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Abstract

Background: The fate of hydrogen peroxide (H,O,) in the endoplasmic reticulum (ER) has been inferred indirectly
from the activity of ER-localized thiol oxidases and peroxiredoxins, in vitro, and the consequences of their genetic
manipulation, in vivo. Over the years hints have suggested that glutathione, puzzlingly abundant in the ER lumen,
might have a role in reducing the heavy burden of H,O, produced by the luminal enzymatic machinery for
disulfide bond formation. However, limitations in existing organelle-targeted H,O, probes have rendered them inert
in the thiol-oxidizing ER, precluding experimental follow-up of glutathione’s role in ER H,O, metabolism.

Results: Here we report on the development of TriPer, a vital optical probe sensitive to changes in the
concentration of H,O, in the thiol-oxidizing environment of the ER. Consistent with the hypothesized contribution
of oxidative protein folding to H,O, production, ER-localized TriPer detected an increase in the luminal H,O, signal
upon induction of pro-insulin (a disulfide-bonded protein of pancreatic 3-cells), which was attenuated by the
ectopic expression of catalase in the ER lumen. Interfering with glutathione production in the cytosol by buthionine
sulfoximine (BSO) or enhancing its localized destruction by expression of the glutathione-degrading enzyme ChaCl
in the lumen of the ER further enhanced the luminal H,O, signal and eroded B-cell viability.

Conclusions: A tri-cysteine system with a single peroxidatic thiol enables H,O, detection in oxidizing milieux such
as that of the ER. Tracking ER H,0, in live pancreatic 3-cells points to a role for glutathione in H,O, turnover.
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Background

The thiol redox environment of cells is compartmental-
ized, with disulfide bond formation confined to the lumen
of the endoplasmic reticulum (ER) and mitochondrial
inter-membrane space in eukaryotes and the periplasmic
space in bacteria and largely excluded from the reducing
cytosol [1]. Together, the tripeptide glutathione and its
proteinaceous counterpart, thioredoxin, contribute to a
chemical environment that maintains most cytosolic thiols
in their reduced state. The enzymatic machinery for
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glutathione synthesis, turnover, and reduction is localized
to the cytosol, as is the thioredoxin/thioredoxin reductase
couple [2]. However, unlike the thioredoxin/thioredoxin
reductase system that is largely isolated from the ER, sev-
eral lines of evidence suggest equilibration of glutathione
pools between the cytosol and ER.

Isolated microsomes contain millimolar concentrations
of glutathione [3], an estimate buttressed by kinetic mea-
surements [4]. Yeast genetics reveals that the kinetic
defect in ER disulfide bond formation wrought by lack of
an important luminal thiol oxidase, ERO1, can be amelio-
rated by attenuated glutathione synthesis in the cytosol
[5], whereas deregulated import of glutathione across the
plasma membrane into the cytosol compromises oxidative
protein folding in the yeast ER [6]. Import of reduced

© Avezov et al. 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12915-017-0367-5&domain=pdf
http://orcid.org/0000-0002-2894-0585
mailto:dr360@medschl.cam.ac.uk
mailto:ea347@cam.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Melo et al. BMC Biology (2017) 15:24

glutathione into the isolated rat liver microsomal fraction
has been observed [7], and in a functional counterpart to
these experiments, excessive reduced glutathione on the
cytosolic side of the plant cell ER membrane compromised
disulfide formation [8]. In mammalian cells, experimental
mislocalization of the reduced glutathione-degrading enzyme
ChaCl to the ER depleted total cellular pools of glutathione
[9], arguing for transport of glutathione from its site of
synthesis in the cytosol to the ER. Despite firm evidence for
the existence of a pool of reduced glutathione in the ER, its
functional role has remained obscure, as depleting ER gluta-
thione in cultured fibroblasts affected neither disulfide bond
formation nor their reductive reshuffling [9].

The ER is an important source of hydrogen peroxide pro-
duction. This is partially explained by the activity of ERO1,
which shuttles electrons from reduced thiols to molecular
oxygen, converting the latter to hydrogen peroxide [10]. Al-
ternative ERO1-independent mechanisms for luminal
hydrogen peroxide production also exist [11], yet the fate of
this locally generated hydrogen peroxide is not entirely
clear. Some is utilized for disulfide bond formation, a
process that relies on the ER-localized peroxiredoxin 4
(PRDX4) [12, 13] and possibly other enzymes that function
as peroxiredoxins [14, 15]. However, under conditions of
hydrogen peroxide hyperproduction (experimentally
induced by a deregulated mutation in ERO1), the peroxire-
doxins that exploit the pool of reduced protein thiols in the
ER lumen as electron donors are unable to cope with the
excess of hydrogen peroxide, and cells expressing the
hyperactive ERO1 are rendered hypersensitive to concomi-
tant depletion of reduced glutathione [16]. Besides, ERO1
overexpression leads to an increase in cell glutathione
content [17]. These findings suggest a role for reduced
glutathione in buffering excessive ER hydrogen peroxide
production. Unfortunately, limitations in methods for
measuring changes in the content of ER luminal hydrogen
peroxide have frustrated efforts to pursue this hypothesis.

Here we describe the development of an optical
method to track changes in hydrogen peroxide levels in
the ER lumen. Its application to the study of cells in
which the levels of hydrogen peroxide and glutathione
were selectively manipulated in the ER and cytosol
revealed an important role for glutathione in buffering
the consequences of excessive ER hydrogen peroxide
production. This process appears especially important to
insulin-producing p-cells that are encumbered by a
heavy burden of ER hydrogen peroxide production and a
deficiency of the peroxide-degrading calatase.

