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The aim of this tutorial is to introduce the fundamental concepts of physiologically based pharmacokinetic/pharmacodynamic
(PBPK/PD) modeling with a special focus on their practical implementation in a typical PBPK model building workflow. To
illustrate basic steps in PBPK model building, a PBPK model for ciprofloxacin will be constructed and coupled to a
pharmacodynamic model to simulate the antibacterial activity of ciprofloxacin treatment.
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GENERAL INTRODUCTION TO PBPK MODELING
Overview of PBPK
In recent decades, different types of computational models

have been applied in drug development programs. PBPK

models combine information on the drug with independent

prior knowledge on the physiology and biology at the organ-

ism level to achieve a mechanistic representation of the

drug in biological systems, allowing the a priori simulation

of drug concentration–time profiles. Since PBPK models

explicitly consider different organs and tissues, it is possible

to obtain the quantitative characterization of concentration–

time profiles in the respective compartments. Such predic-

tion is of high pharmacological relevance since it enables

the estimation of drug exposure not only in plasma but also

at the site of action, which may be difficult or impossible to

measure experimentally.
A whole-body PBPK model (Figure 1a) contains an

explicit representation of the organs that are most relevant

to the absorption, distribution, excretion, and metabolization

of the drug due to their physiological/pharmacological func-

tion or their volume.1 These are typically heart, lung, brain,

stomach, spleen, pancreas, gut, liver, kidney, gonads, thy-

mus, adipose tissue, muscle, bone, and skin. The tissues

are linked by the arterial and venous blood compartments,

and each one of them is characterized by an associated

blood-flow rate, volume, tissue-partition coefficient, and per-

meability. A major advantage of PBPK modeling is the

availability of a comprehensive structural representation of

the physiology of an organism. The various parameters in

the model are either obtained from compilations of prior

knowledge or may be calculated from specific and carefully

validated formulas. From a general point of view, it is possi-

ble to distinguish between organism parameters on the one

hand and drug parameters on the other.
Figure 1b represents the hierarchical relationship of the

most important parameters in a PBPK model. The organ-

ism parameters are usually used as direct input in the mod-

el, representing the knowledge available a priori on the

anatomy and physiology. When dedicated software pack-

ages are used, such information is usually contained in the

database of the PBPK software available. By contrast, the

drug parameters in the model are related to the compound

partition coefficient and permeability across biological mem-

branes. In some cases such parameters can be measured

in vivo or in vitro, but most often they are estimated from

the physicochemical properties of the drug. In this context,

physicochemical parameters act as surrogate parameters

for the calculation of the compound distribution. For this

reason they can, in some cases, differ from the correspond-

ing measured value. This is particularly evident in the case

of lipophilicity, since this parameter is usually measured

under experimental in vitro conditions (e.g., octanol-water

partitioning) which do not match in vivo conditions in the

biological environment. Usually the calculation of membrane

permeabilities or partition coefficients is automatically per-

formed by the PBPK software. The latter parameters are

estimated from so-called distribution models quantifying

equilibrium between plasma and the surrounding tissue. As

an example, in Figure 1c the tissue and plasma concentra-

tions of theophylline estimated from its physicochemical

properties using different distribution models are illustrated.

As can be seen, the different models simulate different con-

centrations in the different organs; this point will be dis-

cussed in more detail in the section “Distribution models”

(below).
While passive processes can be calculated from such

model-based relationships, there is currently no similar meth-

od for a priori prediction of the kinetics of active processes

(e.g., metabolism, target binding, or active transport of the

drug). One way to quantify the contribution of different organs

to total clearance at the whole-body level is use of in vitro–in

vivo extrapolation.2 Furthermore, the relative tissue-specific

expression of genes or proteins might be considered.3 An

example of gene expression data is shown in Figure 1d,

where the relative expression normalized to the tissue with

the highest expression is represented for a group of enzymes,

in healthy individuals and cancer patients, respectively, as

well as for receptors and transporters in healthy individuals.
The PBPK models are composed of different types of

information that are combined during model building and
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that can be used to generate simulations of different treat-
ment scenarios. Such building blocks of information includ-
ed in the model can be divided into organism properties,
drug properties, and administration protocol and formulation
properties, respectively (Figure 2).

Organism properties are, for instance, organ volumes,
organ composition, blood flows, surface areas, and expres-
sion levels. Such properties are dependent on the species
or population considered. For example, in the case of spe-
cial populations (e.g., diseased or pediatric populations)
these organism properties take into account physiological
differences between the special populations and the healthy
adult reference population. By combining the drug proper-
ties with the anatomical and physiological features of the
organism, it is possible to estimate the parameters for pas-
sive processes involved in distributing the drug in the body,
such as, for example, permeation across membranes.

Drug properties include all parameters specific for the
compounds under study. Notably, physicochemical proper-
ties such as compound lipophilicity, solubility, molecular
weight (MW), and pKa values of a drug are fully

independent of organism physiology. Drug-biological proper-
ties (such as fraction of drug unbound, or tissue-plasma
partition coefficient), on the other hand, are drug-specific
but also defined by the interaction between the drug and
the biological system itself, so they are dependent on both
the drug and the organism properties.

Finally, information on the administration protocol and for-
mulation properties is needed to define a PBPK simulation.
Time-related special events such as gallbladder emptying
time or meal intake can also be included in the model and
their impact on drug PK can be evaluated with the model.

The use of complex full-blown PBPK models was recently
facilitated by the development of several commercial plat-
forms that integrate physiological databases and implement
PBPK modeling approaches, such as GastroPlus (Simula-
tions Plus, Lancaster, PA), SimCyp (SimCyp, Sheffield,
UK), and PK-Sim and MoBi (Bayer Technology Services,
Leverkusen, Germany). These commercial PBPK modeling
platforms provide a generic model structure for the physiol-
ogy of predefined species and populations. They all include
physiological databases that are combined with compound-

Figure 1 (a) Representation of the generic structure of a whole-body PBPK model. (b) Hierarchical representation of the main physio-
logical and drug parameters in a PBPK model. (c) Simulation of drug concentrations in different tissues using different distribution mod-
els for theophylline. This illustrates the impact of the choice of the distribution model on the simulated tissue concentration profiles
even though corresponding plasma concentrations are very similar. (d) Example of relative gene expression data for a group of
enzymes (in healthy and cancer patients), receptors, and transporters. Gene expression is represented as relative value obtained
through normalization to the tissue or organ with the highest expression.
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specific information as well as biometric data, and are used

to parametrize a PBPK model on a whole-body level.
In previously published tutorials, Jones and Rowland-Yeo4

introduced some of the basic concepts of PBPK as well as

the use of PBPK in drug discovery and development, while

Maharaj and Edginton5 described the use of PBPK in pediat-

ric clinical development. The aim of this tutorial is to cover

the fundamental concepts of PBPK/PD models, focusing on

their practical implementation in a typical PBPK model build-

ing workflow. In the next sections an overview of the infor-

mation contained in the different building blocks of the model

(section “Building blocks in PBPK modeling”) will be pre-

sented and then the different parameters included in the

model structure will be discussed in more detail (section

“Passive and active processes”). Finally, practical guidance

on the different steps of the model-building process will be

provided (section “Best practices in PBPK model building”)

and an example of PBPK/PD model will be discussed (sec-

tion “Case study: Building a PBPK model for ciprofloxacin”).

