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A mineralogical study in contrasts: 
highly mineralized whale rostrum 
and human enamel
Zhen Li1,2, Maisoon AI-Jawad3, Samera Siddiqui3 & Jill D. Pasteris1

The outermost enamel of the human tooth and the rostrum of the whale Mesoplodon densirostris 
are two highly mineralized tissues that contain over 95 wt.% mineral, i.e., bioapatite. However, 
the same mineral type (carbonated hydroxylapatite) does not yield the same material properties, 
as revealed by Raman spectroscopy, scanning electron microscopy, electron microprobe analysis, 
and synchrotron X-ray diffraction analysis. Overall, the outermost enamel of a tooth has more 
homogeneous physical and chemical features than the rostrum. Chemical comparison of rostrum 
and enamel shows bioapatite in the rostrum to be enriched in Na, Mg, CO3, and S, whereas the 
outermost enamel shows only a slightly enriched Cl concentration. Morphologically, mineral rods 
(at tens of μm scale), crystallites and prisms (at μm and sub-μm scale), and platelets (at tens of nm 
scale) all demonstrate less organized texture in the rostrum than in enamel. Such contrasts between 
two mineralized tissues suggest distinct pathways of biomineralization, e.g., the nature of the 
equilibrium between mineral and body fluid. This study illustrates the remarkable flexibility of the 
apatite mineral structure to match its chemical and physical properties to specific biological needs 
within the same animal or between species.

Bone and tooth are the two major mineralized tissues of vertebrates, both consisting of a nanocompos-
ite of protein and inorganic calcium phosphate1–3. Typical bone contains 45 to 65 wt.% mineral, 40 to 
20 wt.% organic material, and the reminder water2,4,5. Dentin in vertebrate teeth contains ~70 wt.% min-
eral, 20 wt.% organic material, and 10 wt.% water6. In contrast to the above are what might be considered 
from a materials science viewpoint to be the highly mineralized analogs of dentin and bone, namely 
tooth enamel and the hypermineralized rostrum of certain species of whale.

Like many species of whales and dolphins, the whale Mesoplodon densirostris has an elongated facial 
projection called a rostrum. What is unusual in this whale species is that the rostrum of the adult male 
is composed of highly mineralized bone, containing ~96 wt.% mineral, which is the densest bone so far 
recorded4,7–9. Enamel, unlike the highly mineralized rostrum, is universal in all toothed animals and has 
a mineral content > 90 wt.%. The outermost region (several tens of μ m thick) of the enamel contains 
95–97 wt.% mineral3,6. The outermost enamel and the hypermineralized rostrum are hence the two most 
highly mineralized tissues in vertebrate bodies.

The inorganic compounds in the rostrum and enamel are similar to the mineral hydroxylapatite, 
Ca10(PO4)6(OH)2. The biologically precipitated form of apatite, i.e., bioapatite, is actually a type of car-
bonated hydroxylapatite (CHAP, carbonate mostly substituting for phosphate) with considerable deple-
tion of hydroxyl10–13. In addition to the substitution of CO3

2− for PO4
3− in bioapatite, Na, Mg, or other 

minor/trace elements can substitute for Ca cations. The much more complex bioapatite formula is there-
fore similar to (Ca,Mg,Na)10−x[(PO4)6−x(CO3, HPO4)x](OH)2−x

10,14.
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Organic matrix-mediated biomineralization is the process understood to govern tooth and bone for-
mation. Biologically precipitated crystals grow on a framework of hydrophobic organic matrix, regu-
lated by genetically controlled hydrophilic acidic proteins that promote crystallization. In enamel, the 
non-collagenous protein amelogenin makes up > 90% of the organic component3,6,15. Enamel mineral-
ization starts at the enamel-dentine junction, guided by enamel proteins (predominantly amelogenin) 
coating the secretory surface of the ameloblast plasma membrane. During the secretory stage, enamel 
starts growing in elongated ribbons oriented perpendicular to the mineralization front. Recent studies 
suggest these initial enamel ribbons are amorphous calcium phosphate (ACP) whose size, shape, and 
spatial organization are defined before they crystallize into carbonated hydroxylapatite16–18. Ameloblasts 
develop Tomes’ processes, which change the topographical contour of the mineralization front and give 
rise to the final rod and interrod hierarchical organization of enamel. Once the full thickness of the 
enamel layer is reached the ameloblasts transition in size and architecture into maturation-stage amelo-
blasts. The final stage of formation is enamel maturation, which involves widening and thickening of 
the ribbon-like crystallites while enamel proteins removed by the KLK4 enzyme make space for the 
thickening mineral crystallites19. The complex and dynamic processes of amelogenesis are responsible 
for the final hierarchical, highly mineralized enamel tissue with structural and mechanical properties 
necessary for its function.