Results

Glutathione depletion exposes the hypersensitivity of
pancreatic B-cells to hydrogen peroxide
Insulin-producing pancreatic B-cells are relatively defi-
cient in the hydrogen peroxide-degrading enzymes
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catalase and GPx1 [18, 19] and are thus deemed a sensi-
tized experimental system to pursue the hypothesized
role of glutathione in ER hydrogen peroxide metabolism.
Compared with fibroblasts, insulin-producing RINm5F
cells (a model for pancreatic p-cells) were noted to be
hypersensitive to inhibition of glutathione biosynthesis
by buthionine sulfoximine (BSO, Fig. 1a and Additional
file 1: Figure S1). Cytosolic catalase expression reversed
this hypersensitivity to BSO (Fig. 1b, c).

Induction of pro-insulin biosynthesis via a tetracycline
inducible promoter (Fig. 1d), which burdens the ER with
disulfide bond formation and promotes the associated
production of hydrogen peroxide, contributed to the in-
jurious effects of BSO. But these were partially reversed
by the presence of ER-localized catalase (Fig. le). The
protective effect of ER-localized catalase is likely to
reflect the enzymatic degradation of locally produced
hydrogen peroxide, as hydrogen peroxide is slow to
equilibrate between the cytosol and ER [11]. Together
these findings hint at a role for glutathione in buffering
the consequences of excessive production of hydrogen
peroxide in the ER of pancreatic -cells.

A probe adapted to detect H,0, in thiol-oxidizing
environments

To further explore the role of glutathione in the metab-
olism of ER hydrogen peroxide, we sought to measure
the effects of manipulating glutathione availability on
the changing levels of ER hydrogen peroxide. Exempli-
fied by HyPer [20], genetically encoded optical probes
responsive to changing levels of hydrogen peroxide have
been developed and, via targeted localization, applied to the
cytosol, peroxisome, and mitochondrial matrix [20-23].
Unfortunately, in the thiol-oxidizing environment of the
ER, the optically sensitive disulfide in HyPer (that reports
on the balance between hydrogen peroxide and contraven-
ing cellular reductive processes) instead forms via oxidized
members of the protein disulfide isomerase family (PDIs),
depleting the pool of reduced HyPer that can sense hydro-
gen peroxide [11, 24].

To circumvent this limitation, we sought to develop a
probe that would retain responsiveness to hydrogen per-
oxide in the presence of a high concentration of oxidized
PDI. HyPer consists of a circularly permuted yellow
fluorescent protein (YFP) grafted with the hydrogen
peroxide-sensing portion of the bacterial transcription
factor OxyR [20, 25]. It possesses two reactive cysteines:
a peroxidatic cysteine (OxyR C199) that reacts with
H,0, to form a sulfenic acid and a resolving cysteine
(OxyR C208) that attacks the sulfenic acid to form the
optically distinct disulfide. We speculated that introduc-
tion of a third cysteine, vicinal to the resolving C208,
might permit a rearrangement of the disulfide bonding
pattern that could preserve a fraction of the peroxidatic
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Fig. 1 Glutathione depletion sensitizes pancreatic 3-cells to endogenous H,0,. a Absorbance at 540 nm (an indicator of cell mass) by cultures of
a B-cell line (RINm5F) or mouse embryonic fibroblasts (MEFs, a reference) that had been exposed to the indicated concentration of buthionine
sulfoximine (BSO) before fixation and staining with crystal violet. b Plot of in vitro catalase activity, reflected in time-dependent decline in absorbance

(A 240 nm) of H,0, solution, exposed to lysates of untransfected RINmS5F cells (-) or cells stably transfected with plasmids encoding cytoplasmic
(CATY™) or ER-localized catalase (CATEY). ¢ As in (), comparing untransfected RINmS5F cells (-) or cells stably expressing cytosolic catalase (CAT™).
d Fluorescent photornicrographs of RINMSF cells stably expressing a tetracycline inducible human pro-insulin gene (RINM5F'SON™™) fixed at the
indicated time points post doxycycline (20 ng/ml) exposure and immunostained for total insulin (red channel); Hoechst 33258 was used to visualize cell
nuclei (blue channel). e As in (a), comparing cell mass of uninduced and doxycycline-induced RINm5
fected with an expression plasmid encoding ER catalase (CATH). Shown are mean +/- standard error of the mean (SEM), n >3

FTetONINs cells that had or had not been trans-

cysteine in its reduced form and thereby preserve a
measure of H,O, responsiveness, even in the thiol-
oxidizing environment of the ER.

Replacement of OxyR alanine 187 (located ~6 A from
the resolving cysteine 208 in PDB1I69) with cysteine
gave rise to a tri-cysteine probe, TriPer, that retained re-
sponsiveness to H,O, in vitro but with an optical read-
out that was profoundly different from that of HyPer:
While reduced HyPer exhibits a monotonic H,O, and
time-dependent increase in its excitability at 488 nm
compared to 405 nm (R**¥%% Fig. 2a), in response to
H,0,, the R*®¥4% of reduced TriPer increased transi-
ently before settling into a new steady state (Fig. 2b).
TriPer’s optical response to H,O, was dependent on the
peroxidatic cysteine (C199), as its replacement by serine
eliminated all responsiveness (Fig. 2c). R266 supports

the peroxidatic properties of OxyR’s C199, likely by de--
protonation of the reactive thiol [25]. The R266A muta-
tion similarly abolished H,O, responsiveness of HyPer
and TriPer, indicating a shared catalytic mechanism for
OxyR and the two derivative probes (Additional file 2:
Figure S2A).

