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Background: Concomitant inhibition of vascular endothelial growth factor (VEGF) and
programmed cell death protein 1 (PD-1) or its ligand PD-L1 is a standard of care for patients
with advanced hepatocellular carcinoma (HCC), but only a minority of patients respond, and
responses are usually transient. Understanding the effects of therapies on the tumor
microenvironment (TME) can provide insights into mechanisms of therapeutic resistance.

Methods: 14 patients with HCC were treated with the combination of cabozantinib and
nivolumab through the Johns Hopkins Sidney Kimmel Comprehensive Cancer Center.
Among them, 12 patients (5 responders + 7 non-responders) underwent successful
margin negative resection and are subjects to tissue microarray (TMA) construction
containing 37 representative tumor region cores. Using the TMAs, we performed
imaging mass cytometry (IMC) with a panel of 27-cell lineage and functional markers.
All multiplexed images were then segmented to generate a single-cell dataset that enables
(1) tumor-immune compartment analysis and (2) cell community analysis based on graph-
embedding methodology. Results from these hierarchies are merged into response-
associated biological process patterns.

Results: Image processing on 37 multiplexed-images discriminated 59,453 cells and was
then clustered into 17 cell types. Compartment analysis showed that at immune-tumor
boundaries from NR, PD-L1 level on tumor cells is significantly higher than remote regions;
however, Granzyme B expression shows the opposite pattern. We also identify that the
close proximity of CD8+ T cells to arginase 1hi (Arg1hi) macrophages, rather than CD4+ T
cells, is a salient feature of the TME in non-responders. Furthermore, cell community
analysis extracted 8 types of cell-cell interaction networks termed cellular communities
(CCs). We observed that in non-responders, macrophage-enriched CC (MCC) and
lymphocyte-enriched CC (LCC) strongly communicate with tumor CC, whereas in
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responders, such communications were undermined by the engagement between MCC
and LCC.

Conclusion: These results demonstrate the feasibility of a novel application of multiplexed
image analysis that is broadly applicable to quantitative analysis of pathology specimens in
immuno-oncology and provides further evidence that CD163-Arg1hi macrophages may
be a therapeutic target in HCC. The results also provide critical information for the
development of mechanistic quantitative systems pharmacology models aimed at
predicting outcomes of clinical trials.
Keywords: tumor-immune microenvironments (TIME), hepatocellular carcinoma, immunotherapy, biomarker,
computational biology, systems biology
INTRODUCTION

Primary liver cancers are predicted to be the third leading cause of
cancer death in the US by 2040, and hepatocellular carcinoma
(HCC) is the most common type of primary liver cancer (1, 2).
The treatment of advanced HCC has benefited from the approval
of multiple novel therapeutic agents, including anti-VEGF
targeted agents (sorafenib, regorafenib, lenvatinib, cabozantinib,
ramucirumab, bevacizumab) and immune checkpoint inhibitors
(nivolumab, pembrolizumab, atezolizumab, and ipilimumab). In
2020, the combination of an anti-VEGF therapy (bevacizumab)
plus the PD-L1 inhibitor atezolizumab was established as a new
standard of care for patients with advanced HCC based on the
demonstration of superior overall survival versus the prior
standard of care sorafenib, and multiple additional combinations
of anti-VEGF and immune checkpoint therapeutic combinations
are in late stages of development. Despite these advancements, the
overall survival of patients with HCC continues to lag many other
tumor types, the majority of patients do not respond to current
systemic therapies, and responses that are observed are
usually transient.

We previously conducted a clinical trial of cabozantinib plus
nivolumab in the neoadjuvant setting (3). Neoadjuvant trials
present a unique opportunity to decipher the mechanisms of
response and resistance to systemic therapies, by providing large
tumor specimens for highly detailed spatial analysis of the TME that
would not be possible with small biopsy specimens usually obtained
in trials of advanced stage disease. Cabozantinib is a multityrosine
kinase inhibitor (mTKI) of VEGFR2, c‐Met, Ret, Tie2, and AXL
that is approved for patients with advanced stage HCC and is under
investigation in combination with immune checkpoint therapy in
HCC as well as other tumor types. Nivolumab is an inhibitor of PD-
1. Patients with borderline resectable or locally advanced HCC were
treated with 8 weeks of cabozantinib plus nivolumab, followed by
surgical resection at week 12. Of 15 patients enrolled, 12 patients
achieved surgical resection, and of these 12 patients who underwent
resection there were 5 patients with major or complete pathologic
responses. We subsequently performed multiplexed imaging
analysis using Imaging Mass Cytometry™ (IMC) on 37 tumor
region cores from responding and nonresponding resection
specimens to understand mechanisms of response to this
combination (3). An initial analysis of these specimens indicated
org 2
that cabozantinib and nivolumab promote T cell-mediated
antitumor immunity locally and systemically. Specifically, the
unique aggregation of B cells was a hallmark of response with
findings suggestive of their roles in antibody and pro-inflammatory
cytokine production to indirectly support the antitumor immune
response. The proximity of B and T cells to Ki-67hi and PD-L1hi

macrophages was also a key characteristic of response. In tumor
specimens from non-responders, however, the presence of arginase-
1 expressing macrophages adjacent to B and T cells is associated
with lack of response.

