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Discrete subaortic stenosis (DSS) is a congenital heart disease that results in the

formation of a fibro-membranous tissue, causing an increased pressure gradient in the

left ventricular outflow tract (LVOT). While surgical resection of the membrane has shown

some success in eliminating the obstruction, it poses significant risks associated with

anesthesia, sternotomy, and heart bypass, and it remains associated with a high rate

of recurrence. Although a genetic etiology had been initially proposed, the association

between DSS and left ventricle (LV) geometrical abnormalities has provided more support

to a hemodynamic etiology by which congenital or post-surgical LVOT geometric

derangements could generate abnormal shear forces on the septal wall, triggering in

turn a fibrotic response. Validating this hypothetical etiology and understanding the

mechanobiological processes by which altered shear forces induce fibrosis in the LVOT

are major knowledge gaps. This perspective paper describes the current state of

knowledge of DSS, articulates the research needs to yield mechanistic insights into a

significant pathologic process that is poorly understood, and proposes several strategies

aimed at elucidating the potential mechanobiological synergies responsible for DSS

pathogenesis. The proposed roadmap has the potential to improve DSSmanagement by

identifying early targets for prevention of the fibrotic lesion, and may also prove beneficial

in other fibrotic cardiovascular diseases associated with altered flow.

Keywords: discrete subaortic stenosis, congenital heart disease, hemodynamics, etiology, left ventricular outflow

tract, wall shear stress, aortoseptal angle

CLINICAL PRESENTATION

Discrete subaortic stenosis (DSS) is a congenital heart disease characterized by the formation of a
fibrous membrane obstructing the left ventricular outflow tract (LVOT). DSS occurs within about
6% of children with congenital heart defects (1, 2) and is responsible for 8–30% of total LVOT
obstructions in children and up to 20% of obstructions that require intervention (3, 4). Key features
of the disease are its rapid progression and its association with both a high-velocity jet and a high-
pressure gradient across the LVOT (5–8). Themembrane that causes DSS can present with a variety
of morphologies. It is most commonly described as a fibromuscular ring of tissue, but can also
present as an incomplete shelf or ridge-like structure (5, 9, 10). The lesion consists of five tissue
layers: (1) endothelial layer, (2) glycosaminoglycans in the sub-endothelial layer, (3) fibroelastic
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layer with collagen bundles and elastin fibrils, (4) smooth muscle
layer with a thickened basement membrane, and (5) fibrous layer
with increased collagen (11). The location of this membrane
can range from just below the aortic valve where it sometimes
fuses with the leaflets, to lower within the LVOT where it can
become attached to the anterior mitral valve leaflet (Figure 1)
(12). Without intervention, DSS can result in left ventricle
(LV) hypertrophy and dysfunction, aortic regurgitation (AR),
endocarditis, arrhythmias, and death (2, 5, 13–16).

DSS develops typically within the first decade of life and
little is understood about its early development (17). The disease
can present concomitantly with a variety of other congenital
cardiac defects, such as bicuspid aortic valve (23% of DSS
patients), ventricular septal defect (37%), and Shone’s complex
(4, 8, 15). Early diagnosis can be difficult as most patients remain
asymptomatic throughout the disease (10, 17, 18). When present,
symptoms include chest pain, heart failure, and/or syncope
(8, 18). Nevertheless, DSS is usually revealed by the existence
of both a mid-systolic and an end-diastolic murmur during
physical examination. Diagnosis is given during a follow-up
2D Doppler echocardiography examination of the flow within
the LVOT. However, cases have been reported of patients with
no significant echocardiographic LVOT abnormalities in early
childhood who later developed DSS at a relatively rapid rate
(12, 19).