The optical response to H,O, of TriPer correlated in a
dose- and time-dependent manner with formation of
high molecular weight disulfide-bonded species, detect-
able on non-reducing SDS-PAGE (Fig. 2d and
Additional file 3: Figure S3A). These species were not
observed in H,O,-exposed HyPer, and their presence in
TriPer depended on both the peroxidatic C199 and on
R266 (Fig. 2e, f and Additional file 2: Figure S2B). Fur-
thermore, H,O, promoted such mixed disulfides in
probe variants missing the resolving C208 or both C208
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Fig. 2 TriPer's responsiveness to H,0O, in vitro. a—c Traces of time-dependent changes to the redox-sensitive excitation ratio of HyPer (a), TriPer
(b), or the TriPer mutant lacking its peroxidatic cysteine (TriPer“**) (¢) in response to increasing concentrations of H,O, or the reducing agent
dithiothreitol (DTT). d-g Non-reducing and reducing SDS-PAGE of recombinant TriPer (d), HyPer (e), a TriPer mutant lacking its peroxidatic cysteine
(TriPer=""%) (), and HyPer='"* along HyPer/TriPer lacking their resolving cysteine (HyPer2"%/TriPer"*) (g) performed following the incubation in vitro
with increasing concentrations of H,O, for 15 min, black arrow denotes the high molecular weight species, exclusive to TriPer and to HyPer/TriPer
lacking their resolving cysteine (HyPer“>°%/TriPer>®®%), emerging as a result of H-O, induced dithiol(s) formation in trans. Shown are representatives
ofn=3
A\

and the TriPer-specific C187 (Fig. 2g). The high molecu-  alternative route. To test this prediction we traced the
lar weight TriPer species induced by H,O, migrate R**%% of TriPer under conditions mimicking the oxi-
anomalously on standard SDS-PAGE. However, on neu-  dizing environment of the ER. TriPer’s time-dependent
tral pH gradient SDS-PAGE their size is consistent with  biphasic optical response (R188/405) 4 H,0, contrasted
that of a dimer (Additional file 2: Figure S2C), while  with the hyperbolic profile of its response to diamide- or
their formation was not accompanied by changes in  PDI-mediated oxidation (Fig. 3a). The latter is by far the
R*%49 in mutants lacking the ability to form C208- most abundant ER thiol-oxidizing enzyme. PDI-
C199 disulfide (Additional file 2: Figure S2D). catalyzed HyPer oxidation likewise had a hyperbolic

The observations above indicate that, in the absence of  profile but with a noticeably higher R***/*> plateau
C208, H,O, induced C199 sulfenic intermediates are (Fig. 3a). However, whereas TriPer retained responsive-
resolved in trans and suggest that formation of the ness to H,O,, even from its PDI-oxidized plateau,
divergent C208-C187 pair, unique to TriPer, favors this  PDI-oxidized HyPer lost all sensitivity to H,O, (Fig. 3b).
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by DTT (2.6 mM). The excitation spectra of the reaction phases (1-4) are analyzed in Additional file 3: Figure S3C. d Schema of TriPer oxidation pathway.
Oxidants drive the formation of the optically distinct (high R*™**%%) Cp199-Cz208 (Coeronidatics Cresoning) disulfide, which re-equilibrates with an optically
inert (low R**¥4%) C187-C208 (Coiergent Cresohving) disulfide in a redox relay [44-46] imposed by the three-cysteine systern. The pool of TriPer with a
reduced peroxidatic Cp199 thus generated is available to react with H,O,, forming a sulfenic intermediate. Resolution of this intermediate in trans shifts
TriPer to a new, optically indistinct low R*¥4%° state, depleting the original optically distinct (high R*4%) intermolecular disulfide Cp199-C208. This
accounts for the biphasic response of TriPer to H,O, (Fig. 2b) and for its residual responsiveness to H,O, after oxidation by PDI (b of this figure)

Unlike H,O,, PDI did not promote formation of the
disulfide-bonded high molecular weight TriPer species
(Additional file 3: Figure S3A, B).

H,0,-driven formation of the optically active C199-
C208 disulfide in HyPer enjoys a considerable kinetic
advantage over its reduction by dithiothreitol (DTT) [11].
This was reflected here in the high R***/*% of the residual
plateau of HyPer co-exposed to HO, and DTT (Fig. 3c).
Thus, HyPer and TriPer traces converge at a high ratio
point in the presence of H,O, and DTT (Fig. 3c and Add-
itional file 3: Figure S3C), a convergence that requires
both C199 and C208 (Additional file 2: Figure S2D). In
these conditions DTT releases TriPer’s C208 from the di-
vergent disulfide, allowing it to resolve C199-sulfenic in
cis, thus confirming C199-C208 as the only optically

distinct (high R***'*%) disulfide. It is worth noting that the
convergence of TriPer and HyPer traces in these condi-
tions confirms that in both probes C199-C208 corre-
sponds to the sole high ratio state, consistent with the lack
of optical response in all monomeric/dimeric configura-
tions (Additional file 2: Figure S2). Thus, TriPer’s biphasic
response to H,O,, which is preserved in the face of PDI-
driven oxidation (a mimic of conditions in the ER),
emerges from the competing H,O,-driven formation of a
trans-disulfide, imparting a low R**¥/*% (Fig, 3d).

TriPer detects H,0, in the oxidizing ER environment

To test if the promising features of TriPer observed in
vitro enable H,O, sensing in the ER, we tagged TriPer
with a signal peptide and confirmed its ER localization
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in transfected cells (Fig. 4a). Unlike ER-localized HyPer,
whose optical properties remained unchanged in cells
exposed to HyO,, ER-localized TriPer responded with a
H,O, concentration-dependent decline in the R*®%/%0>
(Fig. 4b, ).

The H,0,-mediated changes in the optical properties
of ER-localized TriPer were readily reversed by washout
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or by introducing catalase into the culture media, which
rapidly eliminated the H,O, (Fig. 4d, e). Both the slow
rate of diffusion of H,O, into the ER (Konno et al., 2015
[11]) and the inherent delay imposed by the two-step
process entailed in TriPer’s responsiveness to H,O,
(Fig. 3) contribute to the sluggish temporal profile of the
changes observed in TriPer’s optical properties in cells
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exposed to H,O,. Further evidence that TriPer was in-
deed responding to changing H,O, content of the ER
was provided by the attenuated and delayed response to
exogenous H,O, observed in cells expressing an ER-lo-
calized catalase (Fig. 4f).