Bone’s mineralization is regulated by collagen, non-collagenous proteins, and bone cells. The min-
eralization processes can be summarized as follows3,5,20–23: (1) osteoblasts secret collagenous proteins; 
(2) collagen molecules form a fibrous framework, which usually grows parallel to the long axis of the 
bone; (3) bioapatite nanocrystals are initiated in periodic intrafibrillar gaps or in channels between col-
lagen fibrils; (4) initial nanocrystallites are stabilized and then enlarged; (5) the collagen framework 
remains in bone even after mineral maturation. In further contrast to enamel, bone is a dynamic tissue, 
which is constantly remodeled (undergoing dissolution and reprecipitation) by osteoclast and osteo-
blast cells. Remodeling produces secondary osteons of cylindrical shape, which are widely distributed 
in bone. The highly mineralized whale rostrum is recognized to be densely populated by mineral-rich, 
collagen-depleted secondary osteons throughout its entire extent4,7,8,24,25.

The aim of this paper is to step back from the effects of the hierarchical organization and instead to 
focus in detail on the mineralogical features of these two highly mineralized tissues, rostrum and enamel 
(primarily the outermost region). They have developed independently and yet have almost exactly the 
same degree of mineralization. The size, shape, orientation, chemistry, and degree of crystallinity of the 
two sets of bioapatite crystals are investigated. Understanding their mineralogical contrasts in detail may 
make possible, through synthetic biomimetic pathways, controlled mineralization for therapeutic uses 
(e.g., enamel and bone re-growth).

Results
In order to clarify the similarities and differences in the physical appearance of outermost enamel and 
rostrum at various spatial scales, the term crystallites and prisms will be applied to enamel and rostrum 
respectively for features at the sub-micron length scale. The terms rod and interrod will be used to define 
features at the micrometer length-scale (bundles of crystallites). For ease of comparison, this strictly 
morphological usage on the finest scale coincides with the dental technical use of these terms.

Morphology and sizes of bioapatite.  At the scale of tens of micrometers in the outermost enamel, 
are rods with widths of several micrometers and lengths of ~30–40 μ m separated by regions of less 
organized mineral (less than 1 μ m in width) (Fig. 1A,C). These rods are clearly bundles of exactly paral-
lel crystallites oriented in the longitudinal direction, as viewed under FE-SEM (field-emission scanning 
electron microscopy) (Fig. 1A, E). In contrast, the rostrum does not show any distinguishable rod/inter-
rod features nor bundles of crystallites at this scale (Fig. 1B).

At the micrometer scale (Fig.  1C,E vs. Fig.  1D,F), the morphologic features in the rostrum and 
enamel show even greater difference. The enamel rods appear to consist of thick needle-like crystallites 
(Fig.  1C,E), whereas at this length-scale the rostrum reveals elongated tablet-like prisms (Fig.  1D,F), 
which are approximately 1 μ m ×  0.5 μ m in size. Their small angular deviations, however, contrast with 
the strict parallelism of needle-like crystallites seen in enamel (Fig. 1C,D). Distinctive sizes and shapes 
of the mineral crystallites and prisms in the two highly mineralized materials are displayed clearly at 
the micrometer scale (Fig. 1E,F); the rostrum tablet-like prisms are larger than the enamel crystallites in 
width, but are shorter than the enamel in length8. In addition, the enamel crystallites are uniform in size 
at the micrometer and sub-micrometer scale, compared to the variable sizes of prisms in the rostrum 
(Fig.  1C vs. D). Figure  1F also illustrates the “irregular” shapes of prisms in the rostrum: long lateral 
edges of these prisms are not straight like those in enamel crystallites, but usually curved. Only at an 
even higher resolution (Fig. 1F insert) do the rostrum prisms show themselves to consist of even thinner 
platelets, which may account for the irregular outline of the prisms (which are organized aggregates of 
platelets).