These findings revealed first-order tumor microenvironmental
differences altered by the therapy. Tumor microenvironment
(TME) is highly organized with spatially nuanced interactions
between residing components. However, the characterization of
this coordinated behavior remains relatively limited. To provide
more integrated, deeper insights into such behavior, we performed
multi-scale spatial analysis of the previously reported IMC data
from our neoadjuvant cabozantinib and nivolumab trial to
systemically interrogate the TME to identify other novel features
of response and resistance to therapy and to quantitatively
characterize the tumor immune microenvironment for
subsequent applications to quantitative systems pharmacology
(QSP). The analysis framework comprises the quantification of
intra-tumoral phenotypic heterogeneity, stratification of tissue
architectures, multi-cellular protein expression analysis, and
network analysis of cellular communities. The results from these
hierarchies were then summarized as a communication landscape
in responders and non-responders, thus providing possible
rationales for therapy response or resistance and guidelines for
future treatment strategies. The proposed framework represents a
novel application of multiplexed imaging in translational medicine
to empower mining and correlating various microenvironmental
distinctions to address cancer immunology questions. Importantly,
the value of the framework also lies in its potential to parameterize
and validate computational immuno-oncology models (4, 5).
METHODS

Study Design
The study was designed to deeply interrogate the tumor
microenvironment in pathologic non-responders versus
May 2022 | Volume 13 | Article 892250
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responders to neoadjuvant cabozantinib and nivolumab
treatment. Complete description of the trial and patient cohort,
including patient demographical and clinicopathological
descriptions can be found in our study (3). Briefly, this study
was conducted at the Johns Hopkins School of Medicine. All cases
(N = 15) were reviewed at the Johns Hopkins Sidney Kimmel
Comprehensive Cancer Center Liver Cancer Multidisciplinary
Clinic. Baseline demographic and disease characteristics are
shown in Table S1. An oral dose of 40 mg per day of
cabozantinib was administered to eligible patients for a total of 8
weeks. Patients received concurrent nivolumab at a dose of 240 mg
IV every two weeks, for a total of four treatment doses following a
two-week lead-in of cabozantinib monotherapy. Treatment-
related adverse events are shown in Table S2. Patients received
a restaging scan and surgical evaluation two weeks after their
completion of neoadjuvant therapy. Patients determined to be
eligible for surgical resection (evaluable N = 12) were subjected to
a definitive surgical resection that was scheduled at least 28 days
after the last dose of cabozantinib therapy, to reduce the likelihood
of bleeding from cabozantinib and were subjected to downstream
computational analysis. Figure legends contain information on
sample sizes, experimental replicates, and statistical tests used.

Data Acquisition With Imaging
Mass Cytometry
37 representative tumor region cores of the 12 post-treatment
FFPE surgical samples, each with a diameter of 0.6 mm, were
subjected to the construction of tissue microarray (TMA). For
one of the samples, 4 representative cores were selected, and
cores were selected in triplicate for each of the remaining samples
(n = 11). Controls cores (a normal tonsil and liver cores from a
de-identified reference tissue archive at the Johns Hopkins
Oncology Tissue Services) were also included in the TMA
construction but were excluded from the computational
analysis. The TMA was processed, covering dewax, antigen
retrieval, and DNA labeling, using the protocol described
elsewhere (3). Images were then acquired using a Hyperion
Imaging System (Fluidigm, South San Francisco, CA).

Image Processing and Analysis
The details of image segmentation were described elsewhere (3).
Briefly, for each core, images highlighting the nuclei channels (Ir191
and Ir193), and the plasma membranes based on the IMC Cell
Segmentation Kit (Fluidigm) were rendered and exported using
MCD™ Viewer (Fluidigm). Next, a pixel classification algorithm
(Ilastik) was applied to those images to generate the nuclei
probability maps and the plasma membrane images. The resulting
objects were converted to single-cell masks using CellProfiler
v.3.1.8.1 to identify primary and secondary objects. To reduce the
noise-to-signal ratio, all images for every channel were processed by
automated LUTenhancement using ImageJ (NIH). The single-cell
masks were then overlaid onto the cores that making it possible for
the computation of cell-level spatial parameters and marker
expression intensities of the cell markers. Finally, cell events were
gated using FlowJo™ (BD) using a biaxial plot for Histone H3 vs.
Ir191 intensities to eliminate artifacts related to antibody aggregates.
Frontiers in Immunology | www.frontiersin.org 3
The resulting single cells (n=59,453) were then clustered into
metaclusters using FlowSOM 5 (6), which were then annotated
into final cell phenotypes.

Spatial Heterogeneity
A spatial form of Shannon’s entropy measuring the mixing level
of a series of given set of cell types was computed for each core.
The metric is defined as:

ESP = −o
n

i=1

dinti

dexti
pilog2pi

where dinti denotes the average Euclidean distance between all
cells of type i; dexti represents the average Euclidean distance
between all cells of set i and cells of all other types; pi is the
percentage of type i within the core.

Cell-cell Euclidean distance was calculated using function
‘nn2’ from R package ‘flexclust’. Voronoi tessellations were
generated using function ‘voronoi_polygon ’ from R
package ‘ggvoronoi’.

Spatial Architecture
Visual inspection of Voronoi graphs (Figures S2, 3) revealed
three types of organizations: compartmentalized, immune hot,
and immune cold. Such findings were corroborated using a
marker-based cell-cell proximity metric (7). In brief, a cell is
considered positive for a marker if the transformed expression
intensity is larger than 0.5. For each given marker combination X
and Y available in the panel list, the number of Y+ cells within 20
mm of each X+ cell and their summation are computed as close
interactions (denoted as N). To test whether N is significant, we
fixed the locations of X+ cells and randomly permuted the
locations of Y+ cells 500 times while keeping its overall density
constant. The close neighbor counts were computed for each
time to give a null distribution and the deviation of N from the
null distribution was assessed using z-score, defined as:

z =
N − m
s

where m and s are the mean and standard deviation of the null
distribution. For each core, z-scores were stored in a pairwise
interaction matrix and clustered into different organizations
encompassing HCC/hepatocytes markers, immune markers, or
their mixtures. Organizations were then formally defined using
ESP. In this context, we focused on the general cell lineages and
only immune cells plus HCC/hepatocytes were considered when
computing the ESP. According to the equation ESP described
previously, the number of cell types can scale the entropy value,
therefore immune hot and immune cold cores tend to have lower
ESP due to relatively unified cell types. In this study, cores with a
ESP > 0.8 (N = 9) were defined as compartmentalized. The validity
of the cut-off threshold was confirmed by visual inspections of the
Voronoi tessellation results for each group (Supplementary
Figure S3). Of note, the selection of threshold is case-specific
and should be re-evaluated in other contexts. The rest of the cores
(N = 28) were defined as mixed (including immune hot and
immune cold).
May 2022 | Volume 13 | Article 892250