Applications of PBPK modeling
Computational models provide an ideal platform for knowl-

edge management since they offer the opportunity to collect,

integrate, analyze, and store information. Ideally, in an

integrative and iterative workflow such models can be used to
generate working hypotheses from simulations. In turn, these
hypotheses can then be tested in specifically designed
experiments that may lead to a better understanding of the
underlying processes and a refinement of the model. In the
case of pharmaceutical applications, the main goals of PBPK
modeling include (Figure 3): generating and testing a mecha-
nistic understanding of the physiological processes that gov-
ern an observed drug behavior; translating the understanding
to novel settings (e.g., to a different population); identifying an
ideal therapeutic regimen; and optimizing risk–benefit ratios.
In fact, any deviation between the model simulation and the
data can provide insights into the mechanisms of the underly-
ing processes that may not yet be reflected in the existing
model.

Another important application of PBPK models are
extrapolations to novel clinical scenarios such as different
treatment schedules or patient subgroups. Notably, transla-
tion to novel therapeutic designs can usually be achieved
by only changing single or limited sets of parameters.
Extrapolations to different species or specific populations,
in contrast, require knowledge of the sets of parameters
characterizing the physiological properties of the species or
particular patient cohort of interest.6

Figure 2 Representation of the general building blocks which can be part of a PBPK model. Some components may be optional
depending on the model considered.
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Typical applications of PBPK modeling include but are

not limited to:

• Pediatric extrapolations,5,7 where, with the support of the

US Food and Drug Administration, a reference PBPK

model for an adult population is scaled to specific life

stages in children.
• Extrapolations to diseased populations, e.g., hepatically

impaired cirrhotic patients.8

• Evaluating the effect of possible drug–drug interactions

(DDI), e.g., by considering competitive inhibition of a

metabolizing enzyme.9

• Scaling between different treatments scenarios by simu-

lating specific dosing schemes.10

• Assessing the impact of different drug formulations by

modifying corresponding compound/formulation

parameters.11

Advanced applications include cross-species extrapola-

tion,12,13 multiscale modeling,14–16 and statistical modeling

using methods such as Bayesian approaches.17

Pharmacodynamic modeling
PBPK models offer a mechanistic framework to quantify the

pharmacodynamic (PD) effect of a drug through coupling to

simulated on- and off-target tissue concentrations. The final

result in this case would be a PBPK/PD model. An example

of such a model is discussed in the ciprofloxacin case
study presented in section “Case study: Building a PBPK
model for ciprofloxacin” of this tutorial. Since different
organs are explicitly represented in PBPK models, on- and
off-target tissue exposure can be directly quantified. This
enables a consideration of therapeutic or toxic effects by
coupling of PD to the corresponding PBPK models. To this
end, tissue concentration profiles simulated with PBPK
models may be used as input for downstream PD models.
Notably, this coupling of PK and PD results in a multiscale
PBPK/PD model that simultaneously describes drug ADME
at the whole-body level and the resulting drug effect at the
cellular or tissue scale.

In the simplest case, PD models may represent simple pro-
liferation models quantifying, for example, bacterial growth in
infection biology18 or tumor growth in oncology.19 Given the
ever-growing number of systems biology models at different
scales of biological organization, the PD disease or toxicity
models may be largely expanded. Examples of such detailed
PBPK-based models include glucose-insulin regulation in dia-
betes,10 management of endometriosis,20 acetaminophen
intoxication,15 drug-induced liver, injury21 or model-based
design and analysis of antithrombotic therapies.22 Ultimately,
such PBPK/PD models aim for a mechanistic and physiologi-
cal representation of systems interactions within the body,23

thereby providing an important toolbox for disease or toxicity
modeling in quantitative systems pharmacology.

Figure 3 Schematic representation of the most common applications of PBPK modeling.
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BUILDING BLOCKS IN PBPK MODELING
Anatomy and physiology
The physiology of the organism of interest is essential prior
knowledge in PBPK modeling and relevant organs are
explicitly included in the model. Each organ is represented
by its anatomical and physiological properties; for example,
volume, tissue composition, and perfusion blood flow rates.
Furthermore, in some cases each compartment can be fur-
ther divided into subcompartments, such as plasma, inter-
stitium, cellular space, and red blood cells. Structurally,
these subcompartments are the lowest level of structural
differentiation in PBPK models and, for example, enzymatic
processes can be localized in the relevant intracellular com-
partment to which the extracellular space can be connected
by passive diffusion and additionally by active drug trans-
port, where required. Without subcompartmentalization cer-
tain effects such as permeation limited metabolization
within the liver may not be represented. Blood flow governs
mass transfer within the body, and its rate is specific to each
organ. Where necessary, a more detailed mechanistic
description of a subset of organs can be included in the
model; for instance, to obtain a more accurate description of
the distribution in the brain,24 liver,25 kidney,26,27 or lung,28 or
describe in detail the process of intestinal absorption.29–31

Generally, two blood compartments, arterial and venous
blood, connect the organ compartments in a PBPK model.
Yet in clinical practice it is common to sample blood only
from the superficial veins of patients, e.g., the antecubital
vein. Thus, the measurements collected in peripheral veins
present a concentration that may differ significantly from
both arterial and central vein compartments, making the
comparison of model predictions with collected data diffi-
cult. To solve this discrepancy, Levitt32 proposed a model in
which an additional organ representing the tissues drained
by the antecubital vein was added such that the concentra-
tion in the peripheral venous blood can be described.
Based on this model, a peripheral venous blood compart-
ment has also been included in some PBPK software
tools.12,33

Gastrointestinal transit and absorption models. For an orally
administered drug, a combination of physiological, com-
pound, and formulation-related aspects comes into play.
These affect the relevant parameters such as solubility, dis-
solution rate, and intestinal permeability.

