that were synthesized from the corresponding
amines [40,44]. A procedure in which the diazotization was carried out with tert-butyl
nitrite and tosylic acid at 21 ◦C, followed by the addition of sodium azide, did not re-
sult in the formation of the triazide 3a. Triazides 3a–c and 3g were stable at normal
conditions (daylight included) for several weeks. In the case of the alkyl triamino-benzene-
tricarboxylates 2d, 2e and 2f, the mono- and diazides that were also formed during the
conversion to the triazide could not be separated from the corresponding triazides via
column chromatography. Therefore, these structures are not listed in Table 2.

Cautionary note: azides with a C/N ratio of around 1:1 are potentially explosive [56,57].
In the following, the deprotection of the ester was successfully performed to give the

triazidobenzene-tricarboxylic acid 4 in a moderate yield of 60% (Scheme 2). These structures
might serve as interesting building blocks, e.g., for the generation of trinitrenes [58–60] or
the synthesis of HKUST1-comparable MOFs.
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Table 2. Syntheses of triazides 3a–c, g.
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Scheme 2. Synthesis of triazidobenzene-tricarboxylic acid 4.

Due to the ability to form the azide, we thought that reactions based on the diazonium
salt, such as SANDMEYER reactions, should be possible. Nevertheless, SANDMEYER-like
reactions using tert-butyl nitrite or sodium nitrite/hydrochloric acid and potassium iodide
failed several times. Many attempts were necessary until conditions were found, which lead
to a triple-halogenated compound 5. This method uses tert-butyl nitrite for diazotization
and TMS-bromide for halogen transfer. Upon optimization, we find that the addition of
the diazotization compound and TMS-bromide must take place alternately, leading to the
tribromide 5 in a moderate yield of 34% (Scheme 3). This indicates that diazotization can
only be performed at one amine group at a time. Compared to another synthesis route,
which has five reaction steps from mesitylene to methyl tribromobenzene tricarboxylate 5,
this route only needs two steps, starting with methylcyanoacetate [8,14].

Molecules 2022, 27, x FOR PEER REVIEW 5 of 11 
 

 

diazotization and TMS-bromide for halogen transfer. Upon optimization, we find that the 

addition of the diazotization compound and TMS-bromide must take place alternately, 

leading to the tribromide 5 in a moderate yield of 34% (Scheme 3). This indicates that 

diazotization can only be performed at one amine group at a time. Compared to another 

synthesis route, which has five reaction steps from mesitylene to methyl tribromobenzene 

tricarboxylate 5, this route only needs two steps, starting with methylcyanoacetate [8,14]. 

 

Scheme 3. Synthesis of methyl tribromobenzene tricarboxylate 5. 

2.3. Click Reactions 

Tris-1,2,3-triazoles originating from triazides of type 3 are unknown, except for a sin-

gle benzotriazole [61] and theoretical investigations [62]. In our hands, the click chemistry 

that was applied in the case of triazide 3a in a reaction with phenyl ethyne and p-bromo-

phenyl ethyne gave the triazoles 6a-Ph and 6a-C6H4Br, respectively (Table 3). A click re-

action with the triazide 3b, containing an ethyl ester instead of the methyl ester of 3a, 

resulted in triazole 6b-Ph. The yield of 6b-Ph is noticeably better than that of 6a-Ph, which 

can be explained by the better solubility of the ethyl ester 3b and intermediates on the way 

to compound 6b-Ph. Substituted alkynes enable different reactions of these molecules, 

e.g., network building via dialkynes or coupling reactions of the bromo-substituted tris-

triazole 6a-C6H4Br. 

Table 3. Syntheses of tris-1,2,3-triazoles 6. 

. 

Starting Material R1 Product R2 Yield 

3a Me 6a-Ph  Ph 19 

3a Me 6a-C6H4Br C6H4Br 18 

3b Et 6b-Ph Ph 27 

2.4. Alkylation 

In the past, the direct N-alkylation of 1,3,5-triaminobenzene and many derivatives 

was not possible due to the low stability of the amines. Therefore, benzene-1,3,5-triol or 

1,3,5-halogenated structures and secondary amines were commonly used to synthesize 

alkylated 1,3,5-triamino benzenes [63–65].  

Using the stable methyl triamino-benzene-tricarboxylate 2a enabled the study of the 

total N-alkylation of 1,3,5- triamino benzenes. To investigate the reactivity of the methyl 

triamino-benzene-tricarboxylate 2a, we used different alkyl iodides. The previously un-

known hexa-alkyl-triamines 7a–c were successfully synthesized. Purification via column 

chromatography gave the alkylated structures 7a-c in yields between 38% and 51% (Table 
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2.3. Click Reactions

Tris-1,2,3-triazoles originating from triazides of type 3 are unknown, except for a single
benzotriazole [61] and theoretical investigations [62]. In our hands, the click chemistry that
was applied in the case of triazide 3a in a reaction with phenyl ethyne and p-bromophenyl
ethyne gave the triazoles 6a-Ph and 6a-C6H4Br, respectively (Table 3). A click reaction
with the triazide 3b, containing an ethyl ester instead of the methyl ester of 3a, resulted
in triazole 6b-Ph. The yield of 6b-Ph is noticeably better than that of 6a-Ph, which can
be explained by the better solubility of the ethyl ester 3b and intermediates on the way
to compound 6b-Ph. Substituted alkynes enable different reactions of these molecules,
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e.g., network building via dialkynes or coupling reactions of the bromo-substituted tristria-
zole 6a-C6H4Br.