Risk factors promoting initial occurrence include
morphological LVOT abnormalities such as sharp aortoseptal
angle (AoSA), subphysiologic aortic annulus diameter, and large
aortic valve-mitral valve separation distance (12, 16, 20, 21).
Recurrence, which occurs in 8–34% of patients over a 10 year
period (12, 22–27), has been associated with young age at
both initial diagnosis and surgical intervention, smaller aortic
annulus, proximity of the obstruction to the aortic valve, and a
higher preoperative peak LVOT gradient (4, 14, 16, 25). Females
have a 1.5 times greater risk of recurrence compared to males
(8, 16). This increased risk could be associated with the smaller

FIGURE 1 | Different presentations of DSS showing: (A) isolated geometry; (B) involvement with the aortic valve; and (C) involvement with the mitral valve (Ao, aorta;

LA, left atrium; LV, left ventricle). Adapted from (4) with permission from Elsevier.

LVOT anatomies in women, but the role of gender in DSS
recurrence has not been investigated (16).

DISEASE MANAGEMENT

Surgical resection of the membrane alleviates the obstruction
but is associated with a high rate of recurrence (12, 22–
27), which has fueled the debate on timing of intervention.
While some studies advocate for immediate resection to help
prevent later progression and complications, others argue that
resection should be considered only under certain conditions
(2, 8, 12, 28). The general consensus reported in the 2008
ACC/AHA guidelines recommends surgical intervention for
peak instantaneous echocardiographic gradient greater than 50
mmHg, mean gradient greater than 30 mmHg, or catheter
measurement of the resting peak-to-peak gradient greater than
50 mmHg (29). Support for early intervention stems from the
demonstrated success of surgery in preventing AR, especially in
infants (9, 22, 24, 25, 30), while that for delayed intervention
cites the potential for increased AR severity, mitral valve damage
and heart block as major risks of early resection (5, 28, 30–32).
Specific resection techniques range from simple removal of the
membrane to a more aggressive approach combining membrane
resection and myectomy (12, 17, 33). Although both effectively
provide relief, the more aggressive approach has been associated
with a lower instance of recurrence (25, 32) but a higher risk for
iatrogenic ventricular septal defect and heart block (4, 9, 24, 26).
Regardless of the surgical technique, mortality during membrane
resection is reported to be approximately 3% (16, 22, 24, 34, 35).

EMERGENCE OF A HEMODYNAMIC
ETIOLOGY

Description
The mechanisms behind DSS pathogenesis have been subject to
debate since the disease was first discovered. Initially, DSS was
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classified as a congenital disorder. While there are still claims
that Mendelian autosomal recessive inheritance is the main
mechanism behind DSS, such occurrence is rare (12, 36–38).
The lack of a clear inheritance pattern along with the established
association of DSS with LV morphological abnormalities has
classified DSS as an acquired obstruction resulting from
adverse LVOT flow patterns (12, 20, 39). This hemodynamic
etiology, which hypothesizes the existence of mechanobiological
synergies between the septal wall and the surrounding fluid
mechanical stresses, describes DSS pathogenesis as a three-step
process: (1) existent or surgically-induced LV morphological
abnormalities cause (2) LV flow derangements and mechanical
stress overloads on the septal wall, which trigger in turn (3)
a fibrotic cellular response leading to membrane formation (9,
12, 30, 40). While this theory clearly identifies hemodynamic
factors as drivers of DSS pathogenesis, it does not preclude
the possible contribution of genetics in promoting a fibrotic
response.

Supporting Evidence
Clinical studies and case reports have used transthoracic
and transesophageal echocardiography to characterize deranged
flow patterns, supporting a role for hemodynamics in the
pathogenesis of DSS (4, 14, 16, 25, 41, 42). Preoperative flow
characteristics in DSS patients include high mean and peak
LVOT gradients, marked subaortic acceleration, and transition
to turbulence (42, 43). While resection results in a decrease
in LVOT pressure gradient (4, 14, 16, 25), long-term follow-
up assessments have evidenced a progressive linear increase
in peak LVOT gradient over time (4). Regardless of its
cause, an increased LVOT gradient will be associated with
flow acceleration, which will translate into an increase in
the interfacial force or wall shear stress (WSS) experienced
by the LVOT and the subaortic region of the septal wall.
These observations suggest the existence of underlying LV
hemodynamic abnormalities, even in the absence of DSS lesion in
those patients, which could contribute to both initial occurrence
and recurrence.

