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Abstract
Background: Phenomenological information about regulatory interactions is frequently available and can be readily 
converted to Boolean models. Fully quantitative models, on the other hand, provide detailed insights into the precise 
dynamics of the underlying system. In order to connect discrete and continuous modeling approaches, methods for 
the conversion of Boolean systems into systems of ordinary differential equations have been developed recently. As 
biological interaction networks have steadily grown in size and complexity, a fully automated framework for the 
conversion process is desirable.

Results: We present Odefy, a MATLAB- and Octave-compatible toolbox for the automated transformation of Boolean 
models into systems of ordinary differential equations. Models can be created from sets of Boolean equations or graph 
representations of Boolean networks. Alternatively, the user can import Boolean models from the CellNetAnalyzer 
toolbox, GINSim and the PBN toolbox. The Boolean models are transformed to systems of ordinary differential 
equations by multivariate polynomial interpolation and optional application of sigmoidal Hill functions. Our toolbox 
contains basic simulation and visualization functionalities for both, the Boolean as well as the continuous models. For 
further analyses, models can be exported to SQUAD, GNA, MATLAB script files, the SB toolbox, SBML and R script files. 
Odefy contains a user-friendly graphical user interface for convenient access to the simulation and exporting 
functionalities. We illustrate the validity of our transformation approach as well as the usage and benefit of the Odefy 
toolbox for two biological systems: a mutual inhibitory switch known from stem cell differentiation and a regulatory 
network giving rise to a specific spatial expression pattern at the mid-hindbrain boundary.

Conclusions: Odefy provides an easy-to-use toolbox for the automatic conversion of Boolean models to systems of 
ordinary differential equations. It can be efficiently connected to a variety of input and output formats for further 
analysis and investigations. The toolbox is open-source and can be downloaded at http://cmb.helmholtz-
muenchen.de/odefy.

Background
The ultimate goal of the increasingly popular systems
biology approach is the integration of many different
molecular interactions into extensive computer models
that closely reflect real-life behavior of their underlying
biological systems. Mathematical implementations of
various biological systems have been proposed recently,
including cell cycle control in yeast [1] and Caulobacter
crescentus [2], and circadian rhythms of Arabidopsis thal-
iana [3] to name but just a few. Such studies are primarily
designed to match known measurable phenotypes of the
respective systems and reveal insights into the precise
quantitative evolution of biochemical species over time.

With a reasonable in silico implementation of a biological
system at hand, predictions of knockout and perturbation
effects can be performed by the computer.

For most biological systems, however, only qualitative
information about regulatory interactions is available,
which is not sufficient to implement precise kinetic rate
laws for each biochemical reaction. A well-established
workaround for this lack of information is the application
of discretized modeling approaches. In Boolean method-
ology, for example, we abstract from actual molecule
quantities and assign each player in the system the state
on or off (e.g. active or inactive). Despite the simplicity of
Boolean models we still assume them to provide informa-
tion about the general dynamics and capabilities of the
underlying system. Recently proposed Boolean models
include developmental processes in D. melanogaster [4],
the regulation of the mammalian cell cycle [5], the activa-
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tion of T-cells [6] and EGFR signaling in human hepato-
cytes [7].

In [8] we described a novel technique called HillCube
for the automatic transformation of Boolean models into
systems of autonomous first-order ordinary differential
equations (ODEs). HillCubes are based on multivariate
polynomial interpolation and incorporate Hill kinetics
(see Implementation), which are known to provide a good
generalized approximation of the synergistic dynamics of
gene regulation [9,10]. Important properties of the sys-
tem like steady-state behavior are preserved during the
transformation. Our methodology allows to enrich Bool-
ean models built up from coarse information by features
of quantitative models, such as intermediate expression
levels, continuous transitions and different time-scales.
Other approaches for the analysis of purely phenomeno-
logical regulatory networks have been developed recently
(cf. e.g. [6,11]) but do not employ continuous, quantita-
tive modeling.

Here we present a user-friendly implementation of the
HillCube technique suitable for large-scale networks in a
MATLAB/Octave toolbox called Odefy. This software
provides convenient access to different model sources,
the conversion process itself and various analysis and
export methods (Figure 1). Boolean models may be
entered as sets of Boolean equations directly or created
with the yEd graph editor [12]. The user may build con-
ventional interaction graphs with activating and inhibit-
ing edges or use an intuitive hypergraph representation of
Boolean models [13]. In addition, models can be
imported from the CellNetAnalyzer toolbox [6], GINsim
[14] and the PBN toolbox [15]. After generating the
ODEs, the user can easily adjust model parameters and
perform time-course simulations using Odefy's graphical
user interface. The ODE systems can be exported to
MATLAB script files for further usage in MATLAB pro-
grams, to ODE script files for the R computing platform,
to the SBML format, or to the well-established MATLAB
Systems Biology Toolbox [16]. Due to the nice mathemat-
ical properties of the produced ODEs and the integration
with state-of-the-art modeling tools, a variety of analysis
methods can be immediately applied to the models gen-
erated by Odefy, including bifurcation analysis, parame-
ter estimation, parameter sensitivity analysis and so on.
For compatibility, we also integrated export options to
the discrete model formats of the Genetic Network Ana-
lyzer [17] and SQUAD [18].

