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Abstract

Original Research

IntroductIon

Celiac disease (CD), an autoimmune disorder triggered from 
the consumption of gluten, affects as much as 1% of the 
population worldwide.[1,2] Patients who are diagnosed with CD 
undergo treatment in the form of a lifelong gluten-free diet, 
which requires substantial patient education, motivation, and 
follow-up.[3] Recent studies have found that the prevalence of 
CD has increased dramatically in the United States and Europe 
and that undiagnosed CD was associated with a nearly four-fold 
increase in risk of death.[4-6] In fact, CD remains undiagnosed 
in the majority of affected people, highlighting the need for 
more frequent and accurate methods for its detection.[7-9]

CD diagnosis involves serological testing of celiac‑specific 
antibodies, followed by microscopic examination of duodenal 
biopsies, which are considered the gold standard in diagnostic 
confirmation of CD.[10,11] Typically, four-to-six duodenal 
samples are taken from the patient by an endoscopic procedure, 
and these samples are visually examined by a pathologist. 
A confirmatory diagnosis requires detection of histological 

changes associated with the disease, which are classified 
according to the guidelines from either Marsh,[12] Marsh 
modified (Oberhuber),[13] or Corazza et al.[14] Endoscopic 
findings that indicate CD include scalloped folds with or 
without mosaic pattern mucosa, reduction in the number of 
folds, and nodular mucosa.[15] The spectrum of histologic 
changes in CD ranges from only increasing intraepithelial 
lymphocytes with preserved villous architecture to mild 
villous blunting to complete villous atrophy.[16] Studies have 
shown that the histological diagnosis of biopsies is subject to 
a significant degree of interobserver variability.[14,17-19] One 
potential method for improving the accuracy of CD detection 
on duodenal biopsies is to apply automated image analysis 
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to aid pathologists. Since the prevalence of CD is increasing, 
active case finding is currently being used to screen more 
patients.[20,21] An automated biopsy analysis system could help 
pathologists by filtering and prepopulating scans, improving 
efficiency and turnaround time.

Recently, a subfield in artificial intelligence known as deep 
learning has produced a set of image analysis techniques that 
automatically extract relevant features, transforming the field 
of computer vision.[22] Deep neural networks use a data-driven 
approach to learn multilevel representations of data, allowing 
for comprehensive image analysis and classification.[23] These 
techniques are being increasingly applied to medical imaging 
to assist radiologists and pathologists.[24] In gastroenterology, 
the previous studies have already used deep neural networks 
to classify colorectal polyps on biopsy and colonoscopy 
images,[25-27] intraductal papillary mucinous neoplasms in 
magnetic resonance images,[28] and diabetic retinopathy in 
retinal fundus photographs.[29] For CD in particular, large 
video datasets captured during endoscopies have facilitated 
quantitative analysis with deep learning.[30,31] However, 
endoscopic classification is for the most part not used for 
confirming the diagnosis of CD. In this study, we developed 
a deep learning model that detects CD from duodenal biopsy 
images, the gold standard for diagnosis. We evaluated our 
model on an independent test set of 212 whole-slide images.

SubjectS and MethodS

Data collection
To train and evaluate our model for CD detection, we collected 
whole-slide images from all patients who underwent duodenal 
biopsies from 2016 to 2018 at the Dartmouth-Hitchcock 
Medical Center (DHMC), a tertiary academic care center in 

Lebanon, NH. These slides contain hematoxylin and eosin 
stained formalin‑fixed paraffin‑embedded tissue specimens and 
were scanned by a Leica Aperio whole-slide scanner at ×20 
magnification by the Department of Pathology and Laboratory 
Medicine at DHMC. In total, we collected 1230 slides 
from 1048 patients. We randomly partitioned 1018 of these 
whole-slide images from 681 patients for model training and 
212 whole-slide images from 163 patients as an independent 
test set for the final evaluation of our model. There was no 
patient overlap for the slides in the training and test sets.