While the impact of suchWSS overloads on septal wall biology
remains largely unknown, the knowledge gained from previous
vascular mechanobiological studies offers some perspective.
WSS plays a major role in cardiovascular disease through
alteration of endothelial cell (EC) phenotype and loss of tissue
homeostasis (44–46). In vitro studies on the effects of WSS on
cardiovascular tissue and cells have demonstrated that vascular
and valvular ECs interact with their surrounding mechanical
environment to drive critical cell-extracellular matrix (ECM)
processes. Studies have demonstrated the ability of low WSS to
increase ECmigration, permeability, proliferation, and activation
of certain transcription factors. Regions of accelerating flow with
high WSS and positive WSS spatial gradients promote ECM
degradation and cellular loss, while arterial regions experiencing
high WSS but negative WSS spatial gradients are protected
from ECM degradation (47, 48). Those studies provide evidence
for the distinct sensitivity of the vascular endothelium to
WSS magnitude and spatial gradient, and the vulnerability of
vascular endothelial regions subjected to elevated WSS and

positive spatial gradients to inflammation, remodeling, and
matrix degeneration. The sensitivity of ECs to mechanical forces
combined with the histological hallmarks of DSS lesions, which
include inflammation, fibrosis, and myofibroblast proliferation
(12, 49, 50), suggests the activation of similar biological
cascades in response to the LV flow derangements typically
observed in DSS patients. More specifically, ECs subjected
to WSS respond by triggering molecular pathways involving
reactive oxygen species, nitric oxide, miRNAs, and growth
factors (51–53). Activation of mechanosensing receptors in
ECs, EC-smooth muscle cell (SMC) crosstalk, and signaling
pathways in response to laminar vs. disturbed flow are rigorously
investigated areas in vascular biology (52, 54–56). These
processes are often mediated by PECAM-1, an EC adhesion
molecule (52, 57). Vascular ECs under WSS communicate
with underlying SMCs, which contribute to remodeling of the
surrounding tissue and the ECM (51, 52, 54, 56). Disturbed
flow is known to alter EC-SMC communication and behavior
in blood vessels, but most factors in this process have yet
to be characterized for endocardial ECs and their milieu
(52, 55, 58).

KNOWLEDGE GAP AND RESEARCH
NEEDS

Although the hemodynamic etiology of DSS is now relatively
well accepted, its rigorous validation is still lacking. In
the nearly 400 publications on DSS to date, most have
focused on the echocardiographic description of LV/LVOT
hemodynamics, the investigation of genetic inheritance, or
the clinical and biochemical descriptions of DSS lesions.
The realization that DSS pathogenesis may stem from a
combination of hemodynamic and genetic cues motivates
the implementation of higher-level approaches. Future
research should focus on the detailed characterization of
hemodynamic stresses associated with steepened AoSAs,
and the elucidation of the underlying mechanobiological
cellular and molecular mechanisms of DSS. Similar approaches
have been successful at shedding light on the pathogenesis
of calcific aortic valve disease (59–62), atherosclerosis
(52, 63, 64), and bicuspid aortic valve aortopathy (65–67).
The following sections present some perspective on the
potential implementation of similar strategies in the context
of DSS.

WSS Characterization in Abnormal LV
Anatomies
Echocardiography has evidenced the existence of global LV
flow alterations in DSS patients pre- and post-resection (4,
14, 16, 25, 41, 42). Although this modality provides sufficient
information for diagnostics and retrospective analysis, it is
unable to capture the local flow characteristics due to its limited
temporal and spatial resolutions. The elucidation of the potential
synergies between the endocardial endothelium and the flow
alterations associated with abnormal LV morphologies requires
the implementation of more resolved approaches capable of
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capturing the WSS imposed by the surrounding blood flow
on the septal wall. Computational and experimental techniques
have been developed to quantify WSS in other cardiovascular
disorders and could be implemented in the context of DSS.