In Fig. 1G, individual “layers” can be identified in the transverse section of the enamel. The alignment 
of such bundles of crystallites in enamel actually forms a well-organized, solid scaffold structure of rod/
interrod enamel26. The transverse section of the rostrum also shows layers within the stacks of platelets 
(Fig. 1H). However, its layer structure is not as well-organized as that of enamel. The blade-like edges of 
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Figure 1.  FE-SEM images of human enamel (A,C,E,G) and the rostrum (B,D,F,H). Images (A–F) are 
longitudinal views and images (G–H) are transverse views (R: rods; Cry: crystallites; P: prisms). Arrows in 
(B) indicate lacunae in the rostrum. An enlargement in (F) shows how platelets organize to form a prism. 
An enlargement in (H) shows the sharp corners of the blade-like platelets.
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mineral platelets in the rostrum are aligned nearly parallel (see the enlargement in Fig. 1H), consistent 
with the stacks of plates in the longitudinal view (see the enlargement in Fig. 1F).

Raman spectroscopy.  Raman spectra of the rostrum, outermost human enamel, and bone from the 
rat ulna, show peaks for the mineral and organic phases (where present). In Fig. 2A, the dominant peak 
for the mineral phase in all samples is a P-O symmetric stretch at ~960 Δ cm−1, which together with its 
other peaks identifies the phosphate phase in all bone and enamel materials as apatite27–30. Compared 
to that of the rostrum and human enamel, the P-O stretch of the rat bone is slightly downshifted and 
that of the synthetic OHAP (hydroxylapatite) slightly upshifted. These (small) differences in P-O posi-
tion reflect differences in the chemical environment of the phosphate in these apatite phases, i.e., small 
compositional differences among the types of apatite.

The widths of the 960 Δ cm−1 peaks indicate the degree of atomic order within the structure of the 
crystallites: the wider the peak, the more atomically disordered the material is8,27. Such disorder is one 
component of the property often referred to as crystallinity. The maximum value of FWHM (full width at 
half maximum) of the ~960 Δ cm−1 band is considerably larger in the normal bone, rostrum, and enamel 
than in synthetic OHAP (FWHM =  5.4 cm−1). Thus, all three bioapatites are atomically more disordered 
than synthetic hydroxylapatite. Enamel (FWHM =  13 cm−1) contains the most atomically ordered bioap-
atite, compared to the rostrum (FWHM =  15 cm−1) and normal bone (FWHM =  16 cm−1).

The 1070 Δ cm−1 peak represents a combination of the ν 3 vibrational mode of PO4 and the ν 1 C–O 
stretching vibration of CO3

29. This peak indicates carbonate substitution for phosphate in bioapatite. 
The intensity of the rostrum’s 1070 Δ cm−1 peak is much stronger than that of the human enamel: with 
a calculated carbonate concentration of 8 wt.% in the rostrum vs. 3 wt.% in enamel apatite based on a 
calibration in our laboratory31. The rat bone has a carbonate content of ~6 wt.%, between that of the 
rostrum and human enamel. In addition, rat bone has the widest FWHM for the 1070 Δ cm−1 peak 
(Fig. 2A), consistent with its widest FWHM for the 960 Δ cm−1 band. Therefore, the bioapatite in both 
highly mineralized tissues is atomically more ordered than that in normal bone.

Most of the organic matrix in bone is collagen. The ν (C-C) aromatic ring stretch at 1003 Δ cm−1 for 
the phenylalanine component of collagen was detected only in the rat bone (Fig. 3A). This peak occurs 
in all normal bones28,30. In addition, amide peaks at 1245 Δ cm−1 and 1667 Δ cm−1 29 and a peak assigned 
to C-H bending at 1448 Δ cm−1 28,29 are present in rat bone (Fig. 2B) and confirm its organic matrix.