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mi et al. Spatial Profiling of HCC TiME
Identification of the HCC/Hepatocytes-
Immune Boundary
The borders between two compartments were identified using an
open-source image analysis software QuPath (8). For each
compartmentalized core, tiff-format images with CD45+ and
Pan-Keratin+ layers were exported, marking immune cells and
HCC/hepatocytes. In QuPath, an artificial neural network-based
pixel classifier was trained to discriminate immune and HCC/
hepatocytes compartments and compartment mask, whichever
touched less core boundary, was exported as a JSON file
containing a point set of border lines. The file was then
cleaned (removal of all core boundary points) to yield the final
border. The distance of a cell towards boundary was defined as its
distance to the nearest boundary point. Cells were then defined
as either close (< 40mm), or far (≥ 40mm) in HCC/hepatocytes
compartment or immune compartment.

Profiling of Cell Infiltrations
The profile was constructed for compartmentalized cores only. For
each core, two histograms of distances of cells to boundary (bin
width = 20mm), one for each compartment, were generated. The
histogram reflected the number of encompassed cells with respect
to each distance bin and the numbers were further broken down
(sub-histograms) based on cell types. To distinguish immune and
HCC/hepatocytes compartments, we mirrored the sub-histograms
for HCC/hepatocytes compartment to the left half axis. Each bar of
sub-histograms was then transformed to a single point marking
the cell counts and connected within its same group to form
consecutive profiles. Cell counts were normalized by the
corresponding boundary length to make profiles comparable
across cores.

CD8+ T Cell RiskScore
For each CD8+ T cell from cores with mixed architecture, we
computed the Euclidean distance to its nearest CD4+ T cell
(denoted as d1) and nearest hazard macrophages (d2). The score
was then defined as:

d1
d1 + d2

Identification of Cell Community (CC)
To identify CCs, Delaunay triangulations were computed such
that cells within 20mm were connected. CCs were defined as
closed networks containing at least 10 cells, with each node
representing the centroid of a cell (labeled by corresponding cell
types) and edges representing interactions between nodes. The
process was carried out for cores, and for each detected network,
the number of nodes of different labels was stored in the network
component matrix. The matrix was subjected to hierarchical
clustering to group communities with similar components.

Communication Analysis
Networks detected as previously described were transformed to
fixed-length feature vectors using an unsupervised graph
embedding framework graph2vec (9). In brief, rooted sub-
Frontiers in Immunology | www.frontiersin.org 4
graphs were generated by negatively sampling and relabeling
the nodes. Then, a skip-gram model was trained to optimize the
probability of predicting subgraphs that exist in the given
network and embedding was iteratively learned over several
epochs. Considering the low scale of each network, the
embedding size was chosen as 16. For each core, Spearman’s
rank correlation test was performed for each pair of graph
embedded vectors. Since each network also belongs to a CC,
correlation test between two networks was regarded as one trial
test between two CCs. For each pair of CCs, the fraction of
significant trials (Wilcoxon rank-sum test p < 0.05) was
computed as the communication strength between the
corresponding CCs. This procedure was conducted for
responders and non-responders separately. For each case, a
communication network was mapped with each node
representing one CC type and darkness of edges representing
the communication strengths between connected ends (blank
indicates no communication and dark indicates strong
communication). CC types that solely belong to one patient
were excluded from the analysis.

Statistical Analysis
Two-sided Wilcoxon rank-sum test was performed for pairwise
comparisons. FDR-adjusted p < 0.05 was considered significant.
As previously described (10), exclusion test on RiskScore was
implemented by excluding data from each core/patient
iteratively. For each iteration, RiskScore between responders
and non-responders was modeled using a linear-mixed effects
model that treating each core/patient identifier as a random
effect. The p-values were computed using Satterthwaite’s degrees
of freedom method. The method was implemented using ‘lmer’
function from R package ‘lme4’ (11). Heatmaps with hierarchical
clustering (Metric: One minus Pearson correlation; Linkage
method: Average) were generated using Morpheus software
(https://software.broadinstitute.org/morpheus).
RESULTS

Patient Characteristics
From April 2018 until September 2019, we enrolled 15 patients
through the Liver Cancer Multidisciplinary Clinic at the Johns
Hopkins Sidney Kimmel Comprehensive Cancer Center in
Baltimore, MD. The study is fully described in our previous
work (3). Of these patients, 12 patients underwent successful
margin-negative surgical resections of their tumors. Of the 12
patients, 4 patients had major pathologic responses (at least 90%
tumor necrosis) and 1 patient had a complete pathologic
response. In the following context, these 5 patients are referred
to as responders (R) and the remaining 7 patients are referred to
as non-responders (NR).