The response of TriPer to H,O, could be tracked not
only by following the changes in its excitation properties
(as revealed in the R**®%%) but also by monitoring the
fluorophore’s fluorescence lifetime using fluorescent life-
time imaging microscopy (FLIM) (as previously observed
for other disulfide-based optical probes [26, 27]).

Exposure of cells expressing ER TriPer to HyO, re-
sulted in highly reproducible increases in the fluoro-
phore’s fluorescence lifetime (with a dynamic range >8 X
SD, Fig. 5a). HyPer’s fluorescence lifetime was also re-
sponsive to HyO,, but only in the reducing environment
of the cytoplasm (Fig. 5b); the lifetime of ER-localized
HyPer remained unchanged in cells exposed to H,O,
(Fig. 5c). These findings are consistent with nearly
complete oxidation of the C199-C208 disulfide under
basal conditions in ER-localized HyPer and highlight the
residual H,O, responsiveness of ER-localized TriPer
(Fig. 5d) [11, 24].

Both ratiometry and FLIM trace alterations in the
fluorophore resulting from C199-C208 formation.
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However, FLIM has important advantages over ratio-
metric measurements of changes in probe excitation, es-
pecially when applied to cell imaging: It is a
photophysical property of the probe that is relatively in-
dependent of the ascertainment platform and indifferent
to photobleaching. Therefore, although ratiometric im-
aging is practical for short-term tracking of single cells,
FLIM is preferable when populations of cells exposed to
divergent conditions are compared. Under basal condi-
tions, ER-localized TriPer’s lifetime indicated that it is
found in a redox state where the C199-C208 pair is
nearly half-oxidized (Fig. 5d), resembling that of PDI-
exposed TriPer in vitro (Fig. 3a) and validating the use
of FLIM to trace TriPer’s response to H,O, in vivo.

Glutathione depletion leads to H,0, elevation in the ER
of pancreatic cells

Exploiting the responsiveness of ER-localized TriPer to
H,0,, we set out to measure the effect of glutathione de-
pletion on the ER H,O, signal as reflected in differences
in ER TriPer’s fluorescence lifetime. BSO treatment of
RINmS5F cells increased the fluorescence lifetime of ER
TriPer from 1490 +/— 43 ps at steady state to 1673 +/—
64 ps (Fig. 6a). A corresponding trend was also observed
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doxycycline (DOX 20 ng/ml) and the cells were exposed to 0.3 mM BSO (18 h). b As in a, but TriPerER—expressing cells were exposed to 0.15 mM BSO
(18 h). ¢ A trace of time-dependent changes in HyPer™™ or TriPer™ FLT in RINmSF cells after exposure to 0.2 mM BSO. Each data point represents the
mean = SD of fluorescence lifetime measured in 220 cells. The ordinate of HyPer™™ FLT was inverted to harmonize the trendlines of the two probes.
d Bar diagram of FLT of ERroGFPIE, expressed in cells, untreated or exposed to 2 mM DTT, the oxidizing agent
2,.2"dipyridyl disulfide (DPS), or 0.3 mM BSO (18 h). e Bar diagram of FLT of an H-O»-unresponsive TriPer mutant (TriPer™*%%) expressed in the ER of
untreated or BSO-treated cells (0.3 mM; 18 h). f Bar diagram of FLT of TriPert? expressed in the presence or absence of ER catalase or an ER-localized
glutathione-degrading enzyme (WT ChaC1™) or its enzymatically inactive E116Q mutant version (Mut ChaC1™). Shown are mean values + SEM;
*p <005, **p <001, **p < 0.005, n = 20)
J

by measuring the changes in ER TriPer’s excitation prop-  7), whereas expression of ER catalase counteracted the
erties ratiometrically (Additional file 4: Figure S4A). BSO-induced increase of TriPer’s fluorescence lifetime,

Induction of pro-insulin biosynthesis accentuated both under baseline conditions and following stimulation
TriPer’s response to BSO (Fig. 6a, compare samples 5 and ~ of pro-insulin production in RINm5SFT™ON'  cells
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(Fig. 6a, compare samples 5 and 6, and 7 and §;
Fig. 6b, compare samples 2 and 3). These observa-
tions correlate well with the cytoprotective effect of
ER catalase in RINm5F cells exposed to BSO (Fig. 1).
It is noteworthy that the increase in ER H,O, signal
in BSO-treated cells was observed well before the in-
crease in the cytosolic H,O, signal (Fig. 6¢) and also
preceded death of the glutathione-depleted cells
(Additional file 4: Figure S4B).

The ability of ER catalase to attenuate the optical re-
sponse of ER-localized TriPer to BSO or pro-insulin in-
duction argues for an increase in ER H,O, as the
underlying event triggering the optical response. Two
further findings support this conclusion: (1) The disul-
fide state of the ER-tuned redox reporter ERroGFPiE
[26, 28, 29] remained unaffected by BSO. This argues
against the possibility that the observed TriPer response
is a consequence of a more reducing ER thiol redox
poise induced by glutathione depletion (Fig. 6d). (2) Tri-
Per’s responsiveness to BSO and pro-insulin induction
was strictly dependent on R266, a residue that does not
engage in thiol redox directly, but is required for the
peroxidatic activity of TriPer C199 (Fig. 6e, Additional
file 4: Figure S4C). In addition, the above H,0O, specifi-
city controls of TriPer response exclude other possible
artificial effects on the probe’s fluorophore, such as pH
changes.