In this manuscript we first discuss the mathematical
backgrounds and implementation details of the Odefy
toolbox, including the different model import sources,
analysis methods and export options. In the results sec-
tion, two examples of quantitative modeling with our
toolbox are given, namely a motif from stem cell differen-
tiation and the regulatory network responsible for the

establishment and stable maintenance of the mid-hind-
brain boundary. We show the ease-of-use of the Odefy
toolbox and demonstrate similar dynamical properties
between a molecular model of the stem cell motif and the
corresponding derived Odefy model. The mid-hindbrain
example specifically emphasizes the importance of a fully
automated conversion method from discrete to continu-
ous models.

Implementation
Mathematical background
This section outlines the mathematical formulation of
our automatic Boolean model conversion technique. For
a detailed description of this methodology along with
motivations, comparisons to similar approaches and
application to a T-cell signaling model, we refer the
reader to [8]. A Boolean model consists of N species X1,
X2, ..., XN each taking a value xi � {0, 1}. The value of Xi at

time t + 1 depends on the species Xi1, Xi2, ...,  and is

given by the Boolean update function Bi (xi1, xi2, ..., )
� {0, 1}. In a discrete simulation, time is discretized and
the values of x1, x2, ..., xN at time t + 1 are determined by
synchronously setting:

The main idea is to convert the above discrete model
into a continuous ODE model, where species Xi is allowed

to take values  � [0, 1], and its temporal development is
described by the ordinary differential equation (ODE):

The right hand side of this equation consists of two
parts, an activation function  describing the produc-
tion of species Xi and a first-order decay term. An addi-
tional parameter τi is introduced to the system, which can

be understood as the life-time of species Xi.  can be
considered a continuous homologue of the Boolean
update function. The key point is how it can be obtained
from Bi in a computationally efficient manner.

In Odefy, three different methods to transform Bi into

 are implemented. They are shortly described in the
following. For simplicity of notation, we omit the sub-
script i.
BooleCube
The basis of all three transformation methods are the so-
called BooleCubes:
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which we obtain by multilinearly interpolating the
Boolean function B, see Figure 2A.
HillCube

The functions  are affine multilinear. Many molecular
interactions, however, are known to show a switch-like
behavior, which can be modeled using sigmoid shaped

Hill functions , see Figure 2B. The
two parameters n and k have a clear biological meaning.
The Hill coefficient n determines the slope of the curve

and is a measure of the cooperativity of the interaction.
The parameter k corresponds to the threshold in the
Boolean model, above which one defines the state of a
species as on. Mathematically speaking, it is the value at
which the activation is half maximal, i.e. equal to 0.5. We
now introduce a Hill function fi with parameters (ni, ki)
for every interaction and define a new continuous func-
tion:

which we call HillCubes, see Figure 2C. We can show
that for sufficiently large Hill exponents n, there will be a
steady-state of the continuous system in the neighbor-
hood of each Boolean steady-state [8].
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Figure 1 Odefy overview. Odefy generates models from sets of Boolean equations or Boolean hypergraphs created with yEd. Alternatively, Boolean 
models can be imported from the CellNetAnalyzer, GINsim or the PBN toolbox. Odefy contains a method for the automatic generation of multi-com-
partment models from a given single cell model. Boolean models can be exported to other discrete input formats (for the GNA and SQUAD toolboxes), 
used for Boolean simulations and analysis within Odefy, or they can be converted to systems of ordinary differential equation (ODE). These ODE sys-
tems can either be directly simulated and analyzed with Odefy or exported to well-established model formats, including MATLAB script files, SBML, 
SB Toolbox models and R script files.
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Normalized HillCube
Note that Hill functions never assume the value 1, but
approach it asymptotically. Hence, the HillCubes are not
perfect homologues of the Boolean update function B. If
this is desired a simple solution is to normalize the Hill
functions to the unit interval. This yields another contin-
uous (perfect) homologue of the Boolean function B:

which we call normalized HillCube, see Figure 2D.