There is an envelope of peaks centered at about 2940 Δ cm−1 that indicate less specific C-H stretch-
ing vibrations of organic matter28,32. The dominant peak at ~2940 Δ cm−1 is very strong in normal bone 
matrix, but extremely weak to undetected in the rostrum and enamel. Based on the strength of the 2940 
Δ cm−1 envelope of peaks (Fig. 2B) and a previous calibration8, the rostrum’s organic content (excluding 
vascular areas) is about 4 wt.% and definitely higher than that of the enamel.

The spectrum of OHAP shows a strong peak at 3570 Δ cm−1, which is the symmetric O-H stretch of 
hydroxyl in apatite29. This peak is weak in the enamel but not detected in either rat bone or the rostrum 
(Fig. 2B), which is typical in Raman and IR analyses of bone13.

Mineral orientation and sample texture determined by synchrotron X-ray diffraction.  
Synchrotron X-ray diffraction analyses elucidate preferred orientation of mineral crystallites in the enamel 
and rostrum samples. The variation in intensity around the Debye ring of the 002 Bragg reflection was 
used to evaluate the extent of alignment, i.e., preferred orientation of crystallites. Figure 3 shows two typical 
2D diffraction patterns from the whale rostrum. They illustrate the range of variation in alignment, i.e., 
“sample texture,” with respect to the (002) plane at two positions showing maximum crystallite alignment 
(Fig. 3A, see arrow) and minimum crystallite alignment (Fig. 3B), which are spaced 1 mm apart within the 
transverse section of the rostrum.

Figure 2.  Raman spectra of rat ulna, whale rostrum, human enamel (outermost area), and OHAP. All 
peak strengths were normalized to the intensity of the 960 Δ cm−1 peaks. (A) 750–1200 Δ cm−1, (B) 1200–
3800 Δ cm−1.
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Figure 4 shows the result of integrating the intensity of the 002 reflections over 360o in a narrow band 
containing just the 002 reflection (e.g., an annular ring in Fig. 3A,B); these values were plotted versus the 
azimuthal angle for three individual spots. Figure 4 shows for each of the three traces two pronounced 
alignment maxima separated by approximately 180o, for one position in the outermost enamel and the 
two positions in the rostrum that are shown in Fig. 3B. The wider the FWHM of the azimuthal traces, 
the less is the preferred orientation (often referred to as “texture”) of crystallites in the sample. The whale 
rostrum is not as textured as outer enamel based on FWHM values: 38.4(3)o (rostrum, pink) vs. 25.4(1)o 
(enamel, green). Therefore, the outermost enamel shows greater preferred orientation of its bioapatite 
crystallites. Figure 4 also shows strong variation in the degree of crystal orientation within the rostrum, 
as illustrated by the much greater FWHM of 87.2(9)o of the second position (blue).

The FWHM was determined as a function of position for one track in the enamel, and for two 
tracks in the rostrum sample; both samples are longitudinal sections. For the rostrum, the distance was 
measured from the edge of the specimen piece, and for the enamel it was from the outermost surface 
(in the direction toward EDJ). The FWHM versus distance is presented in Fig. 5, where the magnitude 
of preferred orientation at each point is an average over a volume of 50 ×  50 ×  200 μ m. Figure 5 shows a 
periodic increase and decrease in magnitude of preferred orientation with a repetition every 0.3–0.5 mm 
across the longitudinal section of the rostrum. These length-scales suggest that each repetition cycle 
covers one or two osteons, whose diameters are 200–300 μ m. The relatively small values of FWHM 
indicate that the crystallites are relatively well organized/aligned inside of osteons. The relatively small 
variation in FWHM values across the full length of track 2 and most of track 1 indicates the repetition of 

Figure 3.  Debye rings of two spot analyses (1 mm apart) on the longitudinal section of the rostrum. 
The stronger (A) and weaker (B) intensity of the 002 reflection are indicated by arrows. The variation in the 
intensity around the Debye ring of the 002 reflection in the left image indicates preferred orientation of the 
crystallites.