Slide annotation
All whole-slide images used in our study were diagnosed by 
attending pathologists on gastrointestinal pathology service 
at the time as either normal, CD, or nonspecific duodenitis. 
Normal duodenal biopsies show preserved villous architecture 
with no mucosal injury or acute or chronic inflammation. CD 
biopsies show a spectrum of histologic changes as described in 
Marsh classification,[12] including partial to total villous atrophy 
with intraepithelial lymphocytosis, chronic inflammation, and 
crypt regenerative hyperplasia. Nonspecific duodenitis includes 
histologic changes including peptic duodenitis, drug-induced 
injury, and various other differential diagnoses of villous 
atrophy and acute and chronic inflammation. These labels 
were parsed from the medical record database and assigned 
as reference standard for slides used during model training. 
The training slides were then further split into a training set 
of 790 images and a development set of 228 images. Training 
set slides were used for training our neural network, while 
development set images were used for hyperparameter tuning. 
For the independent test set of 212 images, however, all labels 
were separately reviewed and confirmed by two gastrointestinal 
pathologists. Disagreements between original labels and new 

Figure 1: Data flow diagram for allocating whole slides for training, development, and testing of our model. For training, patches were generated using 
the sliding window algorithm to train our residual network patch classifier. The development set was used to fine‑tune hyperparameters and thresholds 
of our neural network. Finally, we evaluated our model on the test set of 212 whole‑slide images with reference labels
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labels were reviewed by a senior gastrointestinal pathologist, 
who determined final classifications. The class distributions 
and roles in the data flow for our training, development, and 
test set are shown in Figure 1.

Model development
In recent years, research in deep learning has demonstrated 
successful application of convolutional neural networks for 
image classification, including medical image analysis. In 
our study, we used the deep residual network (ResNet),[32] 
a neural network architecture built from residual blocks. 
ResNet significantly outperforms early deep learning models 
such as AlexNet[33] and VGG[34] and achieved state-of-the-art 
performance on the ImageNet and COCO image recognition 
benchmarks.[35,36] We implemented ResNet to take in square 
patches as inputs and output a prediction probability for each 
of the three classes: normal, CD, and nonspecific duodenitis.

For model training, we used a sliding window method on each 
high-resolution whole-slide image to generate small patches of 
size 224 × 224 pixels. Since some classes had more whole-slide 
images than others, we generated patches with different 
overlapping areas for each class. When inputting a patch into 
the model for training, we normalized the red, green, blue color 
channels to the mean and standard deviation of the entire training 
set to neutralize differences in color among slides. Then, we 
performed color jittering on the brightness, contrast, saturation, 
and hue of each patch. Finally, we randomly rotated and flipped 
the images across the horizontal and vertical axes. In total, we 
generated 80,000 patches for each of our three classes, which 
were then uniquely augmented during each epoch in training.

In terms of model parameters, we initialized ResNet-50, the 
fastest ResNet with three-layer residual blocks, with weights 
from the He initialization.[37] We trained our ResNet model 
by optimizing on a multiclass cross-entropy loss function 
for forty epochs on the augmented training set, starting with 
an initial learning rate of 0.0001 and decaying by a factor of 
0.85 every epoch. We used the Adam Optimizer[38] and weight 
decay regularization (L2 penalty)[39] of 0.0001. Total training 
time was 12 h on a Titan Xp graphics processing unit (GPU).

Whole‑slide inference
In whole-slide inference, we aimed to classify each whole-slide 
image as either normal, CD, or nonspecific duodenitis. The 
model is trained to classify small patches rather than entire slides, 
so we again used the sliding window algorithm to break down 
each whole slide into a collection of patches, each overlapping 
by one-third area. Next, we applied our trained ResNet model to 
classify each patch, and we filtered out noise using thresholding 
to discard predictions of low confidence. Given the distribution 
of patch predictions, we used the following heuristic to determine 
the whole-slide class: if more than γ patches were classified as 
nonspecific duodenitis, then the whole slide was classified as 
nonspecific duodenitis. Otherwise, the most commonly predicted 
class was chosen as the whole-slide prediction. Thresholds for 
filtering noise, as well as γ, were optimized by performing a 
grid search over the development set. This allowed for accurate 
classification of slides with a significant amount of nonspecific 
duodenitis that was not covering the majority of the specimen 
area. Figure 2 depicts the whole-slide inference process. 
Inference time for a single whole-slide image was about 15 s 
on a single Titan Xp GPU.

