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The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous
media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations withmixed
derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more
suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the
finite-difference method and the optimally preconditioned Conjugate Gradient- (CG-) type iterative method for treatment of the
discrete model. The numerical scheme includes the standard operations of summation and multiplication of sparse matrices and
vector, as well as FFT, making it easy to implement and eligible for the effective parallel implementation. Some typical use cases for
the EIT/EEG problems are considered demonstrating high efficiency of the proposed numerical technique.

1. Introduction

The progress in the forward and inverse modeling in Elec-
trical Encephalography (EEG) andMagnetoencephalography
(MEG) source localization as well as in Electrical Impedance
Tomography (EIT) depends on efficiency and accuracy of
the employed forward solvers for the governing partial
differential equations (PDE), in particular, the Poisson equa-
tions, describing the electrical potential distribution in highly
heterogeneous and anisotropic human head tissues.

The modern forward solvers use the variety of com-
putational approaches based on the finite difference (FD),
boundary element (BE), and finite element (FE) methods [1–
9], multigrid [10] and preconditioned Conjugate Gradient-
(CG-) type iterative methods [11–15], and also high perfor-
mance parallel computing techniques [16–22].

To describe the electrical conductivity in heterogeneous
biological media with arbitrary geometry, the method of
embedded boundaries or a fictitious domain can be used [23,

24]. In this method, an arbitrarily shaped object of interest
is embedded into a rectangular computational domain with
extremely low conductivity values in the external compli-
mentary regions modeling the surrounding air. This effec-
tively guarantees that there are no current flows out of the
physical area and implicitly sets up the zero flux Neumann
boundary condition on the surface of the object. This setup
retains the advantages of the finite-differencemethod (FDM),
which is most prominent in the rectangular domain.

Previously, we built an iterative finite-difference forward
problem solver for an isotropic version of the Poisson equa-
tion for EEG/EIT based on the vector-additive alternating
directions implicit (ADI) algorithm [19]. It is a generalization
of the classic ADI algorithm but with improved stability in
the 3D case [25, 26]. Parallelization of the vector-additiveADI
algorithm in a shared memory multiprocessor environment
(OpenMP) is straightforward, as it consists of nests of inde-
pendent loops over “bars” of voxels for solving the effective
1D problem at every iteration [19]. However, the ADImethod
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is less suitable for implementation in an environment with
a distributed memory. Therefore we also presented in the
past an anisotropic vector-additive algorithm of the domain
decomposition type [20] which is potentially amenable for
implementation at the greater parallel degree [21].

The methods belonging to the family of the Conjugate
Gradient (CG) methods [11–16] have become recently the
most attractive iterative numerical techniques for solving
the forward EEG/EIT problem. These methods have the
high convergence rate to reach the required accuracy: the
iteration number is proportional to the square root from the
condition number of the system matrix in Linear Algebraic
Equations (LAE) to solve. In case of a finite-difference
discretization, the condition number of a system matrix is
inversely proportional to the grid step squared resulting in
an increase of the iteration number with an increase in the
grid resolution. Additionally, the condition number depends
on heterogeneity of coefficients in PDE, in particular, the
ratio of maximal and minimal conductivities in the media.
To reduce the condition number, one needs to employ the
preconditioned CG-type iterative methods such as BiCG [13,
14] in the cases of strongly heterogeneous and anisotropic
conductive media. In this paper we demonstrate an efficient
way of preconditioning in FDM by using benefits of the Fast
Fourier Transform (FFT) [11] technique as a tool for building
a quasioptimal preconditioner for the CG-type iterative
solvers. As a quasioptimal preconditioner, we suggest to use
the spectrally adapted matrix of the corresponding Dirichlet
problemwith homogeneous isotropic coefficients in the same
computational domain. Although this idea is not completely
new (see, e.g., [23, 24]), to the best of our knowledge, it has
been used so far in the EIT/EEG context only in our previous
work on the isotropic cylinder forward solver [19]. The most
attractive advantage of such a preconditioner is the ability to
eliminate dependence of the convergence rate of the iterative
method on the grid size. Additionally, we apply also the stan-
dard Jacobi preconditioner, which improves performance of
the solver in the case of strongly heterogeneous conductivity
coefficients. It is worth to note, that the spectrally adapted
quasioptimal preconditioner based on FFT has no analogies
in FEM or in the case of FDM in irregular domains and/or
FDM with a nonuniform grid.