Figure 4.  The intensity of diffraction versus azimuthal angle for the 002 reflection of apatite crystallites. 
The analyses were performed in a longitudinal section of human enamel (outermost region) and for two 
points in the longitudinal section of the rostrum.
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the pattern of the osteons. The sharp increase in values on the left end of track 1 in Fig. 5 demonstrates 
weaker preferred orientation than in most areas. Such lack of order may be due to the occurrence of 
primary osteons (with less well aligned collagen and crystallites) at this end of the track. The major part 
(~1 mm thick) of the enamel shows low and relatively constant FWHM values, but the values increase 
sharply near the EDJ. The outer 50–100 μ m layer of enamel has the highest FWHM. This is a region that 
is reported to be “prismless” in the technical dental sense, and therefore appears to have less crystallite 
organization33. It is also instructive to note that data for normal bone cannot even be plotted on Fig. 5. 
The bone crystallites show so little alignment that the 002 Bragg reflection does not have regular varia-
tions in its azimuthal intensity.

Electron microprobe (EMP) analyses.  The EMP technique gives precise in-situ chemical analyses of 
the rostrum and outermost region of the enamel, as the analyst can avoid vasculature in the rostrum and 
measure only areas above the enamel-dentin junction in enamel. Human enamel shows an average Ca/P 
ratio of 1.63, which is significantly less than both the 1.71 of the rostrum and 1.67 of OHAP (Table 1).

Compared to the rostrum, the outermost enamel shows lower Na, Mg, S, and F concentrations. The 
average composition of the rostrum has 1.5 wt.% Na2O and 0.8 wt.% MgO (Table 1), which are more than 
double the values of 0.7 wt.% Na2O and 0.3 wt.% MgO in the enamel. In addition, F and S are almost 
absent in the enamel, whereas the rostrum has 0.5 wt.% SO3 and 0.4 wt.% F. Chlorine is the only minor 
element that is more abundant in the enamel than in the rostrum. Potassium is extremely low in both 
samples. The weight percent sum of the analyzed inorganic components of the enamel is significantly 
higher than that of the rostrum, which in large part is due to different carbonate contents in the two 
materials: ~3 wt.% (enamel) vs. ~8 wt.% (rostrum)34,35. Because carbon was not analyzed directly in these 
samples, the carbonate-rich rostrum mineral will show an enhanced mass deficit. The outermost enamel 
and the rostrum therefore both have mineral contents of 96–97 wt.%.

Discussion
Their similar mineral contents (96–97 wt.%) and mineral species (CHAP) make the rostrum and out-
ermost enamel two comparable highly mineralized materials. Even though rare specimens of the whale 
rostrum and typical specimens of tooth enamel share approximately the same extremely high degree of 
mineralization, the bioapatite mineral component differs between them in composition, size, shape, and 
preferred orientation.

Compared to the rostrum, the chemistry of enamel is closer to that of standard OHAP in its minor/
trace elements and carbonate. The rostrum and outermost enamel show much more crystallite alignment 
than in typical bone. Synchrotron X-ray micro-diffraction shows a gradual increase in FWHM of 002 
azimuthal peaks of crystallites from the outermost region (the subject of the current study) downward 
to the EDJ36. Therefore, only the outermost region of the enamel has a degree of preferred orientation of 
crystallites (that form mineral rods at micrometer scale) that equals or exceeds that of the rostrum. The 
outermost enamel also has a higher degree of atomic order within its mineral (as assessed by FWHM of 
Raman peaks) and larger size of crystallites (assessed by XRD in Rogers and Zioupos, 1999).

Mineralogical properties are interconnected to each other in the rostrum and enamel: (1) greater 
crystal perfection (which also typically accompanies lower carbonate concentration) gives greater repro-
ducibility in characteristics such as size and shape. The crystallites in the outermost enamel are larger 
than those in the rostrum, but smaller than those in many types (depending on formation conditions) 
of synthetic OHAP4. The enhancement in crystallite perfection and size may account for the greater 