Evaluation and visualization
For the final evaluation, we applied our model to the 
independent test set of 212 whole-slide images. We compared 
the predictions of our model with reference standards 
established by pathologists and measured accuracy, precision, 
recall, and F1 score for each class. We calculated confidence 
intervals for all performance metrics using the Clopper and 
Pearson method.[40] In addition, we plotted receiver operating 
characteristic (ROC) curves and calculated area under the 
curve (AUC) for each class.

Furthermore, we visualized our model’s predictions at both 
the whole-slide and patch level. At the whole-slide level, we 
overlaid color-coded dots on patches for which the model 
predicted a particular pattern. This helps pathologists quickly 
identify regions of the slide containing abnormal tissue. At 
the patch level, we used the class activation mapping (CAM) 
method[41] to generate a pixel-level heat map that highlights the 
most informative regions of the image relevant to the predicted 

Figure 2: Overview of detection of celiac disease on whole‑slide biopsy images. We used a sliding window approach on a whole‑slide image to generate 
patches, classified each patch with a residual network model, and used a heuristic on the aggregated patch predictions to classify the whole slide
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biopsy samples using dots to indicate predicted patch labels. 
Finally, CAM visualizations of individual patches are shown 
in Figure 5 to highlight relevant features used in our model’s 
classification process. A subjective qualitative investigation of 
these visualizations by a gastrointestinal pathologist confirmed 
that the predictions of our model are generally on target.

dIScuSSIon

Duodenal biopsies are the gold standard for confirming 
the diagnosis of CD. The prevalence of CD has increased 
dramatically in recent years and active case‑finding calls 
for more serological tests and duodenal biopsies. Detection 
of CD on these biopsies could potentially be enhanced and 
facilitated by automated image processing. In this study, we 
presented a deep learning model that classifies duodenal tissue 
and highlights the associated features and regions of interest. 
Previous work has used deep learning to detect CD from 
endoscopic images.[30,31] While acknowledging the substantive 
work of these investigators, endoscopies are for the most part 
not used for confirming CD diagnoses. Our model not only 
detects CD on duodenal biopsies but it also visualizes regions 
of normal tissue, CD, and nonspecific duodenitis to aid review 
by pathologists. Of note, we are not aware of any other existing 
system for CD detection on biopsy images.

Our model achieved high performance for detection of CD. 
On the independent test set of 212 images, our model detected 
CD with a considerable F1 score of 93.5% and AUC of 0.993. 
Since our model made predictions at the patch level and then 
aggregated them for whole-slide inference, it was relatively 
unaffected by noise and achieved high accuracy. For normal 
and nonspecific duodenitis, F1 scores were 87.2% and 
81.0%, respectively. Identification of nonspecific duodenitis 
was more challenging because this class’s tissue often also 
contains some normal tissue fragments, which complicate the 
analysis. Sixteen slides were misclassified between normal and 
nonspecific duodenitis, and pathologist evaluation of these 
errors revealed errors related to tissue orientation, fixation 
artifact, and patchy histologic changes. In addition, seven 
slides of nonspecific duodenitis were identified as CD due to 
focal increase of intraepithelial lymphocytes and partial villous 
atrophy. Performance measures for the nonspecific duodenitis 
class were the lowest across the board. There are several 
reasons for this. One could be that nonspecific duodenitis 
had the lowest number of training samples, comprising only 
64 images in the training set compared to 620 and 106 for 

class. This demystified our classification method for each patch 
by revealing the most significant histologic features on the 
patch for each class for our model.