2. Methods

2.1. Mathematical Statement of the Problem. The relevant fre-
quency spectrum in EEG, MEG, and EIT of the human
head is typically below 100 kHz, and most EEG/MEG studies
deal with frequencies between 0.1 and 100Hz. Therefore, the
physics of EEG/MEG can be well described by the quasistatic
approximation of the Maxwell equations and the Poisson
equation [3]. The electrical forward problem can be stated
as follows: given the positions, orientations, and magnitudes
of dipole current sources, 𝑓(𝑥, 𝑦, 𝑧) as well as geometry and
electrical conductivity of the head volume (Ω), calculate
the distribution of the electrical potential on the surface of

the head (scalp) (Γ
Ω
). Mathematically, it means solving the

inhomogeneous anisotropic Poisson equation [2]:

∇ ⋅ (𝜎∇𝑢) = 𝑓 (𝑥, 𝑦, 𝑧) , (𝑥, 𝑦, 𝑧) ∈ Ω (1a)

with no-flux Neumann boundary conditions on the scalp:

𝜎 (∇𝑢) ⋅ 𝑛, (𝑥, 𝑦, 𝑧) ∈ Γ
Ω
. (1b)

Here 𝜎 = 𝜎
𝑖𝑗
(𝑥, 𝑦, 𝑧) is an inhomogeneous symmetric

tensor of the head tissues conductivity. Having computed
potentials 𝑢(𝑥, 𝑦, 𝑧) and current densities 𝐽 = −𝜎(∇𝑢), the
magnetic field 𝐵 can be found through the Biot-Savart law
for the MEG forward problem. The similar nonstationary
anisotropic diffusion equation is relevant also in the diffusion
optical tomography forward problem modeling [1], spread
of tumor in brain [27], and the white matter tractography
studies using diffusion tensor MRI imaging [28].

For the validation purposes of the suggested numerical
solver for (1a) and (1b) we have employed several models of
volume conduction, including a smooth analytical solution,
an anisotropic multishell spherical model where analytical
solutions are available [29], and anatomically accurate MRI
based models of the human head as described below.

2.2. Smooth Analytical Solution. A simple exact analytical
solution of (1a) and (1b) can be constructed assuming that in a
cubic computational domain with edge length 2a the solution
has the form

𝑢 (𝑥, 𝑦, 𝑧) = (𝑥 − 𝑎) (𝑥 + 𝑎) (𝑦 − 𝑎) (𝑦 + 𝑎) (𝑧 − 𝑎) (𝑧 + 𝑎) .
(2)

Apparently, such a solution satisfies the Dirichlet boundary
conditions at the computational domain boundaries. If the
analytical conductivity tensor components in (1a) and (1b) are
chosen in the form of the smooth analytical functions of the
spatial variables, for example,

𝜎
𝑥𝑥
= 6 (2 + 𝑥2 + 𝑦2 + 𝑧2) ,

𝜎
𝑦𝑦
= 5 (2 + 𝑥2 + 𝑦2 + 𝑧2) ,

𝜎
𝑧𝑧
= 4 (2 + 𝑥2 + 𝑦2 + 𝑧2) ,

𝜎
𝑥𝑧
= 𝜎
𝑧𝑥
= 𝜎
𝑦𝑧
= 𝜎
𝑧𝑦
= 𝜎
𝑥𝑦
= 𝜎
𝑦𝑥

= sin ((𝑥 − 1) (𝑥 + 1) + (𝑦 − 1) (𝑦 + 1)

+ (𝑧 − 1) (𝑧 + 1) ) ,

(3)

then the right-hand term, 𝑓(𝑥, 𝑦, 𝑧), can be found by direct
analytical differentiation of the probe solution function,
𝑢(𝑥, 𝑦, 𝑧), and coefficients (3), according to (1a).