Figure 5.  FWHM of the 002 azimuthal peaks. The FWHM values are shown as a function of position 
(distance from edge) for two tracks within the longitudinal section of the whale rostrum, and for one 
track through healthy human enamel (from surface to EDJ). Repeated cycles of increase and decrease in 
magnitude of preferred orientation are shown by arrows for Track 2. Track 1 and Track 2 are 1 mm apart (as 
shown in the diagram inset).
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preferred orientation of crystallites in the outermost enamel with respect to the rostrum, as confirmed 
by the FWHM values in Fig. 5; (2) variations in the FWHM values for (002) azimuthal orientation in 
enamel correlate with variations in the chemistry of enamel37,38. Furthermore, the larger deviation of 
rostrum’s chemistry (see Table 1) could also be related to its larger FWHM values; (3) both the rostrum’s 
greater incorporation of trace/minor elements and its higher carbonate content could contribute to the 
lower degree of atomic order of the rostrum’s bioapatite34,39; (4) These mineralogical properties probably 
determine their mechanical properties, for example, the Vicker’s hardness is 220 for hypermineralized 
rostrum4 vs. 350–420 for enamel40.

A mineralogical view could shed light on, at least part of, two distinct pathways of rostrum’s and 
enamel’s formation. The apatite structure is capable of accepting a wide range of chemical substitutions. 
Such chemical substitutions change the properties of the mineral, such as its size, shape, and solubility2,10. 
Mineralogical control is imposed on the nature and extent of chemical substitutions in the bioapatite 
by the chemistry (composition, pH) of the solution from which the apatite precipitates. In addition, the 
cells and biochemical compounds in the tissues that give rise to the rostrum and enamel mineral can 
control the composition of the biomineral, but only to the extent that they control the chemistry of the 
apatite-precipitating fluid. The consequence of the tight linkage between the composition of a mineral 
(apatite) and its physical-chemical properties is that a desired change in shape, size, solubility, etc. is 
accomplished most straightforwardly by changing the precipitating fluid’s composition. However, attain-
ment of one set of desired characteristics brings with it all the other consequent features. For instance, 
platelet-shaped apatite is achieved by elevating the carbonate concentration in the apatite-precipitating 
fluid (even in the absence of any organic component), whereas apatite prisms elongated parallel to their 
crystallographic c-axes form only in solutions with much lower carbonate concentration41.

This issue of probable difference in the composition of the fluid from which rostrum apatite and 
enamel apatite grew may reflect the difference in matrix-mineral relations between rostrum and enamel. 
As described in the introduction, enamel mineralization does not occur within an existing, assembled 

# CaO P2O5 Na2O MgO SO3 K2O Cl F Ca/P Sum

E1
51.99 40.56 0.65 0.22 0.01 0.03 0.55 0.03

1.62 93.89
(0.2) (0.4) (3.1) (5.6) (124.9) (15.5) (1.2) (43.8)

E2
51.88 40.36 0.75 0.30 0.02 0.01 0.47 0.00

1.63 93.69
(0.2) (0.4) (2.8) (4.3) (32.9) (39.2) (1.4) (1038)

E3
51.75 40.05 0.81 0.35 0.01 0.01 0.42 0.01

1.63 93.31
(0.2) (0.4) (2.7) (3.8) (91.4) (31.7) (1.5) (204.4)

E4
51.94 40.17 0.76 0.35 0.02 0.01 0.45 0.04

1.64 93.64
(0.2) (0.4) (2.8) (3.7) (38.8) (36.2) (1.4) (37.2)

E5
52.19 40.46 0.69 0.25 0.01 0.01 0.51 0.00

1.63 94.01
(0.2) (0.4) (3.0) (5.0) (105) (30.1) (1.3) (− 149)

R1
48.60 35.58 1.40 0.87 0.49 0.03 0.04 0.28

1.73 87.29
(0.6) (0.5) (2) (2) (2) (12) (7) (6)

R2
47.65 35.30 1.44 0.81 0.48 0.02 0.04 0.31

1.71 86.08
(0.6) (0.5) (1) (2) (2) (17) (8) (5)

R3
48.17 35.82 1.50 0.80 0.54 0.02 0.04 0.35

1.70 87.27
(0.6) (0.5) (1) (2) (2) (14) (7) (5)

R4
48.65 35.66 1.66 0.82 0.42 0.04 0.04 0.20

1.73 87.55
(0.6) (0.5) (1) (2) (3) (10) (8) (8)

R5 48.57 36.16 1.41 0.88 0.74 0.03 0.05 0.61
1.70 88.48

(0.6) (0.5) (1) (2) (2) (11) (6) (3)