From a general perspective, the gastrointestinal (GI) tract
can be divided into several segments based on their ana-
tomical and functional role: stomach, small intestine (duo-
denum, upper and lower jejunum, upper and lower ileum)
and large intestine (cecum, colon ascendens, colon trans-
versum, colon descendens, sigmoid, and rectum). Each of
these segments can be further divided into zones repre-
senting the lumen and gut wall, which can in turn be divid-
ed into mucosal and nonmucosal tissues. The separation of
the mucosal tissue from the remaining part of the gut wall
allows the absorption processes to be described in a realis-
tic manner, reflecting the localization of active processes
such as gut wall metabolism in the respective tissue.34

After oral administration, the drug is transported along
the lumen of the intestine according to a transit function. It

can enter the mucosa of the corresponding segment either
by the transcellular route (passing via the enterocytes into
the intracellular space) or by paracellular diffusion into the
interstitial space of the mucosa. The paracellular route has
been shown to contribute significantly to the overall intesti-
nal absorption of a few small molecules such as acyclovir,
cimetidine, and ranitidine.29 However, the paracellular route
is in general considered to contribute only marginally to the
intestinal absorption, mainly due to the small surface area
fraction that allows paracellular permeation.35 During the
transit through the lumen, the maximum concentration of
the drug might be limited by the local pH-dependent GI sol-
ubility, which can be calculated using the Henderson–
Hasselbalch equation. The intestinal pH will also affect the
degree of dissociation of the compound, and consequently
the relative concentration of neutral vs. the charged form(s).
In this case, the charged molecules have a lower perme-
ability than the neutral form, and this should be also
accounted for in the model.36

Drug properties
The second major type of input into PBPK models are
compound-specific parameters. These include the physico-
chemical parameters of the compound (e.g., MW, lipophilic-
ity, solubility, and pKa values) that can usually be
determined in vitro. Lipophilicity is a key parameter that,
together with the MW, is used to calculate the membrane
permeability of a drug. The MW is, in this context, a surro-
gate measure for the size of the molecule. Since halogen
atoms in particular contribute less to the molecular volume
than expected from their atomic weight, a correction term
can be applied to obtain an effective MW, which is a better
representation of the size.36 Particularly relevant for oral
administration, drug solubility determines the availability for
absorption of a compound in the GI tract, while pKa values
are used to calculate pH-dependent changes in drug solubili-
ty. Pharmacokinetic parameters, such as fraction unbound,
are likewise compound-specific, yet they also depend on the
organism. These basic values are frequently used together
with physiological parameters to calculate other parameters
that are much more difficult to measure but can be used
immediately to quantify the drug mass balance in PBPK
models. For example, tissue–plasma partition coefficients
quantifying the distribution of a compound are calculated
from MW, lipophilicity, fraction unbound, and pKa values,
depending on the distribution model used (see below). Frac-
tion unbound, the fraction of a drug not bound to plasma
proteins, strongly influences drug distribution and clearance
since only the available free fraction of a compound diffuses
into cells, where it might be metabolized. Also, only the free
fraction of a compound is filtered for renal excretion. The
fraction unbound can either be measured experimentally,
estimated from the drug concentration, or predicted from the
lipophilicity of the drug, respectively.37 Notably, all the afore-
mentioned compound-specific parameters contribute to the
quantification of passive processes such as membrane per-
meation and organ/plasma partitioning. On the other hand,
key parameters for quantifying active processes such as
enzymatic activity (Vmax) must be obtained by a comple-
mentary approach. For example, parameters for an active
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process can be determined in vitro or fitted from in vivo data
and then converted to the enzymatic rate or a different
parameter.

Formulation
The development of oral dosage forms for new chemical
entities is often the favored option in drug development.
The design and development of such formulations can be
supported by accurate mechanistic models that can simu-
late in vivo bioavailability. In vitro dissolution profiles in bio-
relevant media, such as the Fasted State Simulated
Intestinal Fluid (FaSSIF) and the Fed State Simulated
Intestinal Fluid (FeSSIF), have been established. When
used in standardized in vitro dissolution test methods, such
media allow simulating the in vivo disintegration and disso-
lution behavior of orally administered dosage forms.38 This
dissolution profiles together with drug PK profiles can be
used to establish an in vitro–in vivo correlation (IVIVC).
Such correlation enables the estimation of in vivo concen-
tration PK profiles from the in vitro dissolution profiles of dif-
ferent formulations, providing a tool for optimizing the
administered dosage form with a minimal number of in vivo
animal experiments or clinical trials.39

As an alternative to a direct correlation between in vitro
and in vivo concentrations, it is possible to include dissolu-
tion functions in the GI compartments of PBPK models to
account for the disintegration and dissolution processes in
the GI tract.40 The inclusion of such dissolution profiles in
GI physiological models and their combination with whole-
body PBPK models has been described in the literature.30

Routes of administration and administration protocols
The administration protocol includes the (1) route of admin-
istration, (2) amount of compound (dose), and (3) an
administration scheme for multiple dosing. Usually, when
comparing model simulation to available data, the adminis-
tration protocol used in the model will match the one used
in the study for which the data are under evaluation.

Various routes of administration can be considered in the
model. This will define how the drug is absorbed and, part-
ly, how it will be distributed in the body. Common adminis-
tration routes are intravenous (i.v.) and oral (p.o.)
administration, but also alternative routes such as inhala-
tion, subcutaneous, intramuscular, topical, or ocular admin-
istration are used in PBPK models. Apart from i.v., when
considering other administration routes, also mechanistic
consideration related to local drug release and absorption
from the administration site should be included in the PBPK
model, for instance to describe the progressive drug
release and diffusion from the injection site after intramus-
cular administration.

PASSIVE AND ACTIVE PROCESSES

In PBPK modeling, physiological parameters provide the
structural scaffold of the model, but active and passive pro-
cesses describe the actual distribution, excretion, and
metabolization of the drug (mass balance). The most
important passive processes are tissue permeation and
organ/plasma partitioning. The underlying processes are

calculated from substance-specific surrogate markers, such
as lipophilicity, to obtain, for example, permeability or parti-
tion coefficients. Different concepts for quantifying passive

and active transport processes are described in the follow-
ing sections.