2.3. Multishell Spherical Model. A 4-shell spherical model
with an anisotropic skull layer was used to test the solver in
case of highly heterogeneous anisotropic media. The model
shells represent the scalp, skull, cerebral spinal fluid (CSF),
and brain. Following Ferree et al. [30], the external radii
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of shells were chosen to be 0.084 (m, scalp), 0.065 (m,
skull), 0.05 (m, CSF), and 0.03 (m, brain), and conductivity
values used in the spherical model were set to 0.44 (S/m,
scalp), 0.018 (S/m, skull), 1.79 (S/m, CSF), and 0.250 (S/m,
brain). Consistent with recent evidence the skull to brain
conductivity ratio was set to 14 : 1 [31–33], in contrast with
the 80 : 1 ratio traditionally assumed [34].We have chosen the
largest tangential to radial conductivity ratio 1 : 10 reported in
the literature [35] to push the limits of stability and robustness
of our forward anisotropic solver. To find the coefficients of
the anisotropic conductivity tensor in the global Cartesian
system of coordinates we used the rotational transformations
applied to the local coordinate systems, where the conduc-
tivity tensor has the diagonal form [36]. The conductivity
tensor in such a model of anisotropy is a fair approximation
of the cranial plates conductivity in the human head [3].
The main purpose of the spherical model use, however,
was to validate the numerical solver against the analytical
results [29] and demonstrate efficiency of the proposed
numerical approach in the highly heterogeneous anisotropic
case; therefore the shell thicknesses were chosen to be larger
to facilitate comparison of numerical performance with the
coarse and fine finite-difference of grid resolution.

2.4. Realistic MRI/CT Based Model. The anatomically accu-
rate model of soft head tissues for an adult subject was
derived from T1-weighted MR and DT images of the head of
a healthy Caucasian male of 42 years old recorded with a 3T
Allegra scanner (Siemens Healthcare, Erlangen, Germany)
and stored in the Oregon Normative database (Electrical
Geodesics, Inc.). The bone structure for this subject was
derived from a CT scan recorded with a GE CT scanner
(General Electrics, Fairfield, USA). The acquisition matrix
has size 256 × 256 × 256 with a voxel size of 1mm × 1mm
× 1mm in both the CT and T1 scans. DTI was performed
only for the cranial head part with a voxel resolution of 2mm
× 2mm × 2mm. To construct the isotropic head geometry,
the T1 MRI images have been automatically segmented into
seven tissue types (brain gray matter, brain white matter,
CSF, scalp, eyeballs, air, and skull), coregistered, and warped
with CT images using segmentation and image-processing
package, BrainK [37, 38].We estimated diffusion tensors from
the raw diffusion weighted images with a least square fitting
procedure using the TEEM software package [39]. To account
for the white matter anisotropy, scalar diffusivity maps
from the DTI were calculated and then rigidly registered
to the T1 brain image with a mutual information metric
[40–43]. Finally, using the same affine transformations the
whole diffusion tensor field was resampled and aligned to
the T1 image and its segmented tissue mask by utilizing
log-Euclidean tensor interpolation [44]. Conductivity values
used in this realistic model for isotropic tissues were set to
0.44 (S/m, scalp layer including eyes), 0.018 (S/m, skull), 1.79
(S/m, CSF), and 0.250 (S/m, brain). The conductivity tensor
for the brain white matter is obtained directly as the product
of white matter isotropic conductivity (𝜎iso = 0.25 S/m)
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Figure 1: The finite-difference stencil of a discrete approximation
for the anisotropic problem ((1a) and (1b)).

and the coregistered diffusion tensor 𝐷
𝑤
scaled by its mean

diffusivity (the tensor trace divided by 3) [5–8]:

𝜎WM = 3 ⋅ 𝜎
iso ⋅

𝐷
𝑤

tr (𝐷
𝑤
)
. (4)

In this approach, the resulting white matter conductivity
is both anisotropic and inhomogeneous due to the spatial
dependence of the diffusion tensor eigenvalues.