reSultS

For model selection, we validated our neural network model 
on the development set of 228 images. We found the optimal 
thresholds for filtering out noise at the patch level to be 0.7 for 
the normal class, 0.8 for the CD class, and 0.85 for nonspecific 
duodenitis. For selection of the γ threshold for percent area 
needed to classify a whole slide as nonspecific duodenitis, 
we considered our gastrointestinal pathologist’s subjective 
examination of our model’s predictions in addition to a grid 
search to arrive at γ=0.25. After threshold optimization, 
our best model applied to the development set achieved an 
accuracy of 95.6% for normal, 98.7% for CD, and 94.3% for 
nonspecific duodenitis after threshold optimization.

Performance of our model on the independent test is shown 
in Table 1, which includes accuracy, precision, recall, and 
F1 score with 95% confidence intervals. Notably, our model 
detects the presence of CD with an accuracy of 95.3% and 
an F1 score of 93.5%. Table 2 shows the confusion matrix 
for predicted labels versus reference labels. ROC curves and 
AUC for each class are shown in Figure 3. AUC was >0.95 for 
all classes. Figure 4 depicts whole-slide visualizations of 12 

Table 1: Performance of our final model for celiac disease detection on 212 duodenal biopsy whole‑slide images in our 
test set

Accuracy (%) Precision (%) Recall (%) F1 score (%)
Normal (n=71) 91.0 (87.2-94.9) 83.3 (75.1-91.6) 91.5 (85.1-98.0) 87.2 (79.9-95.2)
Celiac Disease (n=74) 95.3 (92.4-98.1) 90.0 (83.4-96.6) 97.3 (93.6-99.9) 93.5 (87.8-99.3)
Nonspecific Duodenitis (n=67) 89.2 (85.0-93.3) 90.7 (83.0-98.5) 73.1 (62.5-83.7) 81.0 (71.5-90.5)
Average 87.7 (83.3-92.2) 88.0 (80.5-95.4) 87.3 (79.5-95.2) 87.2 (79.4-95.1)
95% CI are shown in parentheses. CI: Confidence intervals

Figure 3: Receiver operating characteristic curves and their area under 
the curve for our model’s classifications on the independent test set of 
212 whole‑slide biopsy images
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normal tissue and CD, respectively. Another could be that this 
category comprises several disease entities including peptic 
chronic duodenitis, active duodenitis, and other nonspecific 
reactive changes, making it more challenging to detect since 

there was a wider range of histologic attributes to learn. Finally, 
slides labeled as nonspecific duodenitis often contained some 
portions of normal tissue, and since we extracted patch labels 
based on whole-slide labels during the training process, it is 

Figure 5: Class activation mapping heat maps highlighting the most informative regions of patches relevant to normal, celiac disease, and nonspecific 
duodenitis classes. Red regions indicate areas of attention for our residual neural network

Figure 4: Visualization of patch predictions of our model at the whole‑slide level (a‑d) was correctly classified as normal, (e‑h) was correctly classified 
as celiac disease, and (i‑l) was correctly classified as nonspecific duodenitis
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likely that some mislabeled data was used in model training 
and made it harder to detect this class in our approach.

In terms of visualization, the CAM results of our model’s 
selected areas of attention indicate that our model has learned 
the correct histologic features for each class. Classification of 
normal tissue tended to be holistic, with attention to almost 
all tissue area including normal villous architecture. For CD, 
the model correctly identified villous atrophy, intraepithelial 
lymphocytosis, and chronic inflammation in the lamina propria. 
In the case of nonspecific duodenitis, the model identified 
villous thickening, Brunner’s gland hyperplasia, foveolar 
metaplasia, and chronic inflammation.