Estimation of passive processes from physicochemical
properties for small molecules
Distribution models. Small molecules can generally pene-
trate all kinds of tissues in the body. Experimentally, the
quantification of this compound-specific distribution is very

labor-intensive.41,42 A major advance in PBPK modeling
came with the use of calculation methods for organ/plasma
partition coefficients, which describe steady-state ratios of
the concentrations in the blood or plasma and the sur-
rounding tissue. Various concepts for mechanistic correla-
tions have been developed for the in silico estimation of
organ/plasma partition coefficients. Based on tissue compo-

sition, these coefficients can account for the distribution
between drug-binding tissue constituents, such as proteins
or lipids, on the one hand, and water on the other. Although
the principles are very similar in all cases, the calculation
methods deviate with respect to the kind of parameters
used and resulting in different values of tissue concentra-

tion (Figure 1c). All known partition coefficient models
assume that tissue is composed of a limited number of
components, and they all include partition coefficients for
water/protein and lipid/water. These two partition coeffi-
cients are usually calculated from so-called surrogate in
vitro measurements. The total organ/plasma partition coeffi-
cient is then calculated as a weighted sum of the partition

coefficients for all of the components; the weights are the
volume fractions of each component. Importantly, the distri-
bution of a drug within aqueous and organic tissue compo-
nents is always assumed to be homogenous and passive.
The most widely used concepts for calculating organ/
plasma partition are briefly introduced below:

• Poulin et al.43,44 calculate the lipo-hydrophilicity of tissue
as a mixture of neutral lipids, phospholipids, and water. In
addition to the volumetric tissue composition, fraction
unbound (fu), lipophilicity (logP and logD), and pKa are

used as compound-specific input parameters. Here as
well as in all the following concepts for the calculation of
organ/plasma partition coefficients, fu quantifies specific
reversible binding to proteins in plasma and tissue,
whereas lipophilicity accounts for nonspecific binding to
lipids.

• Rodgers et al. extended the concepts of Poulin et al. to

electrostatic interactions at physiological pH.45,46 These
include binding of ionized and unionized drugs to acidic
phospholipids and neutral lipids, respectively. Also elec-
trostatic drug interactions with extracellular proteins are
taken into account. Consequently, the partition coeffi-
cients are calculated taking into account the lipophilicity
and pKa value of the drug and the pH values of the

tissues.
• Berezhkovskiy47 modified the calculation method by Pou-

lin et al. by accounting for peripheral drug elimination that
results in a different volume of distribution.

Applied Concepts in PBPK Modeling
Kuepfer et al.

521

www.wileyonlinelibrary/psp4



• Willmann et al.48,49 extended the concept of Poulin et al.
by additionally considering proteins as a tissue compo-
nent. Moreover, Willmann et al. use membrane affinity
(logMA)50 to quantify partitioning between water and an
artificial cellular membrane as a measure for lipophilicity
by using an empirical equation.51 This model is imple-
mented in the PK-Sim software as the PK-Sim standard
distribution model.

• Schmitt52 developed a method for calculating the organ/
plasma partition coefficient for organic compounds, by
compartmentalizing tissue as water, neutral lipids, neutral
phospholipids, acidic phospholipids, and proteins. This
concept accounts in particular for electrostatic interac-
tions between charged molecules at physiological pH and
acidic phospholipids. Also for this distribution method, the
partition coefficients are calculated taking into account
the lipophilicity and pKa value of the drug and the pH val-
ues of the tissues.

As shown in Figure 1c, different distribution models can
be used to describe similar plasma concentration profiles of
the drug but, because of the intrinsic nature of the models,
they will generate different tissue concentrations. If tissue
concentrations for the drug are not collected, when assess-
ing target site drug exposure it should be kept in mind that
the selection of the distribution model represents a funda-
mental assumption during model development. An inherent
uncertainty should hence be taken into account in the pre-
dictions. Ideally, different distribution models should be
available during model development to allow for full struc-
tural flexibility in this regard. It should be kept in mind that
Figure 1c represents a specific example for the theophyl-
line molecule, and it should not be used to draw any con-
clusion concerning comparison of distribution models and
tissue predictions since the simulated concentrations are
largely dependent on the drug parameters used as input.

Permeability models. Diffusion across the vascular wall
from plasma to interstitial space of the organs or diffusion
across the cellular membranes of tissue cells or red blood
cells determines how fast drug distribution takes place and
can be rate limiting for distribution (permeation limited kinet-
ics). In general, the diffusion across the vascular wall is
assumed to be fast for small molecules. However, this
assumption might not hold true for drugs with high protein
binding or which are highly hydrophilic.53 Also in the case
of large molecules (e.g., protein therapeutics) this assump-
tion does not hold true (cf. section “Passive and active pro-
cess for large molecules”).

The cellular membrane is the diffusion barrier between
interstitial space and intracellular space or between blood
plasma and blood cells. The rate constant describing the
diffusion across the cellular membrane can be written as
the product of the drug permeability (P) and the effective
surface area (SA) of the cells. Methods to calculate the
drug-specific permeability depending on physicochemical
properties like lipophilicity and MW can be found in the liter-
ature.54,55 In order to calculate the effective surface area
for different organ volumes, allometric scaling equations
can be used.56

An important consideration in calculating the rate and

extent of intestinal drug absorption is the intestinal perme-

ability. There are several experimental techniques that are

able to provide a relatively reasonable assessment of the

intestinal permeability, e.g., artificial membranes,57 “intestine-

like” cell lines (e.g., Caco-2 or MDK),58,59 Ussing chambers,60

and in situ rat intestinal perfusion techniques (e.g., single-

pass intestinal perfusion).61 In humans, effective permeability

in different regions of the intestine can be measured using

single-pass perfusion methods.35 An alternative approach for

establishing the intestinal permeability is to use the physico-

chemical properties as a basis for calculations.1 Several

models are available for this approach; for instance, the mem-

brane affinity of a compound (defined as its equilibrium parti-

tion coefficient for water and immobilized lipid bilayers) and its

effective MW can be used for such calculations, using a semi-

empirical equation.51

Estimation of active processes for small molecules
Active processes allow the inclusion of additional mechanis-

tic details in PBPK models, since they can frequently be

assigned to biochemical processes at the molecular scale.

Examples of such processes are metabolization reactions,

in which a molecule is transformed and modified, as well as

transport processes, in which a compound is actively taken

up or secreted into a specific tissue compartment. Quantifi-

cation of active processes follows different concepts than

the ones of passive processes, relying on either careful

extrapolation of in vitro results to an in vivo situation or

knowledge-based adjustment of parameters that are difficult

to measure experimentally. In general, all clearance pro-

cesses presented can be formulated as, for, instance first-

order clearance kinetics or Michaelis–Menten kinetics. The

Michaelis–Menten kinetics are often used to describe pro-

cesses that can be saturated by the substrate concentra-

tions; its equation is the following, with v representing the

reaction rate, Vmax the maximum reaction rate, Km being

the Michaelis–Menten constant and the substrate concen-

tration [S]:

v5
Vmax � ½S�

Km1½S� (1)

If [S] is significantly lower than Km, elimination kinetics can

be considered linear (first-order process) and the rate con-

stant for the clearance process can be approximated by the

ratio Vmax/Km.
Parameters included for active processes are typically

rate constants for elimination or active transport processes

(e.g., intrinsic hepatic clearance, Michaelis–Menten param-

eters Km and Vmax, or parameters describing specific bind-

ing, for instance, to a receptor kon and koff). Examples of

such processes are metabolic elimination related to a par-

ticular enzyme, or transporter activity or drug distribution

due to binding partners. Parameters that define active pro-

cesses are usually extrapolated based on in vitro measure-

ments,62,63 when the necessary extrapolation factors for

measurement settings are available, or fitted using in vivo

data.64 In vitro–in vivo extrapolation (IVIVE) can be applied
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to the different stages of absorption, distribution, metabo-

lism, and excretion (ADME) processes.