Image Mass Cytometry Enables Cellular
Level Profiling of Tumor Microenvironment
Using the 12 surgically resected tumor samples, we constructed a
tissue microarray in triplicate from 11 samples and in
May 2022 | Volume 13 | Article 892250
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quadruplicate from 1 sample, yielding 37 representative tumor
region cores. Using the tissue microarray, we performed image
mass cytometry (IMC) with a panel of 27-markers (Figure 1). The
resulting multiplexed images were segmented into a dataset of
single-cell descriptions using a previously established image
processing pipeline. In total, segmentations discriminated 59,453
cells from 37 cores. FlowSOM algorithm further clustered these
cells into 18 annotated phenotypes, including 1 stroma/architecture
phenotype; 1 B cell phenotype; 1 CD4+ T cell phenotype; 1 CD8+ T
cell phenotype; 1 double-positive cell phenotype; 1 regulatory T cell
phenotype; 1 neutrophil (PD-L1+) cell phenotype; 5 myeloid/
macrophage phenotypes; 5 HCC/hepatocyte phenotypes
(Figures 2A, B); and 1 unannotatable/non-cell cluster (UA
noncell). In the following context, UA noncell cluster was
removed from calculations and further analyses and resulting in
58,740 evaluable cells in total. Their first-order distribution
measurements (densities) were summarized in Table S3. The
markers used to annotate cell clusters are listed in Figure 2C.
Technical details and clustering results from FlowSOM algorithm
were described in our previous study (3, 6).

To explore the overall spatial distribution pattern associated
with specific cell phenotypes, we performed Voronoi tessellation
for each core such that individual cells were allocated to polygons
based on proximity to surrounding cells. Visual inspection of
tessellated results from responders shows tight packing with
immune cells whereas tumor cells are predominantly present
in cores from non-responders (Figure 3A and Supplementary
Figures S2, S3). Similar patterns are confirmed by t-SNE plots
based on the normalized expression matrix with respect to all
cores, and cores from responders and non-responders
(Figure 3B). Quantifications reporting the percentage of each
cell type further corroborated such tendency (Figure 3C). In
general, the number of tumor cells (~58.1%) is comparable to
that of immune cells (~40%). However, cores from responders
are dense with immune cells (~64.5%) and cores from non-
responders are dense with tumor cells (~76.2%). We then
computed the relative change in each cell phenotype of non-
responders compared to responders: neutrophils, CD163+PD-
L1-HLAhi macrophages, CD163- macrophages, stromal cells,
plus all lymphocytes and all macrophages (except CD163+PD-
L1-HLADRlo subtype) were prevalent in R, whereas all tumor
cells and CD163+PD-L1-HLADRlo macrophages were prevalent
in NR (Figure 3D). Such observations are consistent with
previous finding that an immuno-activated microenvironment
may favor response to immune checkpoint therapy (12). In-
depth profiling of cell compositions based on hierarchical
clustering revealed that none of NR-associated cores were
dense with lymphocytes, whereas R-associated cores could
have high portion of tumor cells. Within each response group,
there were clear patient-specific differences; in addition, even
though cores from the same patient tended to be similar, there
were observable differences (Figure 3E). These data highlight the
intra- and inter-tumoral heterogeneity across the studied cohort,
which may account for some of the variability in patient response
to immunotherapy (13). To directly compare the region-specific
spatial heterogeneity, a spatially adjusted Shannon’s entropy
Frontiers in Immunology | www.frontiersin.org 5
(Esp) was computed for each core. In brief, the metric takes the
Euclidean distance between spatial objects into consideration
(14); an increase in distances between cells of the same
phenotype and a decrease in distances between cells of
different types will collectively lead to the increase of Esp (see
Methods). The computation was conducted 8 times, each with a
different combination of cell phenotypes (Figure 3F). Results
showed that the entropy levels when all cell types were
considered were not distinguishable between R and NR,
however, R-cores were found to be more heterogeneous in
terms of immune cells (FDR-adjusted p < 0.01), lymphocytes
alone (FDR-adjusted p < 0.05), and macrophages alone (FDR-
adjusted p < 0.05); and NR-cores were found to be more
heterogeneous in terms of tumor cells (FDR-adjusted p < 0.01).
Such findings suggested that tumor-infiltrating immune cells of
different types co-exist in the R-cores, whereas NR-cores were
less infiltrated by immune cells.