To further explore the links between glutathione deple-
tion and accumulation of ER H,O,, we sought to measure
the effects of selective depletion of the ER pool of glutathi-
one on the ER H,0, signal. ChaCl is a mammalian en-
zyme that cleaves reduced glutathione into 5-oxoproline
and cysteinyl-glycine [30]. We have adapted this normally
cytosolic enzyme to function in the ER lumen and thereby
deplete the ER pool of glutathione [9]. Enforced expres-
sion of ER-localized ChaC1l in RINm5F cells led to an
increase in fluorescence lifetime of ER TriPer, which
was attenuated by concomitant expression of ER-
localized catalase (Fig. 6f). Cysteinyl-glycine, the prod-
uct of ChaCl, has a free thiol, but its ability to bal-
ance ER H,0, may be affected by other factors such
as clearance or protonation status. Given the relative
selectivity of ER-localized ChaCl in depleting the lu-
minal pool of glutathione (which equilibrates
relatively slowly with the cytosolic pool [6, 9]), these
observations further support a role for ER-localized
glutathione in the elimination of luminal H,O,.

Analysis of the potential for uncatalyzed quenching of
H,0, by the ER pool of glutathione

Two molecules of reduced glutathione (GSH) can reduce
a single molecule of H,O,, yielding a glutathione disul-
fide and two molecules of water, Eq. (1):
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2(GSH) + Hy0,—GSSG + 2 (H,0) (1)

However there is no evidence that the ER is endowed
with enzymes capable of catalyzing this thermodynamic-
ally favored reaction. For while the ER possesses two
glutathione peroxidases, GPx7 and GPx8, both lack key
structural determinates for interacting with reduced
glutathione and function instead as peroxiredoxins,
ferrying electrons from reduced PDI to H,O, [15].
Therefore, we revisited the feasibility of a role for the
uncatalyzed reaction in H,O, homeostasis in the ER.

Previous estimates of H,O,’s reactivity with reduced
glutathione (based on measurements conducted in the
presence of high concentrations of both reagents)
yielded a rate constant of 22 M~'s™" for the bimolecular
reaction [31]. Exploiting the in vitro sensitivity of HyPer
to HyO, (Fig. 2a), we revisited this issue at physiologic-
ally relevant conditions (pH 7.1, concentrations of reac-
tants: [GSH] <3 mM, [H,O,] <10 pM), obtaining a
similar value for the second-order rate constant (29 +
4 M~'s™%, Fig. 7a—d).

Considering a scenario whereby oxidative folding of
pro-insulin (precursor of the major secretory product of
[B-cells) proceeds by the enzymatic transfer of two elec-
trons from di-thiols to O, (as in ERO1/PDI catalysis,
generating one molecule of H,O, per disulfide formed
[10]), and given three disulfides in pro-insulin, a max-
imal production rate of 6*10™* fmol pro-insulin/min/cell
[32], and an ER volume of 280 fl [33], the resultant max-
imal generation rate of H,O, has the potential to elevate
its concentration by 0.098 uM s™*. Given the rate con-
stant of 29 M~ 1s! for the bimolecular reaction of H,O,
with reduced glutathione and an estimated ER concen-
tration of 15 mM GSH [4], at this production rate the
concentration of H,O, would stabilize at 0.23 uM, based
solely on uncatalyzed reduction by GSH. Parallel pro-
cesses that consume H,O, to generate disulfide bonds
would tend to push this concentration even lower [12,
13, 15, 34]; nonetheless, this calculation indicates that
GSH can play an important role in the uncatalyzed elim-
ination of H,O, from the ER.

Discussion

The sensitivity of B-cells to glutathione depletion, the ac-
centuation of this toxic effect by pro-insulin synthesis,
and the ability of ER catalase to counteract these chal-
lenges all hinted at a role for glutathione in coping with
the burden of H,O, produced in the ER. However, with-
out means to track H,O, in the ER of living cells, this
would have remained an untested idea. TriPer has re-
vealed that ER hydrogen peroxide levels increase with
increased production of disulfide bonds in secreted pro-
teins, providing direct evidence that the oxidative
machinery of the ER does indeed produce H,O, as a
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Fig. 7 Kinetics of uncatalyzed elimination of H,O, by reduced glutathione. a Traces of time-dependent changes to the excitation ratio (
of recombinant HyPer introduced into a solution of H,O, (10 uM) that had been preincubated with GSH (3 mM) for increasing time periods, as
indicated. Note the inverse relationship between HyPers oxidation rate and the length of the preceding H,0,-GSH preincubation. b As in a but
following HyPer introduction into premixed solutions of H,O, (10 uM) and reduced glutathione (GSH) at the indicated concentrations (0-3 mM).
¢ As in a, but HyPer was exposed sequentially to H,O, (2 uM) and various concentrations of GSH. d A plot of HyPer oxidation rate (reflecting the
residual [H,0,]) as a function of GSH concentration. The slope (-0.0036 s mM™") and the y-intercept (0.01263 s of the curve were used to
extract the dependence of H,0, consumption rate (-d[H,O,)/dt, at 10 uM H,0,) on each GSH concentration point (0-3 mM) according to Egs.
(2)-(4). The bimolecular rate constant was calculated by division of the slope of the resulting curve (shown in the inset) by the initial
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(bi)product. Less anticipated has been the increased
H,0, in the ER of glutathione-depleted cells. The con-
tribution of glutathione to a reducing milieu in the
nucleus and cytoplasm is well established, but it has not
been easy to rationalize its presence in the oxidizing ER,
especially as glutathione appears dispensable for the
reductive step of disulfide isomerization in oxidative
protein folding [9]. Consistently, the ER thiol redox
poise resisted glutathione depletion. TriPer has thus
pointed to a role for glutathione in buffering ER H,0,
production, providing a plausible benefit from the pres-
ence of a glutathione pool in the ER lumen.

TriPer’s ability to sense H,O, in a thiol-oxidizing en-
vironment relies on the presence of an additional cyst-
eine residue (A187C) near the resolving C208 in the
OxyR segment. The presence of this additional cysteine
attenuates the optical responsiveness of the probe to oxi-
dation by PDI by creating a diversionary disulfide involv-
ing C208. Importantly, this diversionary disulfide, which
forms at the expense of the (optically active) C199-C208
disulfide, preserves a fraction of the peroxidatic C199 in

its reduced form. Thus, even in the thiol-oxidizing envir-
onment of the ER, a fraction of C199 thiolate is free to
form a reversible H,O,-driven sulfenic intermediate that
is resolved by disulfide formation in trans. Furthermore,
by preserving a fraction of C199 in its reduced form, the
diversionary C187-C208 disulfide also maintains a pool
of C199 to resolve the C199 sulfenic to form a trans-di-
sulfide bond. Thus, the H,O,-induced formation of the
trans disulfide is a feature unique to TriPer, and it too is
a consequence of the diversionary disulfide, which elimi-
nates the strongly competing reaction of the resolving
C208 in cis with the sulfenic acid at C199.