2.5. Finite-Difference Method. We have used finite-difference
approximations of the spatial derivatives on the uniform
rectangular grid with a 19-point stencil made of 8 voxels
with one common node, as shown in Figure 1. All stencil
nodes belong to three mutually orthogonal planes. Let us
illustrate the discretization on the example of plane Oxy.
To approximate the second derivatives we have used the
standard conservative scheme for the finite volumes [25, 45]:

𝜕

𝜕𝑥
𝜎
𝑥𝑥

𝜕𝑈

𝜕𝑥
= ℎ−2
𝑥
[𝜎02
𝑥𝑥
𝑈
2
− (𝜎02
𝑥𝑥
+ 𝜎04
𝑥𝑥
)𝑈
0
+ 𝜎04
𝑥𝑥
𝑈
4
]

+ 𝑂 (ℎ2
𝑥
) ,

(5)

where 𝜎𝑘𝑚
𝑥𝑥

= (𝜎𝑚
𝑥𝑥
+ 𝜎𝑘
𝑥𝑥
)/2 and indices (superscripts and

subscripts) refer to conductivity parameters and potentials
in corresponding stencil nodes, as shown in Figure 1. To
approximate the mixed derivatives we have investigated five
kinds of the second-order accuracy schemes. As an example
we present here these approximations only for one of the
mixed derivatives:

𝜕

𝜕𝑥
𝜎
𝑥𝑦

𝜕𝑈

𝜕𝑦

=
1

4ℎ
𝑥
ℎ
𝑦
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× (𝜎2
𝑥𝑦
(𝑈
6
− 𝑈
2
) − 𝜎0
𝑥𝑦
(𝑈
3
− 𝑈
0
)

+ 𝜎0
𝑥𝑦
(𝑈
0
− 𝑈
1
) − 𝜎4
𝑥𝑦
(𝑈
4
− 𝑈
8
)

+ 𝜎2
𝑥𝑦
(𝑈
2
− 𝑈
5
) − 𝜎0
𝑥𝑦
(𝑈
0
− 𝑈
1
)

+𝜎0
𝑥𝑦
(𝑈
3
− 𝑈
0
) − 𝜎4
𝑥𝑦
(𝑈
7
− 𝑈
4
))

+ 𝑂 (ℎ2
𝑥
+ ℎ2
𝑦
) ,

(6a)
𝜕

𝜕𝑥
𝜎
𝑥𝑦

𝜕𝑈

𝜕𝑦
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1
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𝑥
ℎ
𝑦

× (𝜎+2
𝑥𝑦
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6
− 𝑈
2
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3
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0
)

+ 𝜎+0
𝑥𝑦
(𝑈
0
− 𝑈
1
) − 𝜎+4
𝑥𝑦
(𝑈
4
− 𝑈
8
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+ 𝜎2
𝑥𝑦
(𝑈
2
− 𝑈
5
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𝑥𝑦
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0
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1
)
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3
− 𝑈
0
) − 𝜎−4
𝑥𝑦
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7
− 𝑈
4
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+ 𝑂 (ℎ2
𝑥
+ ℎ2
𝑦
) ,

(6b)
𝜕
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𝜕𝑈
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1

4ℎ
𝑥
ℎ
𝑦

× (𝜎26
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6
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2
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𝑥𝑦
(𝑈
3
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0
)

+ 𝜎01
𝑥𝑦
(𝑈
0
− 𝑈
1
) − 𝜎48
𝑥𝑦
(𝑈
4
− 𝑈
8
)

+ 𝜎25
𝑥𝑦
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2
− 𝑈
5
) − 𝜎01
𝑥𝑦
(𝑈
0
− 𝑈
1
)
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𝑥𝑦
(𝑈
3
− 𝑈
0
) − 𝜎47
𝑥𝑦
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7
− 𝑈
4
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+ 𝑂 (ℎ2
𝑥
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𝑦
) ,

(6c)
𝜕

𝜕𝑥
𝜎
𝑥𝑦

𝜕𝑈

𝜕𝑦

=
1

4ℎ
𝑥
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5
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(𝑈
7
− 𝑈
8
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+ 𝑂 (ℎ2
𝑥
+ ℎ2
𝑦
) ,

(6d)
𝜕

𝜕𝑥
𝜎
𝑥𝑦

𝜕𝑈

𝜕𝑦

=
1

4ℎ
𝑥
ℎ
𝑦

× (𝜎02
𝑥𝑦
(𝑈
6
− 𝑈
5
+ 𝑈
3
− 𝑈
1
)