Our results indicate that deep neural networks have substantial 
potential to aid gastrointestinal pathologists in diagnosing 
CD. For application in a clinical setting, our model could be 
integrated into existing laboratory information management 
systems to prepopulate patch predictions on slides and provide 
preliminary diagnoses before review by pathologists. In 
addition, a visualization of the slide evaluated by our model 
at the piecewise level could highlight precise tissue area 
containing abnormal or sprue patterns, allowing pathologists 
to quickly examine regions of interest. As CD prevalence 
has increased dramatically in recent years, more serological 
screenings and duodenal biopsies are being done for patients 
at risk.[20,21] With biopsies as the gold standard for diagnosis, 
our work aims to provide pathologists with a tool for more 
accurate and efficient detection of CD.

The model presented in this study is rooted in solid 
deep learning methodology and achieves commendable 
performance, but there are several limitations of our study. One 
limitation is that all biopsy slides were collected from a single 
medical center and scanned with the same equipment, so our 
data may not be representative of the entire range of histologic 
patterns in patients worldwide. Although our whole-slide scans 
are high resolution and we were able to extract a large number 
of patches for training with the sliding window method, our 
dataset is still small in comparison to conventional datasets in 
deep learning, which contains more than ten thousand unique 
samples per class[42,43] and more than a million unique images 
in total.[44] Overfitting is unlikely because we generated a 
large number of small patches for training and conducted 
final evaluation on an independent test set, but it is still a 
possibility. Collecting more data in collaboration with another 

medical center in future work would allow us to train a more 
generalizable neural network and could also improve our 
model’s performance in classifying nonspecific duodenitis.

Moving forward, more work will be done to further the 
capabilities of our model and evaluate its use a clinical setting. 
Collecting an annotated dataset with specific histopathological 
classifications of CD and labeled bounding boxes around 
lesions would allow our model to classify and locate specific 
lesion types, providing pathologists with more comprehensive 
slide analysis, particularly for the nonspecific duodenitis class. 
Furthermore, once more data is collected, we can predict 
slide level results using patch predictions to train a traditional 
machine learning classifier such as a support vector machine or 
random forest, which may yield better results than our current 
thresholding method. In terms of clinical application, we plan 
on validating our model on a larger test set from multiple 
institutions and deploying a trial implementation of our model 
into laboratory information management systems at the DHMC 
to measure its ability to improve CD detection accuracy and 
efficiency. However, widespread clinical implementation of such 
artificial intelligence tools will require major future steps, which 
our group will be undertaking. Any deep learning models for 
computer-aided pathology must be thoroughly validated through 
clinical trials and be proven to enhance outcomes. Such model 
must also not impact the established workflow of pathologists 
or slow down the speed of existing programs. Most importantly, 
deep learning models must be accurate and gain the confidence 
of physicians, patients, and the medical community. In its current 
state, artificial intelligence has the ability to analyze images and 
make preliminary classifications, but much more work must 
be done before patients and physicians will be able to trust 
computers to make medical decisions. We believe that the work 
presented in this study is a preliminary step in this direction.

concluSIonS

We have demonstrated that deep learning can achieve high 
accuracy in detecting CD in duodenal biopsies. Our model 
uses a state-of-the-art residual neural network architecture 
for whole‑slide classification and achieved exemplary results 
on an independent test set of 212 whole-slide images. As CD 
prevalence and screening increases, we expect our model could 
assist pathologists in more accurate and efficient evaluation of 
duodenal biopsy slides.

Acknowledgment
The authors would like to thank Matthew Suriawinata for 
assistance with slide scanning and Sophie Montgomery and 
Lamar Moss for their feedback on the manuscript.

Financial support and sponsorship
This research was financially supported by the Kaminsky 
Research Fund from Dartmouth College and a National 
Institutes of Health grant, P20GM104416.

Conflicts of interest
There are no conflicts of interest.

Table 2: Confusion matrix of our final model for celiac 
disease detection on 212 duodenal biopsy whole‑slide 
images in our test set

Prediction Reference

Normal CD Nonspecific Duodenitis
Normal 65 2 11
CD 1 72 7
Nonspecific duodenitis 5 0 49
CD: Celiac disease
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