The ability of ER-expressed TriPer to alter its optical
properties in response to H,O, is enabled through its
semioxidized steady state, dictated by kinetically/quanti-
tatively dominant PDI. In vitro this stage can be reached
by oxidants such as diamide or PDI, while the second oxi-
dation phase, with lowering R***'*%  is exclusive to H,O,,
The net result of the presence of a diversionary thiol at
TriPer residue 187 (A187C) is to render the probe optic-
ally sensitive to H;O, even in the presence of high
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concentrations of oxidized PDI, conditions in which the
precursor probe, HyPer, loses all optical responsiveness.

The aforementioned theoretical arguments for TriPer’s
direct responsiveness to H,O, are further supported by
empirical observations: the peroxidatic potential
(unusual for cysteine thiols) of the probe’s C199 is en-
abled through a finely balance charge distribution in its
vicinity, of which R266 is a crucial determinant [25].
Eliminating this charge yielded a probe variant with its
intact cysteine system, but it was unresponsive to H,O,.
Further, the ability of ER catalase to reverse the changes
in TriPer’s disposition argues that these are initiated by
changes in H,O, concentration.

Both HyPer and TriPer react with elements of the
prevailing ER thiol redox buffering system (exemplified by
their equilibration, in vitro, with PDI). In the case of
HyPer, this reactivity is ruinous, but even in the case of ER
TriPer, which retains a modicum of sensitivity to HyO,,
the elements of the complex kinetic regime that drive its
redox state are not understood in quantitative terms.
Thus, it is impossible to fully deconvolute the potential
impact on TriPer of changes in the ER thiol redox milieu
from changes in H,O, concentration wrought by a given
physiological perturbation — TriPer is sensitive to both.
However, it is noteworthy that oxidation of TriPer by
H,0,, leading to a mixed disulfide state, shifts the optical
readout towards lower R**®*% and shorter fluorescent
lifetimes. Although such shifts are also consistent with a
surge in thiol reductive activity, it seems unlikely that
exposure of cells to HyO, results in a more thiol-reducing
ER. Similar considerations apply to the state of the ER in
cells depleted of glutathione, as it is hard to imagine how
this would lead to a more thiol-reducing ER. Indeed the
H,0,-insensitive redox probe roGFPiE, which is known to
equilibrate with ER-localized PDI, was unaffected by gluta-
thione depletion. Thus, while we cannot formally exclude
that glutathione depletion also affects TriPer’s redox status
independently of changes in H,O, concentration, the bulk
of the evidence favors a role for TriPer in tracking the
latter and in reporting on an increase in ER H,O, in
glutathione-depleted cells.

TriPer has been instrumental in flagging glutathione’s
role in buffering ER luminal H,O,. This raises the
question as to whether the thermodynamically favored
reduction of H,O, by GSH is accelerated by ER-localized
enzymes or proceeds by uncatalyzed mass action. The
cytoplasm and mitochondria possess peroxide-consuming
enzymes that are fueled by reduced glutathione [35]. How-
ever, the ER lacks known counterparts. Such enzymes may
be discovered in the future, as well as possible pathways of
GSH-mediated PDRX4 modulation. But meanwhile it is
notable that the kinetic properties of the uncatalyzed reduc-
tion of H,O, by GSH are also consistent with a contribu-
tion to keeping H,O, concentration at bay.
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An ER that eschews catalyzed reduction of H,O, by
GSH and relies instead on the slower uncatalyzed
reaction may acquire certain advantages. At low concen-
trations of H,O,, an ER organized along these lines
would be flexible to deploy a kinetically favored PRDX4-
mediated peroxidation reaction to exploit H,O, generated
by EROL1 for further disulfide bond formation [13, 36]. At
higher concentrations of H,O,, PRDX4 inactivation [37]
limits the utility of a PRDX4-based coping strategy [12, 37].
However, the concentration-dependent reduction of H,O,
by GSH is poised to counteract a build-up of ER H,O,.
Although uncertainty regarding the rate of H,O, trans-
ported across the ER membrane exists [38], we favor a
model whereby such transport is comparatively slow [11],
which is consistent with the observed delay between the in-
crease in ER and cytosolic H,O, when glutathione synthesis
was inhibited. Sequestration of H,O, in the lumen of the
ER protects the genome from this potentially harmful me-
tabolite and enables the higher concentrations needed for
the uncatalyzed reaction to progress at a reasonable pace.

The implementation of a probe that detects H,O, in
thiol-oxidizing environments has revealed a remarkably
simple mechanism to defend the cytosol and nucleus from
a (bi)product of oxidative protein folding in the ER. This
mechanism is especially important in secretory pancreatic
[-cells that are poorly equipped with catalase/peroxidase.

Conclusions

Here we report on the development and mechanistic
characterization of an optical probe, TriPer, that circumvents
the limitations of previous sensors by retaining specific
responsiveness to H,O, in thiol-oxidizing environments.
Application of this tool to the ER of an insulin-producing
pancreatic [3-cells model system revealed that ER glutathione
antagonizes locally produced and potentially cytotoxic HyO»,
resulting from the oxidative folding of pro-insulin.

The redox biochemistry concept developed here sets a
precedent for exploiting a tri-cysteine relay system to
discriminate between various oxidative reactants in com-
plex redox milieux.