Intercellular Protein Interactions
Characterize Spatial Architectures in
HCC Tumor Microenvironment
To further assess the spatial heterogeneity hierarchy at the
cellular level, we employed a previously described method (see
Methods) to quantify the spatial interactions for pairs of markers
that contribute to the differential tissue structures across cores
with varying cell components and abundance (7). In brief, for a
given pair of proteins (X and Y), we first computed the number
of Y-positive cells (Y+) within 20mm of X+ cells and defined as
neighbor counts. Next, we repeatedly permuted the locations of
Y+ cells to formulate a null distribution of neighbor counts and a
z-score was calculated to reflect the overall spatial proximity
between the given proteins (Figure 4A and Supplementary
Figure S4). In general, high z-scores indicate spatial clustering
and conversely low z-scores indicate spatial dispersion. We
applied the metric across all cores and clustered the resulting
z-scores. Collectively, we observed two prototypical tissue
architectures: (i) colocalization of tumor and immune cells,
demonstrated by heatmaps with overall high z-scores for most
of the immune and tumor-associated markers; and (ii)
compartmentalization, demonstrated by heatmaps with high z-
scores within, and low z-scores across tumor- and immune-
exclusive markers (Figure 4B). To formally discriminate
compartmentalized cores, we ranked the Esp and the cores from
the third quartile were defined as compartmentalized cores.
Remaining cores were then defined as mixed cores and further
classified to immune hot (immune cell counts ≥ 200) and immune
cold (Figures 4C, D). This criterion coincided with our observations
that mixed cores were generally dominated by either immune cells
or HCC/hepatocytes, therefore more uniform in terms of cell
phenotypes; whereas compartmentalized cores entailed
comparable amounts of both cell types, therefore conferred an
abundant heterotypic cell-cell interactions. This process resulted in
8 compartmentalized cores (2 from R and 6 from NR), 24 immune
hot cores (10 from R and 14 from NR), and 5 immune cold cores (3
from R and 2 fromNR). For compartmentalized cores, we then used
a supervised artificial neural network algorithm (see Methods) to
May 2022 | Volume 13 | Article 892250
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generate tumor and immune masks, and thus the borderlines
separating the compartments (Figure 4E). To gauge the biological
differences between compartments, we first constructed cellular
infiltration profiles for compartmentalized core by computing the
distances toward HCC/hepatocytes-immune borders for all cells
and split to each specific cell type (Figure 4F and Supplementary
Figure S5). Next, we correlated normalized cell counts for each
immune cell phenotype to the HCC/hepatocytes. Results revealed
significant correlations between cell types: for instance, in core 22
(responders), strong positive spatial correlations between CD4+ T
cells (FDR-adjusted p = 2.9845e-7), CD8+ T cells (FDR-adjusted p =
1.0015e-8) and HCC/hepatocytes infiltrations, which may confer an
activated antitumor immunity (Figure 4G and Table S4). However,
correlations were inconsistent within response groups, therefore
hampers the establishment of biomarkers at cell distribution level.
Frontiers in Immunology | www.frontiersin.org 6
Spatial Quantifications of Multi-Cellular
Protein Expressions Reveal Ties to
Therapeutic Response
To derive deeper biological insights from the different spatial
architectures, we first gauged the expression patterns of two key
markers: programmed death-ligand 1 (PD-L1), an immune-
regulatory checkpoint molecule, and Granzyme B (GranB), an
antitumor effector molecule, in compartmentalized cores
(Figure 5A and Supplementary Figure S6). We defined
regions less than 40mm from the HCC/hepatocytes (T) -
immune (I) border as “close” and otherwise as “far” and
further categorized them into close-I, far-I, close-T, and far-T
regions based on their associated compartment. We then
collected normalized expression values of aforementioned
markers and compared them among the four regions
FIGURE 1 | Representative images from IMC. A panel of 27 markers was used to stain the hepatocellular carcinoma tumor region cores and processed using IMC.
The marker names and descriptions are included.
May 2022 | Volume 13 | Article 892250
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(Figure 5B). Based on known biology, GranB was evaluated on
CD8+ T cells and PD-L1 was evaluated on HCC/hepatocytes
(Figure 5C). Striking differences between responders and non-
responders were detected for GranB expressions in CD8+ T cells
only in close-I (FDR-adjusted p = 0.00123) and in PD-L1
expressions in HCC/hepatocytes in close-I and far-I regions
(FDR-adjusted p < 10-4), but not for other regions. These
results showed that the spatial relationships between CD8+ T
cells and HCC/hepatocytes with respect to the HCC/
Frontiers in Immunology | www.frontiersin.org 7
hepatocytes-immune border are associated distinctly with
response. We then evaluated the marker expression patterns in
cores with mixed architectures and immune cell counts greater
than 200. We compared the expression levels of all evaluable
functional markers (Arginase-1 [Arg1], CCR6, CD28, GranB,
HLA-DR, Ki67, LAG-3, PD-L1) on various cell types.
Interestingly, we observed that the expression of Arg1 and
CCR6 was drastically upregulated on CD163- macrophages in
non-responders (Figure 5D). Based on this observation, we were
A

B

C

FIGURE 2 | Image processing pipeline and cell phenotyping. (A) Among 27-marker panel stained in this study, 14 markers were selected and visualized separately
as 7-channel multiplexed images capturing different subsets of cells. (B) Image processing pipeline was initiated by image segmentation based on nucleus and
plasma membrane markers. Segmentation allows extraction of marker intensities for each cell, which enables clustering of marker combinations. Clusters were then
annotated into final cell phenotypes (unannotatable/non-cell cluster is not included). Markers used to further subtype the clusters are described in (C). Note that the
final annotations are composed of both lineage and additional phenotyping markers.
May 2022 | Volume 13 | Article 892250
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able to further define two CD163- macrophage subtypes based on
the co-expression pattern of Arg1 and CCR6: non-hazard
macrophage (both signals were relatively low) and hazard
macrophage (at least one s ignal was upregulated)
(Supplementary Figure S7A). Not surprisingly, hazard
macrophages were found to be predominantly associated with
non-responders (Figure 5E). Pairwise correlations displayed a
high linearity between the two markers in general (Figure 5F).
Interestingly, we found that the mean distances of hazard
macrophages to CD8+ T cells, double positive (CD4+CD8+) T
cells, regulatory T cells (Tregs), and neutrophils all decreased
(Figure 5G) and visual inspections of Voronoi tessellations also
confirmed such finding (Figure 5H and Supplementary
Figure S7B). These were all major cell types expressing CCR6.
Therefore, the upregulation of CCR6 can be achieved through
Frontiers in Immunology | www.frontiersin.org 8
engagement of CCR6-macrophage inflammatory protein 3a
(MIP-3a) signaling axis adjacent to hazard macrophages.
Considering the immunosuppressive role of Arg1+ has been
well established (15, 16), we selected a subset of hazard
macrophages (Arg1hi) to further explore their biological
significance. Over the years, the geographical proximity
between immune components has been increasingly explored
(17–19). In this study, we proposed CD8+ T cell RiskScore – a
modified version of SpatialScore (20), to represent the relative
distance of CD8+ T cell to CD4+ T cell and hazard macrophage.
Of note, SpatialScore evaluates the behavior of CD4+ T cells,
rather than CD8+ T cells. Hence, modifications are made to the
marginal cell types to recapitulate the proxy of the balance
between effector T cell activity and suppression, as described
by SpatialScore. Scores were computed on a scale of 0 to 1, with
A