E
51.95 40.32 0.73 0.29 0.01 0.02 0.48 0.02 1.63 93.71

± 0.16 ± 0.21 ± 0.06 ± 0.06 ± 0.01 ± 0.01 ± 0.05 ± 0.02 ± 0.01 ± 0.27

R
48.33 35.70 1.48 0.84 0.53 0.03 0.04 0.35 1.71 87.33

± 0.42 ± 0.32 ± 0.11 ± 0.04 ± 0.12 ± 0.01 ± 0.00 ± 0.16 ± 0.02 ± 0.86

Table 1.   EMP quantitative analyses on the rostrum (R) and outermost human enamel (E) (N = 5). 
Average values are indicated in the two bottom rows in the table. The sum of the analyzed weight percents 
is shown in the last column. All values shown are in wt% except for the Ca/P atomic ratios. Data on the 
rostrum (average of eight spots on typical areas) is from Li and Pasteris, 2014. Numbers in parentheses show 
percent relative error.
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organic matrix, as occurs in bone formation. Rather, enamel’s mineralization occurs simultaneously with 
the self-assembly of the protein (amelogenin). As further noted by Margolis et al. (2014), the timing of 
the activity of mineral regulators (such as crystallization inhibitors) during biomineralization is critical to 
the nature of the mineral42. The timings of the beginning and the duration of matrix-mineral interactions 
clearly are very different for enamel and hypermineralized bone, even though both materials ultimately 
attain about the same degree of mineralization.

The biochemistry and cellular activity within the rostral and dental tissues cannot separate the phys-
ical functionality of the bioapatite from its inherent chemistry. If platelet-shaped apatite is needed to 
create the nanocomposite bone (as in the rostrum), then that apatite will contain about 5–8 wt.% car-
bonate29,43. If strong, hard apatite of relatively low solubility is required (as in enamel), then it will contain 
about 2.5–4 wt.% carbonate34. It has been reported that the incorporation of carbonate into the lattice of 
apatite leads to a smaller crystallite size2,10,39. Therefore, the lower-carbonate (compared to the rostrum) 
concentration of bioapatite in the outermost enamel probably permits its larger crystal sizes.

Conclusions
The rostrum and outermost enamel therefore share several important mineralogical features in mineral 
type, mineral content, and organized longitudinally oriented prisms/rods. However, the physical and 
chemical properties of the two highly mineralized tissues also show significant differences in degree of 
crystallinity, specific mineral composition, and degree of preferred orientation of prisms. Compared to 
the rostrum, the outer tooth enamel is a more homogeneous tissue with greater mechanical strength, 
lower incorporation of non-apatitic ions, and higher degree of preferred orientation of crystallites. The 
difference in composition of the two highly mineralized tissues could reflect differences in equilibrium 
between mineral and appropriate body fluid composition, blood plasma vs. saliva; therefore understand-
ing the mineralogical differences between the rostrum and enamel can help guide future studies about 
the biological mechanisms of mineralization in bone and tooth.

Materials and Methods
Preparation of the whale rostrum, human enamel, and rat ulna bone.  Rostrum material from 
an adult male whale (#1922–143) of species Mesoplodon densirostris was obtained from the Muséum 
National d’Histoire Naturelle in Paris, France. Portions of this same sample have undergone previous 
histological, chemical, and mechanical investigation8,35. For the present study, one 4 ×  2 ×  1 cm block was 
sawn from the original sample. A portion of this block was then embedded in epoxy, ground and polished 
for Raman spectroscopy and electron microprobe analysis. A 4 ×  2 ×  0.2 mm longitudinal section was cut 
from the block and polished for synchrotron X-ray diffraction analysis. Small particles (non-epoxied) 
released during sample preparation were collected for analysis by scanning electron microscopy.