Methods

Plasmid construction

Additional file 5: Table S1 lists the plasmids used, their
lab names, description, published reference, and a nota-
tion of their appearance in the figures.

Transfections, cell culture, and cell survival analysis

Mouse embryonic fibroblasts (MEFs), HEK293t (RRID:C
VCL_0063), and COS7 (RRID:CVCL_0224) cells were
cultured in Dulbecco's Modified Eagle's medium (DME
M); RINm5F (RRID:CVCL_0501) cells (ATCC, Manas-
sas, VA, USA) were cultured in Roswell Park Memorial
Institute medium (RPMI, Sigma, Gillingham, Dorset,
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UK), both supplemented with 10% fetal calf serum; and
periodically confirmed to be mycoplasma free.

RINm5F cells containing a tetracycline/doxycycline
inducible human pro-insulin gene (RINmS5F"¢ON1"s)
were generated using the Lenti-XTM Tet-On° 3G system
(Clontech, Saint-Germain-en-Laye, France), according to
the manufacturer’s manual. RINm5F cells stably express-
ing cytoplasmic or ER-adapted [39] human catalase were
described in [11, 40].

Transfections were performed using the Neon Trans-
fection System (Invitrogen, Paisley, UK) applying 3 pg of
ERTriPer or ERHyPer DNA/1 x 10° cells.

For the survival assays, 3 x 10* cells per 35-mm well
were plated and exposed to various concentrations of
BSO starting 4 h after the seeding for 48 h (RINm5F
cells) or 96 h (MEFs, HEK293t, COS7 cells). At the end
of this period, BSO was washed out and the cells were
allowed to recover up to the point where the untreated
sample reached 90% confluence. Then the cells were
fixed in 5% formaldehyde (Sigma, Gillingham, Dorset,
UK) and stained with Gram’s crystal violet (Fluka-Sigma,
Gillingham, Dorset, UK). For quantification of the stain
incorporated into each sample (proportional to the cell
mass), the sample was solubilized in methanol and sub-
jected to absorbance measurements at 540 nm using a
VersaMax microplate reader (Molecular Devices, Sunny-
vale, CA, USA). The readouts of each set were normal-
ized to the maximum value (untreated sample).

Quantification of catalase enzymatic activity

Catalase enzyme activity was quantified as described earl-
ier [41]. Briefly, whole-cell extracts were homogenized in
phosphate-buffered saline (PBS) through sonication on ice
with a Braun-Sonic 125 sonifier (Braun, Melsungen,
Germany). Subsequently the homogenates were centri-
fuged at 10,000 x g and 4 °C for 10 min. The protein
content of the supernatant was assessed with a BCA Assay
(Thermo Fisher Scientific, Rockford, IL, USA). For quanti-
fication of the catalase enzyme activity, 5 pg of the total
protein lysate was added to 50 mmol/L potassium phos-
phate buffer (pH 7.8) containing 20 mmol/L H,O,. The
specific catalase activity was measured by ultraviolet spec-
troscopy, monitoring the decomposition of H,O, at
240 nm and calculated as described in [41].

Immunofluorescence staining

Prior to immunofluorescence staining, cells were fixed
with 4% paraformaldehyde, permeabilized with 0.5%
Triton X-100/PBS, and blocked with 10% goat serum/
PBS. Total mouse monoclonal anti-insulin IgG (12018,
clone K36AC10, Sigma, Gillingham, Dorset, UK, RRID:
AB_260137) was used as the primary antibody and goat
anti-rabbit IgG conjugated to DyLight 543 (Jackson
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ImmunoResearch Laboratories, West Grove, PA, USA)
as the secondary antibody.

Confocal microscopy, fluorescence lifetime imaging, and
image analysis

Cells transfected with the H,O, reporters (HyPer or
TriPer) were analyzed using a laser scanning confocal mi-
croscopy system (LSM 780; Carl Zeiss, Jena, Germany) with
a Plan-Apo-chromat 60x oil immersion lens (NA 1.4),
coupled to a microscope incubator, maintaining standard
tissue culture conditions (37 °C, 5% CO,), in complete
medium. Fluorescence ratiometric intensity images (512 x
512 points, 16 bit) of live cells were acquired. A diode
405 nm and argon 488 nm lasers (6% and 4% output re-
spectively) were used for excitation of the ratiometric
probes in the multitrack mode with an HFT 488/405 beam
splitter, the signal was detected with 506—568 nm band pass
filters, the detector gain was arbitrarily adjusted to yield an
intensity ratio of the two channels to allow a stable baseline
and detection of its redox-related alterations.

The FLIM experiments were performed on a modified
version of a previously described laser scanning multi-
parametric imaging system [42], coupled to a micro-
scope incubator, maintaining standard tissue culture
conditions (Okolab, Pozzuoli, Italy), using a pulsed (sub-
10 ps, 20-40 MHz) supercontinuum (430-2000 nm)
light source (SC 450, Fianium Ltd., Southampton, UK).
The desired excitation wavelength (typically 470 nm)
was tuned using an acousto-optic tunable filter (AA
Opto-electronic AOTFnC-VIS). The desired emission
was collected using 510/42 and detected by a fast photo-
multiplier tube (PMC-100, Becker & Hickl GmbH,
Berlin, Germany). Lifetimes for each pixel were recorded
using time-correlated single photon counting (TCSPC)
circuitry (SPC-830, Becker & Hickl GmbH), keeping
count rates below 1% of the laser repetition rate to pre-
vent pulse pile-up. Images were acquired over 2060 s,
with a typical flow rate of 5x 10* photons s’ avoiding
the pile-up effect. The data were processed using
SPCImage (Becker & Hickl GmbH), fitting the time-
correlated photon count data obtained for each pixel of
the image to a monoexponential decay function, yielding
a value for lifetime on the picosecond scale.

After filtering out autofluorescence (by excluding pixels
with a fluorescence lifetime that was out of range of the
probes), the mean fluorescence lifetime of single cells was
established. Each data point is constituted by the average
and SD of measurements from at least 20 cells. Calcula-
tions of p values were performed using the two-tailed ¢
test function in Microsoft Excel 2011 software.