B D

E

F

C

FIGURE 3 | Cell populational characteristics and heterogeneity. (A) Voronoi tessellation results for exemplar responder and non-responder cores. Each partitioned
polygon was color-coded by corresponding cell type. Cell distributions evaluated using (B) t-SNE visualization (n = 58,740), (C) pie-chart, (D) waterfall, and (E)
heatmap and hierarchical clustering. (F) Spatial Shannon’s entropy computed for different sets of cell types. Significant differences were observed for immune cell
subset, tumor cell subset, lymphocytes subset, and myeloid cell subsets between responder samples (n = 15) and non-responder samples (n = 22). P values were
computed using Wilcox rank-sum test and adjusted using FDR. *p value < 0.05; **p value < 0.01. ns, not significant.
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lower values representing the CD8+ T cells that are located in the
vicinity of CD4+ T cells and higher values representing the CD8+
T cells are located in the vicinity of hazard macrophages (see
Methods). CD8+ T cells in the vicinity of CD4+ T cells are more
likely to be further helped in their antitumor roles, whereas those
near hazard macrophages may be suppressed (Figure 5I). Upon
computing the scores for each CD8+ T cell from cores withmixed
Frontiers in Immunology | www.frontiersin.org 9
architectures (evaluable n = 20 as 4 cores were removed for lack
of either cell type), we observed that the computed RiskScore in
non-responders was significantly elevated (Wilcoxon rank-sum
test p = 7.65e-65), suggesting that the macrophage-mediated
inhibition of CD8+ T cell may contribute to the lack of
response (Figure 5J and Supplementary Figure S7C). Given the
modest sample size, we further tested whether such significance was
A B

D

E F G

C

FIGURE 4 | Spatial architecture characterization and cellular infiltration profiling. (A) Multicellular protein-protein interaction methodology diagram. (B) Positive z-
score indicates spatial clustering (red); negative z-score indicates spatial separation (blue); ~0 z-score indicates no spatial correlations (white). (C) Corresponding
cores from the first quartile of Shannon’s entropy were defined as compartmentalized cores. Remaining cores with immune cell count > 200 were defined as immune
hot, otherwise as immune cold. (D) Image snippets for different tissue structure types. (E). Point patterns describing the relative distances to HCC/hepatocytes-
immune boundaries for core 22 (upper) and core 8 (lower). Cells are color-coded by their distances to HCC/hepatocytes-immune border. (F). Infiltration profiles of
each cell type from cores highlighted in (E). (G) Exemplar correlations between normalized cell counts of different cell types. Correlations were performed using
Pearson’s method with FDR-adjustment for p-values.
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FIGURE 5 | Multicellular protein expressions at HCC/hepatocytes-immune border reveal associations to immune-therapy outcomes. (A) Color overlays of lineage
proteins covering Pan-Keratin and CD45 (red and blue) and functional markers covering PD-L1 and Granzyme B (white) in whole tissue core and subregions.
(B, C) Protein expression analytical strategy. For compartmentalized cores (n = 2 from R and n = 6 from NR), functional marker expressions on target cells were
examined adjacent and remote to HCC/hepatocytes-immune border and truncated to treatment response criteria for comparisons. (D) Volcano plot showing the
comparison results of marker intensities on various cell types in mixed cores (n = 10 from R and n = 8 from NR, same for the rest legends). Red dots: FDR-adjusted
P values < 0.01. Text colors indicate whether the mean marker expression was higher in non-responders (red) or responders (blue). (E) Hazard macrophage was
defined such that at least one protein of CCR6 and Arg1 was upregulated on CD163- macrophages. (F) Correlation plots showing the co-expression pattern of
CCR6 and Arg1 on CD163-negative macrophages. (G) Quantifications of shortest distances between two macrophage subtypes and other cell types. (H) Voronoi
tessellation map highlighted for hazard-, non-hazard macrophages and B cells. (I) Diagram of CD8+ T cell RiskScore. Denote each CD8+ T cell to its nearest hazard
macrophages as d1 and to its nearest CD4+ T cell as d2, thus the RiskScore is formally computed by taking the proportion of d2 to the combined distance of d1
and d2. (J) RiskScore on per-cell basis for responders (evaluable n = 8) and non-responders (evaluable n = 12). (K) Normalized Granzyme B expressions on per-
CD8+ T cell basis for low-, medium-, and high-RiskScore groups. P values were computed by two-tailed Wilcoxon’s rank-sum test with adjustment for multiple
comparisons (FDR). *p value < 0.05, **p value < 0.01, ****p value < 0.0001. ns, not significant.
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biased that originated from a single core/patient. Thus, we further
performed exclusion analysis on the RiskScore data. At core-level,
we iteratively excluded one of the 20 cores. At patient-level, we
iteratively excluded cores from the same patient (evaluable N = 10).
For each iteration, RiskScore between responders and non-
responders were modeled using a linear-mixed effects model that
treating each core/patient identifiers as a random effect and p-values
were computed using Satterthwaite’s degrees of freedom and
visualized as dot plots (Methods). Results showed that the
statistical significances were retained over all iterations under both
conditions, therefore confirming the robustness of RiskScore
(Figures S7D, E).