Computational fluid dynamics (CFD) is a technique capable
of predicting the flow characteristics at high spatial and temporal
resolutions by modeling mathematically the governing equations
of fluid motion. This approach consists of the creation of a
three-dimensional geometry reconstructed from clinical patient
images, the prescription of boundary conditions at the inlets
and outlets of the model, and the numerical solution of the
linearized flow equations (68). The availability of increasingly
powerful workstations has enabled fluid-structure interaction
(FSI) simulations that not only solve for the flow but also
account for the deformation of surrounding structures and its
impact on the flow (69). Such an approach is well adapted to
the characterization of pulsatile flow in compliant cardiovascular
structures and has been successfully implemented to captureWSS
characteristics in ventricular (70–75), valvular (76–78), and aortic
flows (44, 79).

Our group has recently evidenced the applicability of
this computational strategy to the characterization of the
hemodynamic impact of a steep AoSA in a contracting
human LV reconstructed from multiple-slice cine magnetic
resonance images (80). Three cases were considered: (1) normal
AoSA, (2) steepened AoSA, and (3) steepened AoSA with a
DSS membrane. The obstruction was represented as a thin
semi-lunar membrane attached at the base of the LVOT
(Figure 2A). Two-way coupling between the deforming LV
and the flow was achieved in ANSYS 18 (ANSYS Inc). LV
wall mechanics were modeled using an isotropic linear elastic
formulation with mechanical properties representative of the
average passive/active properties obtained from the literature (81,
82). LV ejection was simulated by imposing a time-dependent
pressure condition on the LV wall and a wall condition on the

mitral valve orifice. While the steepened AoSA generated the
same LVOT flow structure as the normal AoSA, it resulted in a
6% increase in LVOT velocity at peak ejection (Figure 2B). The
presence of the DSS lesion generated substantial flow alterations
characterized by a recirculation bubble immediately downstream
of the lesion, increased LVOT jet skewness toward the lower
wall, and stenotic conditions marked by a 12% increase in
maximum LVOT velocity at peak ejection. In addition, the
steepened AoSA resulted in WSS abnormalities both upstream
and downstream of the site prone to DSS lesion formation
(24% increase in region 1, 22% decrease in region 2, vs.
normal LV) (Figure 2C). These preliminary models illustrate
the feasibility and benefits of CFD for the hemodynamic
characterization of DSS, and suggest the existence of supra-
physiologic WSS levels on the endocardial region prone to DSS
lesion formation.

Experimental flow techniques have also been implemented to
measure LV hemodynamics in vitro. Particle image velocimetry
(PIV) is a laser technique employing optical and statistical
methods to measure the instantaneous velocity field in a section
of the flow by capturing the average displacement of tracer
particles captured in two successive flow images (83). This
technique has been adapted to the characterization of the
pulsatile and turbulent flow characteristics in heart valves (84–
86), the aorta (87–89), and the LV (90–92). These studies typically
consist of a realistic and compliant siliconemodel of the structure
of interest connected to a flow loop generating physiologic
pressure and cardiac output. PIV measurements in the LV have
been performed to capture the temporal flow velocity, vorticity
dynamics, and turbulence characteristics in a deforming LV (90).
Although the limitations inherent to PIV prevent its use toward
the capture of near-wall flow characteristics such as the regional
endocardial WSS, PIV is well adapted to the assessment of bulk
flow characteristics. Therefore, similar setups could be envisioned
for the measurement of turbulent flow in patient-specific DSS

FIGURE 2 | Preliminary FSI modeling in normal and DSS LVs: (A) geometrical models with normal AoSA, steepened AoSA and DSS lesion; (B) velocity predictions at

early, mid-peak and peak ejection (inset: LV pressure-volume curve); and (C) WSS predictions at early, mid-peak and peak ejection.
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LVs and LVOTs, which will be needed for the validation of the
computational results.