Intrinsic and total plasma clearance. Clearance is generally

used to quantify elimination rates in liver, kidney, or other

organs. At the body level, total plasma clearance (CLtot, i.e.,

volume of plasma cleared per time unit) describes the sum

of multiple clearance processes that occur simultaneously

within multiple organs. Here, CLtot is the apparent rate at

which a compound is removed from the systemic circulation.

In PBPK modeling, the relative contribution of each organ to

CLtot can be further differentiated by quantifying the specific

elimination rate in each organ. In this case, the intrinsic

clearance CLint is used to quantify the intracellular activity of

a metabolizing enzyme in different organs.65

In vitro–in vivo extrapolation of clearance. For liver clear-

ance, numerous in vitro assays are available to estimate

the enzymatic activity, and this clearance needs to be

rescaled to the whole-organ in vivo situation. For example,

activity can be derived from recombinant cytochromes,

human hepatocytes, or human liver microsomes. For an

IVIVE, the experimentally measured specific activity needs

to be multiplied by the amount of catalyzing agent (amount

of cytochrome, number of hepatocytes, or amount of micro-

somal protein) per gram of liver tissue to obtain the specific

intrinsic clearance per gram of liver. The ratio of Vmax/Km

describes the intrinsic metabolic clearance for unsaturated

conditions, which can be derived from in vitro studies in

human liver microsomes. In the past, IVIVE was routinely

conducted based on mean data disregarding interindividual

variability. As an alternative approach, it has been proposed

to estimate enzyme abundance and its variability, measured

by immunoquantification, to allow a direct extrapolation to

the population level.66,67

The second main clearance route in the body is usually

renal secretion. Total renal clearance can be derived from

the fraction of a drug secreted in the urine. This value can

be further differentiated into glomerular filtration, which

describes the passive filtration rate of urine in the kidney,

and tubular reabsorption and tubular secretion, which are

driven mainly by active transport.

Protein abundance in active processes. Although the liver

and kidney are the key secretory organs of the body, the

expression of many enzymes and drug transporters is not

limited to these two organs. One way to quantify the contri-

bution of different organs to the total clearance at the

whole-body level is to consider the relative tissue-specific

expression of genes or proteins. Recently, a generic

approach was proposed whereby gene expression is used

as a surrogate for tissue-specific protein abundance in

PBPK modeling.3,12 The catalytic activity of each process is

generally quantified for each organ by Vmax (lmol/l/min).

Notably, Vmaxj is the product of the catalytic efficiency kcat

(1/min) and the overall concentration of the catalyzing pro-

tein E0,j (lmol/l) in the corresponding organ j:

Vmaxj 5kcat � E0;j5kcat � E0 � erel ;j 5kcat� � erel ;j (2)

This reformulation allows describing the tissue-specific
abundance of an enzyme or transporter (E0,j) as the prod-
uct of its overall concentration, Eo, and its relative expres-
sion, erel,j, in a specific organ j. While Eo is obviously not
accessible experimentally, relative expression profiles (erel,j)
across different tissues may be obtained from public data-
bases.3 In the above equation, kcat* is a new parameter
that combines the catalytic efficiency kcat and the overall
concentration Eo. This parameter needs to be estimated
through parameter optimization. Moreover, it should be not-
ed that this reformulation reduces significantly the number
of independent model parameters, since only a single
parameter (kcat*) needs to be considered instead of
assigning a catalytic efficiency Vmaxj separately for each
organ. Please note also that the relative tissue-specific
abundance of an enzyme or a transporter may be approxi-
mated either through gene or protein expression, respec-
tively,3 even though correlations of both are a matter of
debate. This is because any posttranscriptional effect can
be assumed to be largely protein specific, as such only
impacting kcat*. The use of expression data to quantify
relative tissue-specific catalytic efficiency represents a com-
plementary approach to the IVIVE of clearance process-
es.68 Likewise, drug elimination in first-pass organs such as
liver, lung, or GI as well as other organs can be described.

Figure 1d shows the relative gene expression for a
group of enzymes, receptors, and transporters in healthy
individuals or cancer patients, respectively. Note that the
relative expression is dimensionless following normalization
to the tissue with the highest expression. As expected,
cytochrome P450 expression is consistently largest in the
liver and the intestines, while receptor expression is rather
ubiquitous. In turn, transporter availability is similar to cyto-
chrome P450 with an occasional small contribution in the
kidney (MRP2, BCRP). Interestingly, CYP2D6 expression is
higher in the large intestine than in the liver in two indepen-
dent measurements (healthy subjects and cancer patients).
To validate this observation protein expression data from
the literature could be alternatively used for model building,
instead. Only a limited number of organs or tissues are rep-
resented for illustration.

Receptor availability. The above-described concepts use
expression data to quantify catalytic efficiency but they are
applicable to both enzymatic processes and drug transport-
ers as well. Notably, the approach can immediately also be
applied to estimate the abundance of receptors for different
drugs, including antibody-drug conjugates.69 Thus, the
availability of specific drug binding partners can be quanti-
fied simultaneously in multiple organs; this has enormous
potential for mechanistic consideration of target-mediated
drug disposition or clearance, as well as on/off-target
effects.

Passive and active processes for large molecules
Therapeutic proteins are an increasingly important class of
drugs.70 PK/PD modeling of therapeutic proteins differs
from those of small-molecule drugs, mainly due to the dif-
ferences in size.71–73 PBPK models as well must therefore
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take into account the special mechanisms that govern the

pharmacokinetics of protein therapeutics, mechanisms that

can often be neglected for small molecules. Both the

exchange of drug across the vascular endothelium and the

return of drug by the lymph flow from the interstitial space

of the organs to the systemic circulation are important phe-

nomena for therapeutic proteins. These two processes

influence the volume of distribution for proteins, and are

generally considered in PBPK models of therapeutic

proteins.74–84

Published PBPK models use various approaches to

describe the extravasation of protein therapeutics. One

commonly used is the two-pore formalism,85,86 which con-

siders the barrier between the plasma and the interstitial

space as a membrane consisting of two types of pores: few

large ones and many small ones. Macromolecules are

assumed passing through these pores by convection as

well as by diffusion; convection being the predominant

extravasation mechanism for large protein therapeutics

such as antibodies or albumin.
Another relevant process for antibodies or other proteins