Implementation in MATLAB/Octave
The core functionality of Odefy is accessible through a set
of functions for the MATLAB/Octave command line or
via a Java-based graphical user interface. Figure 1 shows
an overview of the complete Odefy tool-box. The follow-
ing section provides detailed descriptions of the model
definition and import process, ODE generation, model
simulation and exporting.
Model definition & representation
An Odefy input model consists of a set of Boolean update
rules for the underlying regulatory system. Our toolbox
currently supports several possibilities to define such
models:

(i) The user may enter a set of symbolic Boolean
equations in text-form, allowing for the quick and
intuitive generation of model structures (Figure 3A).
Boolean equations consist of model variables and the
three Boolean operators AND, OR and NOT. For the
Odefy import process, we represent these operators
by the MATLAB language-specific operators &&, ||
and ~, respectively. Throughout this manuscript, we
stick to the common mathematical notation of
&#708; for AND, � for OR and ¬ for NOT.
(ii) Models can be derived from directed graphs cre-
ated in the free yEd graph editing software [12]. The
user builds an interaction graph of activating and
inhibiting edges, which is then converted to an Odefy

Boolean model (Figure 3B). Note that we need to
specify how multiple regulatory inputs of a single fac-
tor are combined into a Boolean update rule. For this
a generic logic of the form f(X) = (A1 ? A2 ? ... ? Am) ?
¬(I1 � I2 � ... �In) defined by three Boolean operators
?, ?, � � {&#708;, �} is used, where A1, ..., Am is the set
of activators and I1, ..., In represent all the inhibitors of
X. The Odefy default setting is to activate the output
if at least one activator and no inhibitors are active. In
order to create this behavior we choose ? = �, ? =
&#708;, � = � resulting in

The assignment of Boolean operators can be changed
during the import process into the Odefy toolbox. In
addition to the possibility of inputing interaction graphs,
we implemented an intuitive hypergraph-based represen-
tation of Boolean models in the sum of product form,
which is capable of describing any Boolean update func-
tion [13] (Figure 3C).
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Figure 3 Boolean model definition. A The easiest way to define a 
Boolean model in Odefy is to specify a set of Boolean equations in a 
text file. This example represents an asymmetric version of the mutual 
inhibitory switch shown in the results section. Note the use of the MAT-
LAB language-specific operators &&, || and ~. B Regulatory interaction 
graph created with the yEd graph editor. Regular arrows represent ac-
tivatory influences whereas diamond-head arrows stand for inhibition. 
Note that we need to specify a generic logic to combine multiple reg-
ulatory inputs for node E. The Odefy default at least one activator and 
no inhibitors logic would result in E = (A � C) &#708; ¬ (B � C). C Alterna-
tive representation of the Boolean model as a hypergraph. Using a spe-
cialized node '&' we can precisely specify the Boolean logic for node E. 
All edges not incident to a '&' node are treated with an OR logic. The 
resulting Boolean update rule reads E = (A &#708; ¬ B) � C � ¬ D. &#708; 
= logical AND, � = logical OR, ¬ = logical NOT.

Figure 2 Continuous homologues of Boolean functions. Continuous homologues of Boolean functions. A Multilinear interpolation of a two-vari-
able OR gate (Boole-Cube). B Hill functions with Hill coefficients n = 2, 4, 8, 16 and k = 0.5 as continuous relaxation of a Boolean step function. C Com-
position of BooleCube from (A) with Hill functions (HillCube). D normalized HillCube from (C).
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(iii) Odefy can be tightly integrated with the well-
established CellNetAnalyzer (CNA) toolbox [6]. By a
plugin-like menu interface the user can execute
Odefy from within CNA and convert existing CNA
models into systems of differential equations. Fur-
thermore, parameter settings made in the CNA user
interface are directly passed to Odefy and used for
simulation and exporting.
(iv) Finally, Boolean models can be directly imported
from the GINsim XML format [14] and the Probabi-
listic Boolean Networks toolbox [15].

The Odefy toolbox can efficiently handle large-scale
models containing 50 players and more. One of the larg-
est cellular Boolean model, a T-cell model with 94 nodes
and a total of 123 regulatory interactions [19], can be
transformed and simulated in less than one second on a
standard workstation. Internally, Boolean models are
stored as multidimensional arrays (i.e. hypercubes with
edge length 2) for rapid element access and Boolean func-
tion evaluation. The time complexity of model generation
lies in (2N) with N being the highest degree of all
nodes, yielding an exponential growth of computational
runtime. The limiting size of Odefy models is thus not the
number of nodes contained, but rather the highest num-
ber of incoming edges for any node in the model. For
most regulated genes, however, we assume the number of
modeled input regulatory factors to be equal to or less
than 10, which can be handled on the order of one second
per node by Odefy.