Elucidation of Septal Wall Mechanobiology
While the existence of flow derangements andWSS abnormalities
in LVmorphologies prone to DSS development has been partially
established in vivo, their ability to trigger a fibrotic response
in the endocardium also needs to be rigorously investigated.
Diverse benchtop approaches allow for the application of WSS
to cells, yet a major obstacle is the challenge to replicate
in vitro the full spectrum of the native flow characteristics, which
include three-dimensionality, pulsatility, and multidirectionality.
Previous investigations of the biological response of ECs to WSS
have implemented cone-and-plate bioreactors. These devices
consist of an inverted cone rotating above a stationary plate
supporting the cells (93). The rotation of the cone generates
a flow of culture medium above the plate, resulting in the
generation of WSS on the cell monolayer, making it a convenient
tool for the production of a well-controlled, pulsatile/oscillatory
WSS environment. The need to elucidate the role of cell-ECM
communication in WSS signaling has motivated the design of
more sophisticated devices capable of subjecting whole pieces
of tissue to time-varying WSS (94–96). The implementation
of similar devices to subject endocardial ECs or septal wall
tissue to the local WSS abnormalities captured experimentally
or computationally in LV morphologies prone to DSS would
provide new insights into the potential transduction of altered
WSS into inflammatory and fibrotic responses. In addition to
the cellular response to WSS, the cellular signaling pathway and
LV elastic modulus should be addressed in future studies of
DSS. Resected DSS membranes show evidence of proliferation,
fibrosis, and ECM remodeling (11), which provides compelling
motivation to investigate the complex cell-cell communication
that elicits membrane formation and fibrosis.

Complementary benchtop approaches can be employed to
assess how cellular phenotype, adhesion, and migration is
influenced by the stiffness of their environment (97–99). In
fibrotic diseases like DSS, ECM stiffness is increased by fibrosis,
which then influences cell behavior. ECs grown on stiff substrates
show increased migration, proliferation, and adhesion compared
with cells grown on soft substrates (99). Biomaterials can be
used to mimic the elastic modulus of normal and pathological
tissues so that cellular behavior in these environments can be
studied (99, 100). Biomaterials can also be synthesized to present
biochemical signals that influence cell behavior (99, 101). Taken
together, strategies to fabricate materials in a highly customized
manner (99–106) would be advantageous to use to replicate key
aspects of the diverse cell communities, cell communication,
and ECM microenvironments in the subaortic LVOT, such as
paracrine signaling and substrate stiffness, to determine their
roles in DSS.

Development of New DSS Models
The current in vivo model used to study DSS is a canine
animal model (11, 107–111). This model has limitations in
understanding how DSS forms and the underlying mechanism
of DSS. Researchers have identified an inherited genetic link

associated with DSS, as shown with Newfoundland dogs (107).
However, this model has not been able to identify a specific gene
correlated with DSS, or if the disease is acquired or congenital
(107). The presentation of DSS in dogs varies from humans so it
is unclear if a canine model of DSS could clarify the mechanism
of the disease (108). Therefore, a disease model that elucidates the
complex physiological conditions of DSS is needed.

Development of a CFD-Based Surgical
Optimization Framework
Computational engineering tools have been used as diagnosis and
surgical planning tools to assess patient-specific hemodynamics
in the context of Fontan and valve replacement procedures
(112, 113). Similarly, CFD could be used to assess the potential
benefits of resection in DSS patients. Should hemodynamics
be identified as a key player in DSS lesion formation, CFD
could also be implemented as a diagnosis or predictive tool for
patients considered at risk for developing the disease. In both
cases, the clinical implementation of CFD will require formal
validation based on a combination of in vivo (e.g., PC-MRI,
echocardiography) and in vitro (e.g., PIV) flow measurements.

CONCLUSIONS

DSS is a complex disorder that remains largely unexplained and
difficult to treat. The risks posed by surgery along with the
unpredictability of recurrence following resection justify the need
to understand the underlying mechanisms of DSS. Advances
in clinical imaging techniques, computational and experimental
fluid dynamics, and mechanobiology provide new opportunities
to elucidate the pathogenesis of this disease. The approach
outlined in this paper, which suggests the use of engineering
tools and clinical information in tandem, has the potential to
address the molecular and cellular mechanisms of DSS, elucidate
its fundamental biology, and provide new predictive capabilities
that may ultimately improve patient-specific diagnosis and
management. The execution of this novel strategy will require a
dual expertise in both engineering and medicine, with clinicians
recruiting potential patients and analyzing medical data, and
engineers providing mechanical data and designing tissue culture
systems.
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