− 𝜎04
𝑥𝑦
(𝑈
3
− 𝑈
1
+ 𝑈
7
− 𝑈
8
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+ 𝑂 (ℎ2
𝑥
+ ℎ2
𝑦
) ,

(6e)

where 𝜎±𝑘
𝑥𝑦
= 𝜎𝑘
𝑥𝑦
± |𝜎𝑘
𝑥𝑦
|. One can see that in the homoge-

neous case of constant conductivity all of these approxima-
tions (except for case (6b)) are equivalent. In the case of inho-
mogeneous anisotropic media approximation (6a) is usually
preferable due to its conservative nature [25], similar to the
finite volume approximation used in (2). Finite-difference
approximation (6b) is also conservative and satisfies the
discrete maximum principle under some conditions [25, 46].
Finite-difference approximation (6c) is a simple modification
of scheme (6a) with some additional grid points in the stencil
(see Figure 1) for averaging the coefficients similar to the
approximation in (2). Scheme (6d) is a generalization for the
inhomogeneous case of the typical four-point approximation
of mixed derivatives with constant coefficients. Finally, finite-
difference approximation (6e) is a conservative scheme with
an additional important property in comparison with ((6a)–
(6d)): it uses the same stencil nodes for diagonal and off-
diagonal conductivity tensor components. This property
makes approximation (6e) more stable and ensures the
positive definiteness of the resulting tensor approximation
on the local scale for piecewise inhomogeneous anisotropic
media which are typical for the multishell EEG/MEG/EIT
forward models.

For all cases under consideration, the discretized problem
leads to solving a large system of LAE with the square 19-
diagonal matrix (Figure 2(a)) of dimension 𝑁 = 𝑁

𝑥
𝑁
𝑦
𝑁
𝑧
,

and iterative methods are the best option of choice to deal
with such systems of LAE:

𝐴𝑈 = 𝑓. (7)

The effectiveness of iterative methods is defined by the
convergence rate (a number of iterations to achieve a given
accuracy) as well as by the computational complexity of one
iteration. The rate of convergence of the applied iterative
methods depends on the condition number of the corre-
sponding system matrix [12]. In the best case of the basic
iterative methods the functional dependence of the conver-
gence rate is the square root of the condition number for the
system matrix 𝐴 of the problem. Such a high convergence
rate, for instance, is inherent to the CG iterative methods in
the case of the Hermitian systemmatrix. If the systemmatrix
is nonsymmetric, the modifications of the CG methods such
as BiCG or BiCGStab can be used [14].

For systems of LAE arising in the finite-difference
numerical approximations for PDE, the condition number
is inversely proportional to the grid step squared [12, 25].
In addition, heterogeneity of coefficients in PDE leads to
a further increase in the condition number and makes
the system matrix nonsymmetric. Due to these reasons,
the preconditioned BiCG iterative method is an option of
choice in PDEs with highly heterogeneous coefficients on
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Figure 2: Structure of the system matrix (a) and the preconditioner (b).

the high resolution grid. Generally, the preconditioner is a
nonsingular matrix 𝑃, such that the condition number of the
matrix 𝐵 = 𝑃−1𝐴 is much smaller than the condition number
of the original matrix 𝐴. The use of preconditioners is in fact
equivalent to the transition from the original problem (7) to
the following problem:

𝑃−1𝐴𝑈 = 𝐵𝑈 = 𝑃−1𝑓. (8)

Another important criterion for selecting a good precondi-
tioner (in addition to its primary function of reducing the
condition number) is a computational cost of inverse matrix
calculation. In this respect, preconditioners in the form of
the diagonal, triangular, or sparse circulant matrices are most
attractive. In the latter case the fast inverse matrix calculation
can be achieved by use of the fast discrete Fourier transform.