(e.g., albumin fusion proteins) is the catabolism within

endosomal space and the protection from catabolism by

neonatal Fc receptor (FcRn), which is also often taken into

account by more recently published PBPK models.76–84

In describing the lysosomal degradation of drugs and

their recycling by FcRn, the organ representation used for

small molecules is usually extended by adding a compart-

ment for the endosomal space. This space represents the

region within the endothelial capillary walls where catabo-

lism and high-affinity binding to the FcRn occurs (acidic

environment). The fraction of drug that is bound to FcRn is

recycled to the plasma and interstitial space, whereas the

unbound fraction is subject to endosomal clearance. Addi-

tional processes can also be important and implemented if

needed. Examples include target-mediated disposition and

clearance84 and immunogenicity.87,88

BEST PRACTICES FOR PBPK MODEL BUILDING

Due to increasing application of PBPK modeling in drug

development and regulatory submissions, there have been

recent efforts by regulatory agencies, industry, and aca-

demia to discuss and develop best practices for establish-

ing as well as reporting of PBPK modeling.89–94 In this

section, general recommendations for PBPK model building

are provided (for information specific to applications for

pediatric populations, see Refs. 5,95).

Compilation of available data and information
As a first step in model development, all available informa-

tion on the drug regarding its ADME properties are gath-

ered. This includes the drug-specific parameters, which are

used as input parameters, and the characterization of the

organism or population. Default physiological parameters

should only be changed if there is a mechanistic rationale,

for instance, in the case of special populations. The physi-

cochemical drug properties (see section “Drug properties”)

are necessary parameters to inform the drug distribution.

Besides these parameters, any further ADME information
regarding, for instance, clearance processes, transporters,
or specific binding partners are relevant in order to build
physiologically plausible models. The appropriate level of
detail in representing the relevant processes and the crite-
ria for model evaluation depend on the particular aims,
objectives, and applications of the model as well as on
availability of data and information. Available experimental
PK data are used to identify unknown or uncertain parame-
ters as well as for model validation. Depending on their
availability, data commonly used in PBPK model building
includes time–concentration profiles of the drug in the plas-
ma (for different preclinical species and/or humans, differ-
ent application routes, different dosages, or applications
schemes), time–concentration profiles of the drug in rele-
vant tissues, the percentages of drug excreted via the urine
and feces, mass balance data, and metabolites data (time–
concentration profiles, excretion data). A scheme of the
PBPK model-building workflow for small molecule drugs is
provided in Figure 4.

Establishment of the PBPK model for i.v.
administration
As a first step, a method for calculation of organ/plasma
partition coefficients, frequently referred to as distribution
model, needs to be chosen to describe the drug distribution
behavior. The distribution model selected for a certain com-
pound should be able to consistently describe the com-
pound distribution independently of the considered species
or administration protocol. By comparing simulations with
PK measurements in vivo after i.v. administration, different
distribution models can be compared and clearance param-
eters can be estimated. The clearance parameters can be
estimated from experimental in vivo data, i.e., plasma
concentration–time profiles. Additionally, mass balance data
might be used if different elimination pathways should be
informed. Rates for metabolism processes might also be
estimated using IVIVE approaches (see section “In vitro–in
vivo extrapolation of clearance”). Surrogate compound
parameters, like lipophilicity, are usually slightly adapted at
this stage to obtain a good agreement with experimental
i.v. data. There are no established rules regarding the
extent of change that is reasonable, since this also
depends on which lipophilicity measure is used as starting
value. Even though a PBPK model may comprise several
hundreds of ordinary differential equations, the number of
independent model parameters for a new compound is usu-
ally small (in most cases, fewer than five per compound),
due to the large amount of prior, independent physiological
information that is incorporated (Figure 1b). As in the case
of the distribution models, also these compound-specific
parameters are usually kept unchanged across different
species or administration protocols. If the selection of distri-
bution models and adjustment of parameters are not suffi-
cient to describe the i.v. data, this can be an indication that
relevant processes are not yet taken into account in the
model. In such cases, for instance, active transport or bind-
ing partners can be incorporated based on current knowl-
edge or as testable hypothesis. Such additional processes
might also be needed to explain features such as dose
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nonlinearity, the observed extent of clearance, or the drug

distribution. When introducing additional processes, it is

best to include as much experimental data as possible

(e.g., Km and Kd, values, abundance of enzyme, binding

partner). It should be noted that data for different doses

have to be available (showing dose-nonlinearity) in order to

be able to identify Michaelis-Menten parameters, e.g., for

transporters or clearances.

Establishment of the PBPK model for oral

administration
Once an i.v. model is established, a model for p.o. adminis-

tration (or for other extravascular routes) can be estab-

lished. In this step none of the parameters that influence

distribution or metabolism/excretion should be further modi-

fied and only those parameters that influence the oral

absorption should be varied. Typical parameters to be esti-

mated during development of a p.o. model are intestinal

permeability and parameters related to meal events. In

addition, formulation-related parameters describing drug

release as well as solubility might be adjusted, especially if

aqueous solubility rather than FaSSIF and FeSSIF solubility

were used as starting values. After that, additional

absorption-related processes, such as enterohepatic recy-

cling (EHC), might be included if relevant for the drug under

consideration. The stepwise approach of i.v. and p.o. (or

any extravascular administration) model building is described

to stress that during the establishment of a model including

Figure 4 Flowchart illustrating the steps usually used in PBPK model building.
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drug absorption, the information regarding distribution and

clearance processes from the i.v. data should be used in

order to be able to identify the parameters relevant for

absorption. Note that in some cases the proposed strictly con-

secutive building of i.v. and p.o. PBPK might not be the best

approach; for instance, if the i.v. model incorporates process-

es that are also relevant for oral absorption, e.g., uptake

transporters. In such cases, it might be preferable to perform

parameter identification using the i.v. and p.o. data

simultaneously.
As mentioned, i.v. data are highly valuable, since they

allow informing distribution and clearance processes inde-
pendent from the drug absorption. Depending on the
modeling purpose and the needed model precision, a
PBPK model might also be developed using p.o. data only.
Taking into account data on drug absorption, metabolism,
and mass balance data, it is necessary to rely on the
PBPK or IVIVE methods regarding prediction of absorption
or clearance. If human i.v. data are missing, a human p.o.
model might be scaled from an animal model that was
established using i.v. as well as p.o. data. Without using i.v.
data, the model uncertainty can be considerably higher
depending on the BCS classification of the drug and if
transporters or gut-wall metabolism are involved.

Overall model evaluation
After model development, the model quality should be eval-
uated. This step should address whether the model fits its
purpose. As such, the outcome of the evaluation depends
on the goal of the modeling project. The following criteria or
tests can be used in evaluating the model.