A healthy human upper 1st premolar was taken with ethical consent from the tissue bank at the 
Institute of Dentistry, Queen Mary University of London, UK (QMREC2008/57). The informed consent 
was obtained from all subjects of the premolar. For the synchrotron X-ray diffraction measurements, the 
tooth was sawn into a 0.2 mm thick section parallel to the bucco-lingual plane using an Accutom-5 saw 
(Struers Ltd, Ballerup, Denmark) with a diamond-edged blade. The section was polished using silicon 
carbide paper. For scanning electron microscopy this specimen was then etched for 15 seconds in 35% 
orthophosphoric acid to remove the smear layer (most in dentin area), then washed with distilled water 
and left to dry under vacuum overnight.

Ulna bone from a post-pubescent rat and synthetic hydroxylapatite (OHAP) were analyzed by Raman 
spectroscopy for comparison with the rostrum and enamel. As the example of normal bone in this study, 
the ulna was fixed and dehydrated in graded alcohols and stored in 100% ethanol, and was sectioned 
using a diamond-edged blade to produce parallel sections of 50 μ m thickness. OHAP powder used in 
the study is 99.999% pure on a metal basis (Sigma-Aldrich® , St. Louis, MO).

In summary, the rostrum and human enamel were measured using all listed techniques. In distinction 
to the two primary specimens (rostrum and human enamel), rat ulna and OHAP were measured only 
by Raman spectroscopy. All samples were obtained and experiments were performed in accordance with 
relevant guidelines and regulations.

Instrumentation.  Electron microprobe analysis.  EMP analysis was performed with a JEOL JXA 8200 
Superprobe. Carbon-coated polished sections of rostrum and human tooth enamel (outermost region) 
were studied with an accelerating voltage of 15 kV. Quantitative point analysis was accomplished with a 
beam current of 25 nA and a beam diameter of 20 μ m. The elements F, Na, Mg, P, S, Cl, K, and Ca were 
selected for quantitative analysis by wavelength-dispersive X-ray spectroscopy (WDS). The calibration 
standards for the EMP analyses included natural geological minerals: Durango apatite (Ca10(PO4)6F2) for 
Ca, P, and F, albite (NaAlSi3O8) for Na, synthetic forsterite (Mg2SiO4) for Mg, anhydrite (CaSO4) for S, 
microcline (KAlSi3O8) for K, and tugtupite (Na4AlBeSi4O12Cl) for Cl. The spot analyses were randomly 
distributed throughout the transverse sections of enamel and rostrum.
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Field-emission scanning electron microscopy.  FE-SEM on the rostrum was applied using an FEI NOVA 
2300 system. The tooth enamel sample was observed using an FEI Inspect F50 (Oxford Instruments, 
UK). Both samples were sputter-coated with gold and were analyzed at an accelerating voltage of 5–20 kV.

Raman microprobe spectroscopy.  Raman spectra were acquired to observe vibrational modes that char-
acterize the rostrum, outermost enamel, normal bone, and OHAP. Analyses were performed with a 
fiber-optically coupled Raman microprobe (HoloLab Series 5000 Raman Microprobe, Kaiser Optical 
System, Inc.). The spectral region of 100–4000 Δ cm−1 was recorded using 532 nm excitation at 10 milli-
watts laser power on the sample surface. The diameter of the focused laser spot was ~1 μ m for all Raman 
spectra. Ten point analyses were made randomly on each sample (mineral-rich area) to avoid singularity, 
and each sample showed homogeneity of mineral peaks.

2D synchrotron X-ray micro-diffraction.  The samples were analyzed at the European Synchrotron 
Radiation Facility (ESRF) on the XMaS (BM28) beamline. An X-ray wavelength of 0.82 Å and a beam-
spot size of 50 ×  50 μ m were used. The rostrum and human enamel were mounted in transmission geom-
etry onto a sample holder able to move perpendicular to the X-ray beam in X and Y directions. The 
region of interest on each specimen was identified using a telescope focused on the center of rotation of 
the mounted sample, and co-ordinates were identified for tracking analyses. A 2048 ×  2048 pixel CCD 
detector was positioned approximately 200 mm behind the specimen in order to collect 2D diffraction 
images every 30 seconds36. Using the ESRF software package Fit2D, the variation in intensity of the 002 
Bragg reflection was plotted as a function of azimuthal angle around the Debye ring. The peaks were 
fitted with a Gaussian peak-shape, and the FWHM indicates the degree of alignment along the crystal-
lographic c-axis direction.
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