As one of the simplest forms of preconditioning almost
not requiring additional computations one can suggest the
Jacobi-type (diagonal) preconditioner [13, 14]. It allows
reducing a number of iterations when solving PDEs with
strongly inhomogeneous coefficients like in the Dirichlet
problem in the fictitious domain we are dealing here. How-
ever, the Jacobi preconditioner does not damp the increase in
a number of iterations with an increase of the grid resolution.
In addition to the Jacobi preconditioner, one can use as
a preconditioner the system matrix corresponding to the
case of the homogeneous isotropic limit. This matrix (also
known as the 3D Poisson matrix [12, 25]) has the 7-diagonal
circulant form (see Figure 2(b)). Because the Fast Fourier
Transform (FFT) can be employed to compute an inverse
matrix of such a preconditioner, it is referred to as the Fourier
preconditioner [23, 25]. Along with image reconstruction
problems, the Fourier preconditioner is successfully used in

numerical analysis of PDEs [13, 23] including the Poisson
equation in EIT/EEG [16]. In many cases, the Fourier pre-
conditioner allows eliminating dependence of an iteration
number to convergence from the grid resolution [16, 23],
similar to the case of the multigrid preconditioner [10]. We
have checked efficiency of the above-mentioned types of
preconditioned BiCG iterative methods using their standard
realization in MATLAB [16, 17]. Taking into account the
uniformDirichlet boundary conditions we havemodified the
module of postprocessing for the Fourier preconditioner by
use of the sin-Fourier transform, which allows presenting the
preconditioner matrix in the diagonal form.

3. Results: Validation and Numerical Examples

Numerical modeling of smooth analytical probe solutions
((2) and (3)) for the PDEproblem ((1a) and (1b)) has proved to
be of the second order of approximation in regard to the grid
step for all five approximations of mixed derivatives ((6a)–
(6e)). We have also validated the numerical methods against
the analytics in the layered anisotropic spherical model
[29]. Based on these simulation tests we have derived the
performance figures for the suggested numericalmethod.The
anisotropic spherical head was embedded into the fictitious
cubic computational domain with the edge length of 0.1m
padded with dielectric media (air) with the conductivity
of 10−10 S/m. Sensors were distributed evenly along the
geodesic lines. The resulted computed scalp topography is
shown in Figure 3(a) for a source—sink pair placed on the
equator in the middle of the outer shell. In Figure 3(b)
the simulated topography is compared with an approximate
analytical solution [29].The results show a good agreement of
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Figure 3: Validation of the numerical scheme against the analytical solution in the anisotropic spherical model [29]. The FD computed
potentials (solid) and analytical (open circles) curves versus channel number.

the numerical solution with the analytics with some percep-
tible deviations near the dipole source, where it might be
expected due to difference in discrete and analytical current
source approximations.

To study the performance of the suggested method we
have investigated dependence of the convergence rate on the
grid resolution and the type of the finite-difference approxi-
mation. The number of iterations and the total computation
time required for achieving the given accuracy as a function
of a grid node number are shown in Figures 4 and 5.

For the smooth Dirichlet-type solutions the BiCG
method with the Fourier and Fourier-Jacobi (FJ) precon-
ditioners requires 9–11 iterations independently of the grid
resolution and outperforms by a large factor the BiCG
method with and without the Jacobi preconditioner in terms
of the computational time. The computational time per
iteration in the case of the Fourier preconditioners is of
one order of magnitude larger than in the BiCG method
without or with the Jacobi preconditioner. However, when
using the Jacobi preconditioner the number of iterations to
convergence increases proportionally to the number of grid
nodes. For 𝑁 = 128 the number of iterations in the Jacobi
case exceeds 300 and the total computational time to solve
the problem is about 3 times larger than the time required
for the Fourier preconditioner case (Figure 4). The number
of iterations to convergence is approximately the same for all
five mixed derivatives approximations ((6a)–(6e)) in all three
preconditioned BiCG methods.

When the piecewise heterogeneous 4-shell spherical
model is used, the performance depends on the choice of
a discrete approximation for the mixed derivatives ((6a)–
(6e)). The more stable and robust results were obtained with
the approximation of type (6e), where the FJ preconditioner
effectively reduces the number of iterations to convergence
and removes the dependence from the grid resolution. For
instance, the iteration number required to reach the accuracy
of 𝜀 = 10−5 is not larger than 30 and does not depend on
the grid resolution. At the same timewith approximation (6c)