Table 3. Syntheses of tris-1,2,3-triazoles 6.
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Starting Material R1 Product R2 Yield

3a Me 6a-Ph Ph 19
3a Me 6a-C6H4Br C6H4Br 18
3b Et 6b-Ph Ph 27

2.4. Alkylation

In the past, the direct N-alkylation of 1,3,5-triaminobenzene and many derivatives
was not possible due to the low stability of the amines. Therefore, benzene-1,3,5-triol or
1,3,5-halogenated structures and secondary amines were commonly used to synthesize
alkylated 1,3,5-triamino benzenes [63–65].

Using the stable methyl triamino-benzene-tricarboxylate 2a enabled the study of
the total N-alkylation of 1,3,5- triamino benzenes. To investigate the reactivity of the
methyl triamino-benzene-tricarboxylate 2a, we used different alkyl iodides. The previously
unknown hexa-alkyl-triamines 7a–c were successfully synthesized. Purification via column
chromatography gave the alkylated structures 7a–c in yields between 38% and 51% (Table 4).
The reaction was performed at 100 ◦C and stirred for 16 h in case of 7a and 2d, in case of
7b and 7c. TLC of the crude reaction mixtures showed less alkylated fractions. Nevertheless,
longer reaction times could not improve the yields.

Table 4. Chemo-selective hexa-N-alkylation of methyl triamino-benzene-tricarboxylate 2a.
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Product R Yield [%]

7a Me 48
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2.5. Molecular Structures

The structures of the alkyl triamino-benzene-tricarboxylates 2a–c were additionally
confirmed by X-ray crystallography. The molecular structures show the possible formation
of hydrogen bonds between the amino and ester groups, leading to the expected planar
structure of 2. While 2a showed a planar propeller-like arrangement, the sterically more
demanding ester groups of 2b and 2c twisted the functional groups marginally out of the
plane (Figure 2).
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Beside the triamines 2a–c, the structure of 3a was also confirmed by the molecular
structure, but due to the poor crystal quality we will not discuss this further (Figure 3).
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3. Materials and Methods
3.1. General Procedure for Cyclotrimerizations

A pressure tube was charged with Cu(OAc)2*H2O (0.10 equiv.) and 1,4-dioxane. Alkyl
cyanoacetate (1.00 equiv.) was added, and the mixture was bubbled with argon for 5 min.
The mixture was heated to 130 ◦C for 72 h. After cooling to room temperature, the solid
was filtered off, and the solvent was removed under reduced pressure. The product was
purified by column chromatography (cyclohexane/ethyl acetate).

3.2. General Procedure for the Syntheses of Azides

Trialkyl 2,4,6-triaminobenzene-1,3,5-tricarboxylate (1.00 equiv.) was solved in THF and
cooled to 0 ◦C. tert-Butyl nitrite (9.00 equiv.) was added dropwise. The mixture was stirred
for 30 minutes, followed by the addition azido(trimethyl)silane (slow, 6.00 equiv.). The
mixture was stirred for 72 h. The solvent was (carefully) removed under reduced pressure,
and the residue was purified by column chromatography (cyclohexane/ethyl acetate).

3.3. Typical Procedure for the Click Reactions

3a (100 mg, 240 µmol, 1.00 equiv) and ethynylbenzene (85.7 mg, 839 µmol, 3.50 equiv.)
were solved under argon in degassed DMSO (2.50 mL). Copper sulfate pentahydrate
(8.97 mg, 35.9 µmol, 0.150 equiv) and sodium ascorbate (14.2 mg, 71.9 µmol, 0.300 equiv)
were solved in degassed water (500 µL) and degassed DMSO (2.50 mL). The mixture was
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added dropwise to the ethynylbenzene-solution. The mixture was stirred at 50 ◦C for
3 d. After cooling to 25 ◦C, ethyl acetate (20 mL) and water (20 mL) were added, and the
phases were separated. The organic layer was washed with brine (20 mL) and then dried
over sodium sulfate. The solvent was removed under reduced pressure, and the residue
was purified via flash chromatography (cyclohexane/ethyl acetate 20:1 to 4:1) to give the
desired product 6a-Ph as a light-yellow solid.

3.4. Crystal Structure Determination

The single-crystal X-ray diffraction studies were carried out on a Bruker D8 Venture
diffractometer with a PhotonII detector at 123(2) K; 173(2) K; or 298(2) K using Cu-Kα

radiation (λ = 1.54178 Å). Dual space methods (SHELXT) [66] were used for the structure so-
lution, and refinement was carried out using SHELXL (full-matrix least-squares on F2) [67].
Hydrogen atoms were localized by difference electron density determination and refined
using a riding model (H(N, O) free). Semi-empirical absorption corrections were applied.
CCDC 2,102,766 (2a); 2,102,767 (2b); and 2,102,768 (2c) contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif (accessed on
12 August 2021). Due to the bad quality of the data of 3a (completeness approx. 82%), the
data were not deposited with The Cambridge Crystallographic Data Centre).

3.5. NMR Measurements

The NMR spectra were recorded at 25 ◦C on an BRUKER Avance 400 NMR instrument.
More details on the NMR measurements can be found in the Supplementary Information.

4. Conclusions

Different C3-symmetric building blocks based on alkyl triamino-benzene-tricarboxylates
have been reported in this manuscript. Despite only moderate yields, the simplicity of the
syntheses allowed gram amounts of the alkyl triamino-benzene-tricarboxylates. Starting
from the remarkably stable alkyl-triamino-benzene-tricarboxylates, we investigated azide
formation and SANDMEYER-like reactions, as well as chemo-selective N-hexa-alkylation.
More interestingly, click reactions were possible with the synthesized triazides, allowing fur-
ther studies on the formation of porous organic polymers (POP). With the triazidobenzene-
tricarboxylic acid, we have presented a building block that can be used, for example, in a
similar way to trimesic acid in the synthesis of MOFs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules27144369/s1: synthetic procedure, crystallographic, and NMR data.
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