Protein purification and kinetic assays in vitro
For in vitro assays, human PDI (PDIA1 18-508), HyPer,
and TriPer were expressed in the Escherichia coli BL21
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(DE3) strain, purified with Ni-nitrilotriacetic acid (NTA)
affinity chromatography and analyzed by fluorescence
excitation ratiometry as previously described [43].
Briefly, HyPer, TriPer, and their mutants were assayed in
vitro in Tris-HCI buffer, pH 7.4, 150 mM NaCl after be-
ing reduced with 50 mM DTT for 1 h followed by gel fil-
tration to remove DTT.

To establish the reactivity of H,O, with GSH, different
amounts of GSH (0-3 mM, pH adjusted to 7.1; Sigma,
Gillingham, Dorset, UK) were mixed with 10 uM of H,O,
for a fixed time period and then exposed to recombinant
HyPer (2 uM, reduced by 40 mM DTT and gel filtered to
remove DTT). The relationship between the rate of HyPer
oxidation and [GSH], described by Eq. (2), was used to
extract the remaining [H,O,] after its exposure to various
[GSH] for a given period, using Eq. (3).

Ry = R;~(Sy * [GSH)) (2)

where the rates of HyPer oxidation (s™') in a given
[H,0,] are denoted by R, (GSH-affected) and R; (in the
absence of GSH), and S, is the experimental coefficient
(s mM™). The latter two are the y-intercept and the
slope of the curve in Fig. 7d, accordingly.
H

1200, = 0 (G < 65H1) (@)
where [H,O,]z and [H,O,]; are the residual and initial
H,0, concentrations accordingly. The resulting [H,O,]
concentrations for each experimental [GSH] point were
used to calculate the corresponding reaction rate accord-
ing to Eq. (4), developed based on Eq. (3) for the special
case of Hy,O, — GSH reaction time (¢f) and [H,O,]
(resulting curve shown in Fig. 7d inset, S, is the slope).
The bimolecular rate constant (k) is given by Eq. (5).

A _ s, « fGsm (4)
k = S3/[H20,] (5)

The concentration of H,O, at the equilibrium where
the rate of its supply equals the rate of its reaction with
GSH was calculated according to Eq. (6):

[H205] = Vin,0,)/(k  [GSH]) (6)

where Va0 is the assumed rate of H,O, generation
and k is the bimolecular rate constant for the GSH/
H,O, reactivity.

Additional files

Additional file 1: Figure S1. Variable sensitivity of cultured cells to
glutathione depletion. As in Fig. 1a, absorbance at 540 nm (an indicator of
cell mass) by cultures of parental RINmS5F, RINmS5F stably overexpressing
catalase in their cytosol (CAT?'®), HEK293, or COS7 cells that had been
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exposed to the indicated concentration of BSO before fixation and staining
with crystal violet. (PDF 91 kb)

Additional file 2: Figure S2. The role of R266 in HyPer and TriPer’s
reactivity with H,O,. (A) Traces of time-dependent changes to the excitation
ratio of recombinant HyPer or TriPer variants with the inactivating R266A
mutation. (B) Non-reducing and reducing SDS-PAGE of recombinant
TriPer®'9%* following incubation with increasing concentrations of H,0, for
15 min. (C) Non-reducing gradient SDS-PAGE (pH 7.3, 4-12%) of samples as
in Fig. 2g. (D) Traces of time-dependent changes to the excitation ratio of
HyPer and TryPer mutant variants treated as in (B). Note that the variants
lacking the ability to form C199-C208 disulfide do not change their
excitation ratio upon oxidation. (PDF 93 kb)

Additional file 3: Figure S3. In vitro, H,O,-driven formation of
disulfide-bonded high molecular weight TriPer species with divergent
optical properties. (A) Coomassie-stained non-reducing and reducing
SDS-PAGE of wild-type TriPer or its mutant variant lacking the peroxidatic
cysteine (TriPer“1%%) following exposure to 1.5 uM of H,0, for the indicated
time period. Black arrow denotes disulfide-bonded high molecular weight
TriPer species. (B) As in (A), but following a 15-min exposure to increasing
concentrations of oxidized PDI (0-8 mM). Note the lack of the high molecular
weight species in this sample and their prominence in the H,O,-treated
sample, (A) above. (C) Excitation spectra (measured at emission 535 nm) of
HyPer (orange trace) and TriPer (blue trace) for the different states of the
probes, corresponding to phases 1-4 in Fig. 3c. (PDF 205 kb)

Additional file 4: Figure S4. Glutathione depletion induced apoptotic
cell death and leads to concordant changes in TriPer™ optical properties.
(A) Photomicrographs and fluorescence excitation ratiometric images of
untreated (UNT) RINmM5SF cells transiently expressing TriPer™ or cells
treated with BSO (0.3 mM, 28 h) or H,O, (0.2 mM, 15 min). The images
were color coded for 488/405 nm excitation ratio (R***“%*) according to
the color map shown. (B) Flow cytometry analysis of RINmS5F cells at the
indicated time points after exposure to BSO (0.3 mM). Populations of
dead and live cells were resolved by plotting forward vs. side scattering
amplitudes (FCS-A and SSC-A accordingly). Apoptotic cell populations
were assessed by detecting surface phosphatidylserine using
phycoerythrin (PE) conjugated Annexin V. Note that a significant
population of dead cells only emerges after 36 h, whereas an increase in
the ER H,0, signal is observed by 12 h (Fig. 6¢). (C) A ratiometric trace of
TriPer™ WT or TriPer™ containing an R266Q mutation expressed in
RINmS5F cells, exposed to H,O, (0.2 mM) or DTT (2 mM) for the indicated
duration. (PDF 636 kb)

Additional file 5: Table S1. List of plasmids. (PDF 56 kb)
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