To further ascertain the functional state of CD8+ T cells
among the different risk scores, we attributed CD8+ T cells to
three groups: (i) low-risk, with scores lower than 0.3; (ii)
medium-risk, with scores between 0.3 and 0.7; (iii) high-risk,
with scores greater than 0.7. The thresholds were selected to split
the whole interval into approximate thirds (Supplementary
Figure S7E). We then compared the expressions of GranB
among the risk groups, finding that the GranB expressions
were significantly higher in low-risk group (FDR-adjusted p =
0.004) and lower in high-risk group (FDR-adjusted Wilcoxon
rank-sum test p = 0.003), compared to the medium group
(Figure 5K and Supplementary Figure S7F) . This
demonstrated that greater proximity to CD4+ T cells associates
with higher GranB on adjacent CD8+ T cells (low RiskScores),
whereas greater proximity to the hazard macrophages associates
with lower expression of GranB. These findings suggest that the
lower expression of cytotoxic molecules (e.g., GranB), in the
context of the close proximity to hazard macrophage and greater
distance from CD4+ T cells, translates into resistance to anti-PD1
immunotherapeutic regimen.
Network Analysis of Cellular Community
Reveals Communication Landscape in
HCC Tumor Microenvironment
Finally, since we anticipate the spatial analysis of single-cell
interactions to inform population behavior shifts in the tumor
microenvironment, we further extracted a series of cellular
communities (CCs) - collections of ‘neighboring’ cells - and then
grouped into 2 general meta-clusters using hierarchical clustering:
non-HCC/hepatocytes versus HCC/hepatocytes (Figure 6A and
Supplementary Figure S8A). While the clustering was performed
based on the quantities of cell components, a reasonable separation
of responsiveness was also noted. Meta-clusters were further
discriminated into 8 types: (A) neutrophils-enriched; (B)
macrophages/lymphocytes interface; (C) stroma-enriched; (D)
macrophages-enriched; € lymphocytes-enriched; (F) collapsing
HCC/hepatocytes (apoptotic HCC/hepatocytes)-enriched; (G)
bulk HCC/hepatocytes-enriched; and (H) aggressive HCC/
hepatocytes-enriched (Figure 6B and Supplementary Figure
S8B, C) based on majority cell types. Of note, CC type H was
seen only in cores from patient 12 and thus excluded from further
analysis to avoid bias. Non-HCC/hepatocytes CCs predominantly
existed in responders, conversely HCC/hepatocytes CCs were more
abundant in non-responders (Figure 6B and Supplementary
Frontiers in Immunology | www.frontiersin.org 11
Figure S8D). To analyze their spatial communications, we
converted each CC network to vector. The communications
between CCs were then assessed using correlation test on paired
CC vectors of the corresponding types (Figure 7A, seeMethods for
details). In brief, every CC (2-D object) was embedded into a vector
(1-D object). For each pair of CCs residing within the same core,
we computed the p-value using correlation test between the
respective vectors. We then sorted the test results into sets based
on the CC types and the communication level was quantified as the
proportion of significant p-values in the corresponding set and
summarized as correlation matrix, which was then converted into
communication map. The formulated maps described the signaling
landscape in responders and non-responders, with nodes
associated with CC types and darkness of links associated with
the communication strengths (Figure 7B). Special attention was
given to the pattern that bulk HCC/hepatocytes-enriched CCs
(node G) were strongly communicating with lymphocytes-
enriched CCs (node E) and macrophages-enriched CCs (node D)
in responders; however, such pattern was replaced by the
communication between node E and node D in non-responders.
This observation supports the previous findings at network level
that hazard macrophages may impair the cytotoxicity of CD8+ T
cells and promote the lack of response.

Taken together, our results have demonstrated distinct
communications landscapes in the tumor microenvironment in
responders versus non-responders (Figure 7C). In summary,
based on our multi-scale analysis, (i) the synergistic anti-tumor
immunity of macrophages and lymphocytes favors cabozantinib
and nivolumab, (ii) immune function regulators (i.e., GranB and
PD-L1) were upregulated throughout the immune compartment
in non-responders, (iii) Arg1/CCR6-expressing macrophages
(hazard macrophages) is also a prominent feature in non-
responders, (iv) close proximity to Arg1hi hazard macrophages
and distance away from CD4+ T cells associate with poorer
effector function of CD8+ T cells.
DISCUSSION

We used a highly integrative, multi-scale analytic framework to
discover features of response to modern systemic therapy in HCC.
Using imaging mass cytometry on 37 tumor cores representing
different regions with a panel of 27 biomarkers, we extracted a
single-cell database of 59,453 cells highlighting 4 cell lineages,
marking stroma, lymphoid cells, myeloid cells, and HCC/
hepatocytes, with different functional states, and marking
expressions of PD-L1, Arginase-1 (Arg1), CCR6, Ki67, and
CD163. As reported previously (3), demographic analysis on cell
frequencies revealed that lymphocytes were more abundant in
responder cores, and not surprisingly, HCC/hepatocytes were
more likely to be seen in non-responder cores. Intra-tumoral
heterogeneity (ITH) is a hallmark of therapy resistance, and a
major source of ITH is phenotypic heterogeneity. Existence of
immune and HCC/hepatocytes with diverse spatial gradients
might constitute microenvironmental cues that trigger poor
clinical outcomes (13, 21). To quantitatively assess phenotypic
ITH, we computed spatial Shannon’s entropy on total cell
May 2022 | Volume 13 | Article 892250
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populations and subsets, which reflects the integration of inputs
from cell type diversity, counts diversity, and their spatial
orientations. We showed that responder cores have higher
entropy scores in immune subpopulations. This observation is
therefore consistent with the observation that highly immune-
inflamed TME (hot tumors) is associated with enhanced immune
checkpoint blockade response (22). Using entropy score, we then
categorized tumor region cores into two architectural models:
compartmentalized, in which we observe clear separation of
immune and HCC/hepatocytes; and mixed, in which mixtures
were otherwise noticed. For compartmentalized architecture, we
Frontiers in Immunology | www.frontiersin.org 12
observed downregulated GranB expressions at HCC/hepatocytes-
immune border in non-responders; and upregulated PD-L1
expressions throughout the immune compartment. Such
associations are supported by previous studies that GranBlo