Agreement of modeling outcome with experimental data.
Usually, a model is evaluated by visually comparing simu-
lated vs. experimental concentration–time profiles (for plas-
ma and, if available, for other tissues), focusing on the
absolute concentrations and the dynamic shape of the PK
profile or by means of error functions such as root-mean-
square deviation (RMSD), the area under the curve (AUC)
error,12 or the concordance correlation coefficient.16 Addi-
tionally, typical PK parameters like Cmax, tmax, AUC, and t1/2

can be compared between data and simulation during mod-
el evaluation. While comparing model simulations and
experimental data, it should be considered that both are
subject to uncertainty, and also experimental data might be
critically reevaluated. In addition to data used for model
building, further data can also be considered as external
validation to assess consistency of model prediction.

Consistency of PBPK models for different doses, across
species, special populations, and compounds. An important
cross-check for model validation is the consideration of dif-
ferent doses. Deviations in estimations for dose levels that
had not been considered during model development point
to structural shortcomings of the model. The drug-
dependent parameters as well as the calculation methods
for distribution and cellular permeability should be the same
across all species for a certain drug. If this is not possible,
a plausible physiological explanation, as, for instance,
species-specific processes, should be discussed. If PK
data for special populations, such as hepatically or renally

impaired patients, are available, the model can also be

evaluated using these data after changing the physiological

parameters accordingly. The model might additionally be

evaluated for consistency across compounds for which the

same processes are relevant for the ADME properties. For

example, if a saturable receptor binding was implemented

as a relevant process into a PBPK model, it could be

checked if the receptor concentration is the same in a

PBPK model of a reference compound binding to the same

receptor.

Sensitivity analysis or best- and worst-case scenarios. In

order to assess uncertainties in model results, it is recom-

mended to perform a sensitivity analysis for relevant param-

eters. Such sensitivity analysis can be performed, for

instance, on uncertain parameters for active processes

included in the PBPK model or to all parameters in the mod-

el, in order to identify the most sensitive parameters for a

specified model output (e.g., plasma concentration or PK

parameters). Additionally best- and worst-case scenarios

can be simulated in order to evaluate the effect of changing

uncertain parameters to extreme values within the experi-

mental and physiological uncertainties. Uncertainties regard-

ing underlying mechanisms can be assessed by simulating

the respective model alternatives. The results of the sensitiv-

ity analysis or best- and worst-case scenarios can be used

to assess if the conclusions of modeling work are robust.

CASE STUDY: DEVELOPING A PBPK/PD MODEL FOR

CIPROFLOXACIN

In order to illustrate the various steps of PBPK model

development in a practical example, the construction of a

PBPK model for the antibiotic ciprofloxacin (CIP) will be

described in this section. Following the best-practices sec-

tion above, the experimental data needed for parametriza-

tion of the basic model structure will be discussed and it

will be shown how both i.v. and p.o. administration of the

drug may be systematically considered during model estab-

lishment. Finally, an empirical PD model of CIP treatment

of E. coli infections18 will be coupled to the PBPK model.

This resulting PBPK/PD model will be then used to simulate

the therapeutic effect of different dosing schemes. The indi-

vidual steps in model development are provided as a

hands-on tutorial in the Supplementary Materials. The

final modeling example shows prototypical demands and

applications of PBPK modeling in a pharmaceutical devel-

opment program.
The first step in PBPK model building is gathering and

assembling existing information. In this regard, the basic

physicochemistry of the drug is of particular importance

(Table 1A). The physicochemical information in Table 1A

can be plugged directly into a PBPK software tool, where it

is used to calculate all indirect PBPK model parameters

from the models, as explained above. Notably, the informa-

tion provided in Table 1A, together with the exhaustive col-

lections of physiological parameters integrated in PBPK

software tools, is sufficient to obtain a preliminary, yet fully
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parametrized initial model regarding absorption and distri-
bution processes.

In the case of CIP, various clinical studies have been per-
formed to identify physiological processes governing drug
ADME. The following assumptions were made in the model:
(1) CIP is metabolized via CYP1A2,96 (2) CIP is secreted
into bile ducts in the liver,97 and (3) CIP is subject to signifi-
cant renal elimination.98 In this regard, it is interesting to
note that the rate at which CIP is excreted in the kidney can-
not be explained by passive glomerular filtration alone; active
tubular secretion must also contribute to the excretion pro-
cess. In the case of a novel compound, the parametrization
of such active physiological processes requires either IVIVE
of physiological parameters in combination with dedicated
scaling factors68 or identification of the model parameter
using targeted experimental mass balance and excretion
data. For the CIP example discussed here, it was assumed
that the contribution of each of the three above-mentioned
physiological processes has been determined before
(Table 1B). Because CIP demonstrates dose linear PK,99 all
three processes are quantified by first-order kinetics.

Assuming a mean standard individual (i.e., an individual
with average demographic covariates) and a given administra-
tion scheme, the resulting PBPK model can be used for a first
simulation of drug plasma concentrations. As outlined in the
best-practice section above, the establishment of a PBPK
model for an i.v. administration is usually a reasonable first
step, since it makes it possible to ignore all effects related to
absorption in the GI tract. Here, clinical data for i.v. administra-
tion of 200 mg CIP are considered.100 For initial PBPK model
building, the physicochemical properties of CIP (Table 1A)
are first integrated into the PBPK software to calculate the
basic distribution model. In a second step, parameters for
physiological metabolization and excretion processes were
estimated from experimental PK data (Table 1B). Whereas
renal excretion and biliary secretion are solely linked to single
organs, i.e., kidney and liver, respectively, enzyme-mediated
metabolization may simultaneously occur in tissues through-
out the body. For the CIP model, relative CYP1A2 abundance
was quantified, using tissue-specific gene expression as a sur-
rogate for protein availability3 (Figure 1d). In the resulting

PBPK model, the distribution, metabolization, and excretion of
CIP is structurally represented. The standard distribution of
PK-Sim was identified as the most accurate distribution mod-
el, and the associated model parameters are quantified. Since
the main focus is on intravenous administration during initial
establishment of the model, as mentioned, it is reasonable to
ignore oral absorption at this time. Note that a mean patient is
usually represented by the collection of physiological PBPK
model parameters used as such quantifying the basic model
structure. The only information missing at this point is the CIP
dose administered intravenously. In accordance with the
experimental PK data, an i.v. dose of 200 mg CIP is consid-
ered here. Figure 5a shows the result of a 24-hour simulation
of the i.v. CIP PBPK model, as well as the corresponding
observed PK plasma data.100 In an actual pharmaceutical
development program, this single step can potentially involve
several iterations of parameter optimization, and bring about
the identification of structural changes in the model.101