the FJ preconditioner loses its scaling property and that
reflects in dependence of iteration number from the grid
resolution. It is worth to note that the Jacobi preconditioners
for this problem also demonstrate the good performance at
the relatively coarse resolution of the discrete model. For
example, in the case of 128 points in each spatial direction,
the total computational cost per iteration when using the
Jacobi and Fourier-Jacobi preconditioners is approximately
the same, but, due to the iteration number dependence on
the resolution in the BiCG-J method, the BiCG-FJ method
is more preferable for the higher grid resolutions. Also,
the convergence of the FJ-BiCG methods has a very weak
dependence on the anisotropy ratio. The average iteration
number to convergence in case of the 4-shell spherical model
with an anisotropic skull layer increases from 20 at the skull
anisotropy ratio 1 : 1 to 25 at 1 : 10 and 30 at 1 : 50.

We have also tested our solver in the realistic MRI/CT
based human head multishell models derived from the high
resolution (1mm3) raw and segmented MRI volumes coreg-
istered with CT atlases as described in Section 2. Sensors on
the scalp were distributed evenly along the geodesic lines.
First, simulation was done with a virtual metal surgical clip
in skull (shaped as the Greek letter “Π” with the dimensions
12mm × 12mm × 12mm, the cross-section of 2mm × 4mm,
and titanium conductivity 2.5e6 S/m,) to test the limits
of the solver tolerance to heterogeneity. As it is shown in
Figure 6(a), the introduction of highly conductive metal clips
into a head model leads only to modest local distortions of
the EEG topography, similar to some extent to the impact
on EEG of surgical burrs in skull [9]. The shunting effect is
getting more pronounced with the closer distance between
the dipole and the clip and their parallel orientation as it
can be seen through the distortion of the equipotential lines
on scalp in Figure 6(b). It is noteworthy that the modeling
of the EIT/EEG problems in presence of metal implants
using the fictitious domain with air claddings results in the
extremely high heterogeneity ratio of the order of ∼1010−1016
and the ill-posed system matrix of the discrete model.
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Figure 4: Efficiency of different preconditioners for inhomogeneous smooth solutions (an analytical probe function (2)). Number of iterations
(a) and runtime in seconds (b) versus a mixed derivative approximation type ((6a)–(6e)) for different resolutions (𝑁3).

Our previous FDM version of the forward EEG/EIT solver
based on the ADI method [19] diverged at such high levels
of heterogeneity. However, the use of the BiCG-FJ method
and the robust mixed derivatives approximations of type (6a)
and (6e) allows to reach an approximate solution after 60–
80 iterations, while the other preconditioners get quickly
outperformedwith an increase in the grid resolution. Second,
as a test case, we have modeled an impact of the brain
white matter anisotropy and inhomogeneity on EEG using
the brain white matter conductivity tensor inferred fromDTI
in accordance with (4). As can be seen in Figures 7 and 8,
the resulting current streamlines and scalp topographies are
visibly different. The more quantitative analysis of our deep
brain dipole simulation presented in Figure 8(b) shows that
the isotropic brain white matter model versus the anisotropic
one introduces an error of up to 25% for the lead fields on
scalp in a qualitative agreement with the earlier published
results on modeling the white matter anisotropy [4–6];
therefore anisotropic lead field calculations are important

to introduce to increase the source localization accuracy in
functional neuroimaging such as EEG or MEG [6]. It is
worth noting here that reports on quantitatively different
effects of white matter anisotropy depending on the model
employed continue to appear in the literature, in particular
in publications on transcranial electrical stimulation [47, 48]
and EEG [7]. Lee et al. [7] reported a quite moderated impact
of the white matter anisotropy on the source localization
accuracy confirmed by fMRI. Thus, the further refinement
of models and algorithms capable of dealing accurately with
anisotropy is still in the process of ongoing improvement and
constitutes a significant goal.