CD8+ T cells associated with reduced cytotoxicity and PD-L1hi

HCC/hepatocytes are highly prevalent in aggressive tumors – both
may impair the control in tumor progression (23, 24). For mixed
architecture, we identified a strong co-expression signal of Arg1
and CCR6 on CD163- macrophages. The presence of CCR6 on
CD163- macrophages and its role in immune regulation remain
unclear. Previous studies suggested that the co-localization of
A B

FIGURE 6 | Cellular community analysis identifies cell communities within HCC tumor microenvironment. Hierarchical clustered (A) heatmap and (B) stacked bar
plot of scaled and absolute cell-type counts in each cell community. Colored columns indicate the originated core (n = 37), response criteria, assigned community
and meta-community type.
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MIP-3a and CCR6 could promote cancer cell invasion (25). Based
on our current analysis, we hypothesize that the elevated
expression of CCR6 on these macrophages may be linked to the
functioning of CCR6/MIP-3a signaling axis in line with the
observed association between CCR6hi hazard macrophages and
Frontiers in Immunology | www.frontiersin.org 13
the lack of response to therapy. The immunosuppressive role of
Arg1hi myeloid cells has been extensively reviewed previously (15,
26–30). Furthermore, we introduced CD8+ T cell RiskScore, a
quantitative measurement to evaluate the dysfunction risk of
CD8+ T cell in HCC. We found that CD8+ T cells with high
A

B

C

FIGURE 7 | Network analysis of communication landscape modeling of the tumor microenvironment in responders versus non-responders. (A) Cellular
communities (CCs) from all cores (n = 37) identified as previously described were converted to graph-embedded vectors. Correlation tests were then
performed to assess the association between each given pair of vectors. (B) Correlation test results give rise to two distinct communication maps in tumor
microenvironment associated with responders and non-responders. (C) Results from network analysis, together with compartment and mixing analysis,
were summarized into communication landscape models that link to the therapy response.
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RiskScore were predominantly present in non-responders and
found to have significantly lower GranB expression when
compared to CD8+ T cells with medium or low RiskScore. These
results highlighted the significance of distance relationships
among immune cells in assessing immuno-therapy responses.
Finally, we deconstructed all the spatial features into distinct
cellular communication networks found in responder and non-
responder TMEs. This approach illustrated that there are specific
networks of cells within the TME that are highly coordinated and
associated with response to immunotherapy. Again, in responders,
cellular communities of macrophages and lymphocytes jointly
characterized the tumor microenvironment of responders,
whereas macrophage-mediated immunosuppress ive
communication networks were noted in non-responders. Our
analytic approach in this study independently recapitulates the
relationship between immunosuppressive myeloid cells and
antitumor T cells that we have previously observed within the
same dataset and again emphasizes the importance of working to
target such immunosuppressive biology to advance the treatment
strategies against HCC. In addition, the single-cell properties
derived from the framework can be utilized to facilitate
development and calibration of computational immuno-
oncology models at spatial resolutions (31–33). Such three-
dimensional models bridged the translation between 2D
pathology biopsies and their 3D reconstruction that enabling a
more precise mechanistic systems biology modeling of response
to immunotherapy.

There are important limitations in our study. First, we utilized
a relatively small cohort and future validation on a larger cohort is
required. It is worth noting that in region-specific analyses, we
were able to treat each core as a separate data point. Analyzing
core-level data enables the analysis of intra-tumoral heterogeneity
from a given patient, thus entailing a generalizable framework that
is less sensitive to issues related to sampling bias at the level of
individual patients. Second, an inherent analytical limitation
originates from the set of markers available in the dataset. For
example, the lack of programmed cell death protein 1 (PD-1)
expression data in our dataset precluded our ability to evaluate the
spatial characteristics of the PD-1/PD-L1 signaling axis. Besides,
previous studies also revealed the activation of transcriptional
factors such as STAT, NF-kB, and HIF-1a are hallmarks of HCC
progression and metastasis, therefore including transcriptional
factors in the IMC staining panel is warranted (34–36). In
addition, when interpreting T cell interactions, including the
evaluation of RiskScore results, we were not able to fully
elucidate the underlying functional relationships due to the lack
of other markers to clearly characterize functional and/or
exhaustion states. Hence comprehensive profiling of cell
functional states demands the ongoing effort to expand and
validate the panel of antibodies used for staining. This study
represents a multi-scale characterization of spatial heterogeneity
in molecular states, yet their crosstalk at genetic level is still not
fully understood. Advanced omics technology such as single-cell
RNA sequencing enables a deeper insight into genetic
heterogeneity, therefore facilitate a comprehensive mapping of
cellular biology when integrated with molecular profiling.662
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Finally, there is a considerable interest in the use of image
analysis to distill subtle features from pathology samples to
predict clinical endpoints (37–41). In this study, tissue
specimens were collected from surgical resections after the
therapy. This prevented us from searching predictive signals.
CONCLUSION

We employed an unbiased, quantitative spatial analysis to
determine how tumor and immune components interact in
responding and nonresponding HCC tumors. The proposed
framework represents a novel application of multiplexed
imaging in translational medicine and has potential for
initialization and validation of computational immuno-
oncology models (42–45).
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