In the next step, the oral administration of CIP was con-
sidered. The dataset from the study by Davis et al.100 is
particularly well suited for this purpose because it contains
a crossover study in which CIP was administered to the
same patients both i.v. and p.o. The missing model param-
eters for oral administration are relevant only to absorption
in the GI tract. First, the specific drug formulation needs to
be considered. A Weibull function was assumed to quantify
dissolution of the tablet (Table 1C). Together with formulation
release, the physicochemical solubility of CIP (Table 1A)
and the estimation of the intestinal permeability (Table 1C)
are sufficient to quantify absorption of a CIP tablet in the GI
tract. As previously discussed, the physiological processes
implemented above for the i.v. administration remain
unchanged, such that CIP ADME can now be fully repre-
sented with the PBPK model. Figure 5b shows the result of
a 24-hour simulation of the p.o. CIP PBPK model, as well as
the corresponding PK plasma data for an oral CIP dose of
750 mg.100 The resulting PBPK model can now be used to
assess different administration schemes, to simulate virtual
populations, or to extrapolate the data to special popula-
tions.5 As a validation of model predictions, the model was
used to simulate the administration of 500 mg b.i.d. and
1,000 mg q.d., and the model predictions were compared
with the data available in the publication by Schuck et al.18

As can be seen from Figure 5c,d, the model is able to
describe both doses as well.

Having established a PBPK model for i.v. and p.o. admin-
istration of CIP, as next step such model was applied to fur-
ther PD analyses. As mentioned above, CIP is routinely
used in clinical practice for the treatment of E. coli

Table 1A Physicochemical parameters

Parameter Value Parameter Value

logP 0.95 pKa (acid) 6.1

MW 331 g/mol pKa (base) 8.6

MW (effective)* 314 g/mol fu in human 0.67

Solubility 6.18 mg/ml

These parameters represent the a priori input parameters for the drug.

*CIP contains a fluorine atom that leads to a reduction of the effective MW.

Table 1B Metabolization and excretion

Process Parameter

CYP1A2 metabolization 17 ml/min (intrinsic clearance)

Biliary secretion 1.03 ml/min/kg

Renal excretion GFR specific: 0.266 ml/min/g of organ

TBS: 0.57 l/min

These parameters have been estimated from the plasma drug concentration.

GFR, glomerular filtration rate; TBS, tubular secretion

Table 1C Oral absorption.

Process Parameter/Function

Drug dissolution in the GI tract (Weibull) time (50%):4 min

lag time: 0 min

Shape: 0.8

Transcellular intestinal permeability 1E-06 cm/min

Small intestine transit time 4h

These parameters have been estimated from the plasma drug

concentration.
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infections. An adaptive in vitro Emax model for CIP treat-
ment of infections with the microbial strain E. coli (11775)
was previously established.18 The model allows the
description of microbial growth as well as CIP-mediated
inhibition such that time-kill profiles can be mechanistically
analyzed. The model hence quantifies growth in the
absence as well as in the presence of CIP treatment, and
shows an initial phase of rapid killing followed by the devel-
opment of an adaptive resistance that slows the killing rate
in the presence of CIP.

dN
dt

5 k2
k1 � ð12 Cr

IC501Cr

� �
1k2

EC501C
� C

0
@

1
A � N � 12ez�t� �

(3)

Here, N is the bacterial count (CFU), k is the growth rate,
k1 is the initial kill rate constant, k2 is the permanent kill

rate constant, C is the lung interstitial concentration, i.e.,

the site of infection, and z accounts for the initial lag phase

(Table 1D). Cr is the drug concentration inducing adaptive

resistance (Table 1E):

Cr 5C0 � e2ke� � t2tlagð Þ2e2kecr � � t2tlagð Þ
� �

(4)

In this equation, C0 is the initial CIP concentration in the

experiment, ke is the simulated elimination rate constant, kecr

is the decline of the adaptive resistance (Table 1E), tlag is

the lag time until development of adaptive resistance sets in,

EC50 is the concentration of CIP that gives half-maximal

response, and IC50 is the concentration at 50% of maximum

resistance. The adaptive Emax model has been validated

using in vitro data on the growth of E. coli in the presence of

different in vitro CIP concentrations18 (Figure 5e).

Figure 5 (a) PBPK simulations for 200 mg CIP (i.v.).100 (b) PBPK simulation for 750 mg CIP (p.o.).100 (c) PBPK simulation for 500 mg b.i.d.
(p.o.).18 (d) PBPK simulation for 1,000 mg q.d. (p.o.).18 (e) PD simulations with an adaptive Emax model that describes time-kill profiles of E.
coli (11775) in the context of various in vitro doses of CIP.18 (f) PBPK/PD simulations. q.d., once-a-day dosing; b.i.d., twice-a-day dosing.
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The CIP PBPK model and the PD model for CIP treatment
of respiratory tract infections of E. coli infections can now be

combined to generate a full-blown PBPK/PD model. In a previ-
ous PK/PD study, an initial CIP concentration was calculated

from a simulated 24-hour area AUC vs. time curve (AUC24)/
MIC ratio (C0’ 5 2.43 mg/l).18 Using the lung interstitial con-

centration in the PBPK/PD as input in the adaptive Emax mod-
el, the therapeutic effect of 1,000 mg once-daily (q.d.) and

500 mg twice-daily (b.i.d.) of CIP was simulated for this bacte-
rial strain (Figure 5f). As reported before, the time kill curve

for both dosing regimens show an equally effective decrease
in CFU/ml >5 log units over the first 24 hours.18 As also

reported in the literature, this is related to the use of an E. coli
strain extremely sensitive to CIP, for which the 500 mg b.i.d.

dosing regimen was already high enough to promote maxi-
mum bacterial killing. Notably, the presented PBPK/PD model

could now be the starting point for further investigations involv-
ing, for example, dedicated disease models of bacterial infec-

tions in specific tissues or usage of interstitial or intracellular
target tissue concentrations as effective input concentrations.

SUMMARY

In conclusion, PBPK models can be a valuable support in

drug development, in particular considering the possibility to
generate a priori simulations. As a consequence, they are

increasingly used in pharmaceutical companies and regulato-
ry agencies like the US Food and Drug Administration. Such

model development is possible, on the one hand, thanks to
the collection of physiological and anatomical information as

well as models that relate the physicochemical properties of a
molecule to its permeability and partition properties. On the

other hand, during the model building process model assump-
tions should be carefully considered and components included

in the model should be in agreement with physiological and
pharmacological information available for the considered com-

pound. Such assumptions should also be clearly kept in mind
when using the model for simulation and extrapolation.

Together with assumptions regarding the processes included
in the model, also assumptions relative to the physiological

and anatomical information incorporated from the database
should be carefully evaluated, in particular when considering

diseased populations for which in many instances such infor-
mation is not available or extremely variable.
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