4. Discussion and Conclusion

In context of modeling EEG/EIT problems there are several
most discussed and usable in practice numerical methods.
These are the sequential overrelaxation (SOR), the CG-type
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Figure 5: Efficiency of different preconditioners for the piecewise heterogeneous anisotropic spherical model (see Figure 3). Number
of iterations (a) and runtime in seconds (b) versus a mixed derivative approximation type ((6a)–(6e)) for different resolutions (𝑁3).
Approximation C is outperformed by others.

methods such as Bi-Conjugate Gradient and Bi-Conjugate
Gradients Stabilized methods with reasonable precondition-
ers (Symmetric Successive Overrelaxation (SSOR), Incom-
plete Cholesky and Incomplete Lower Upper (IC/ILU), fac-
torization, Jacobi, Block Jacobi, and so on) and the alge-
braic multigrid (AMG) iterative methods. The efficiency of
these approaches for the cases of isotropic and anisotropic
problems is reviewed in [15, 22], where it is shown that the
best performance is demonstrated by the AMGmethods.The
key advantage of the AMG methods is independent of the
convergence rate on the computational grid resolution.

In this paper we have presented a novel type of an
EEG/EIT anisotropic FDM forward solver from the CG
methods family. The combined Fourier-Jacobi precondi-
tioner shows unprecedented performance and robustness
comparable with the AMG methods when applied to the
problemswith highheterogeneity and anisotropy. It is capable
of solving 128 × 128 × 128 voxels anisotropic problems with

the extreme conductivity tensor eigenvalues ratio of 10 : 1
and the isotropic tissue heterogeneity ratio of up to 1016
(including explicitly titanium clips and air pockets modeling)
within a minute runtime in the MATLAB implementation.
The high performance of the proposed method is due to the
spectral equivalence property of the Fourier-Jacobi precon-
ditioner. Its combination with the BiCG method eliminates
the dependence of the convergence rate on the spatial grid
resolution and the heterogeneity ratio of the discrete model.
The number of iterations to achieve the desired accuracy
is almost independent of the grid resolution, which puts
the proposed technique in line with the popular multigrid
iterative methods [3, 10, 15, 22]. The proposed numerical
algorithm includes the standard operations of summation
and multiplication of sparse matrices and vectors as well as
FFT, making it easy to implement and readily eligible for the
effective parallel implementation.
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Figure 6: (a) Modeling of impact of the titanium surgical clip (the white “pi”) on the EEG forward solution in a “virtual” postoperational
patient. A horizontally oriented dipole is of 0.6 cm from the clip. The shunting effect is getting more pronounced with the closer distance
between the dipole and the clip and parallel orientation as it can be seen through the distortion of current stream lines (in black). (b) Impact
of titanium surgical clip (the white “pi”) on the EEG forward solution in a “virtual” post-operational patient. 3D topography view (top) and
1D voltages (𝜇V) versus channel number detailed quantitative comparison (bottom). A horizontally oriented dipole is of 0.6 cm from the clip.
The shunting effect is getting more pronounced with the closer distance between the dipole and the clip and parallel orientation as it can be
seen through the distortion of the equipotential lines on scalp.
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Figure 8: Impact of brain white matter anisotropy on the EEG forward solution: 3D topography view (a) and 1D voltages (𝜇V) versus channel
number detailed quantitative comparison (b). A horizontally oriented dipole is placed deep in the central brain region.
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It is shown that certain types of difference approximations
of the anisotropic problem in cases with strong heterogeneity
of the coefficients of the problem do not support the optimal
spectral property of the Fourier-Jacobi preconditioner. We
believe that it is associated with the heritability in a discrete
model of the fundamental properties of symmetry and
positive definiteness of the conductivity tensor. When this
property is lost in a particular kind of a discrete approx-
imation ((6a)–(6e)), for instance, in approximation (6c), it
adversely affects the matrix property in the discrete model
and the efficiency of iterative methods for solving the prob-
lem.This is supported by the fact that themost reliable results
are obtained with the difference approximations, where the
diagonal and off-diagonal components of the conductivity
tensor are averaged over the same stencil points of the
finite-difference grid (approximation (6e)). For a realistic
MRI based model in the EEG and EIT applications, our
simulation results show that the introduction of the white
matter anisotropic conductivity derived from a spatially
inhomogeneous diffusion tensor can change isotropic lead
fields on scalp, up to 25%, while the highly conductive metal
surgical clips perturb EEG potentials mostly locally. The
suggested solver can also find applications in the field of
transcranial electrical stimulation [47, 48], where accurate
modeling is important to predict current densities delivered
to regions of interest on cortex.
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