To account for systems consisting of multiple cells or,
more generally, compartments driven by identical regula-
tory networks, Odefy contains an automated multicom-
partment expansion procedure. Given a Boolean model

and the assignment of an intercompartment flag for a
given set of factors in the model, Odefy generates a larger
model corresponding to a linear row of connected com-
partments. Factors flagged as intercompartmental exhibit
their influence towards the two neighboring cells and are
combined using an OR logic (see also: Mid-hindbrain
example below).
Simulation and analysis
After model creation, the resulting ODE systems can be
simulated directly by numerical integration algorithms or,
alternatively, exported to various external model formats.
Note that Boolean models as such are parameter-free,
and the dynamical parameters for the ODEs have to be
set externally. For convenience, Odefy employs a set of
reasonable default values for all parameters in order to
allow for a quick analysis of the system. Import, parame-
ter adjustment, simulation and exporting can be accessed
by the Odefy command line functionality as well as a
graphical user interface (Figure 4). These Java Swing-
based user dialogs provide a platform-independent look
and feel. They use the MATLAB-internal Java engine and
therefore do not require an external Java runtime envi-
ronment. For advanced MATLAB users and users of the
Octave environment, we provide functions for conve-
nient parameter access, Boolean state analysis (steady
states and state-transition graph) and phase plane visual-
ization of dynamic simulations.
Export
Export formats for Odefy models include the MATLAB/
Octave ODE script files, the Systems Biology (SB) Tool-
box [16], the SBML format, script files for the R comput-
ing platform, the Genetic Network Analyzer (GNA) [17]
and SQUAD [18]. SB Toolbox contains various advanced

O

Figure 4 Odefy graphical user interface. A Screenshot of the Odefy simulation dialog for convenient access to the dynamic model parameters, ini-
tial values, conversion types and plot options. All settings can be saved to or loaded from the current workspace. B Export dialog for all discrete and 
continuous Odefy export formats. C Exemplary time-course simulation of the cell cycle model from [5] with default parameters.
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analysis functions for dynamical systems like parameter
sensitivity and bifurcation analysis. The SBML format
can be read by various systems biology software tools like
COPASI [20] and CellDesigner [21] and thus provides a
versatile interchange format. The GNA allows a struc-
tural analysis and qualitative simulations of systems of
piece-wise linear ODEs. SQUAD analyzes discrete and
continuous models using the standardized qualitative
dynamical systems approach.
Toolbox
The Odefy toolbox is platform-independent due to the
availability of MATLAB and Octave for all major operat-
ing systems and the direct integration of the Java Runtime
Environment into MATLAB. It was verified to run
smoothly on Windows, Linux KDE and GNOME as well
as recent versions of Mac OS X. A detailed HTML docu-
mentation is included in the download package, which
also provides a quick start guide to start working with the
toolbox. Odefy is free for non-commerical and academic
use. The toolbox including source codes can be down-
loaded at http://cmb.helmholtz-muenchen.de/odefy.

Results and Discussion
Mutual inhibitory switch
In the following we demonstrate the use of Odefy for the
analysis of a simple regulatory motif. The mutual inhibi-
tory switch (Figure 5A) is a well-known circuit involved
in developmental processes and stem cell differentiation,
e.g. in the hematopoietic system [22]. Despite its simplic-
ity the circuit displays remarkable dynamic characteris-
tics leading to the fate decision between opposing
differentiation lineages. Various theoretical studies have
been published recently investigating different aspects
and molecular assumptions for this motif [23-25]. We
discuss two different ways of formulating the interactions
in this network in terms of Boolean equations. Multiple
regulatory inputs (in this case self-activation and cross-
inhibition) can either be combined using an AND or an
OR logic for both factors. Figure 5B shows the MATLAB
code that analyzes the OR logics version of our mutual
switch network. After creating the model structure we
calculate and output the steady states of the Boolean
model (Figure 5C).

We demonstrate the actual conversion into an ODE
model and subsequent simulation within the Odefy tool-
box. A two-dimensional phase plane projection of vari-
ous initial values is drawn that displays the attractor
landscape generated by the dynamical system (Figure 5D,
the phase plane visualization for the corresponding AND
logics model is shown in Figure 5E). Note that this analy-
sis reveals continuous decision boundaries between dif-
ferent attractors not apparent in the discrete model alone.
Furthermore, two unstable steady states emerge which
mark the switching points from one attractor basin to the

other. In stem cell research, the central state is considered
to be a pre-differentiation priming state whereas the
other two states correspond to the regulatory program
leading to the commitment to a certain cell lineage [26].
With our continuous mathematical representations we
gain insights into the putative switching dynamics of this
important differentiation switch in stem cells. After fit-
ting simulated trajectories to observed time series of
expression data, we could now determine rate parameters
and understand the detailed time dynamics of the system.

Comparison with an existing ODE model
We now employ the mutual inhibitory switch model dis-
cussed in the preceding section to address an important
question for our novel modeling approach, namely
whether the quantitative dynamics added to the discrete
model are reasonable, or whether spurious, artifical
effects are created by the method. In the study by Roeder
et al. [23], a mechanistical model of the switch motif was
proposed, which is based on actual biochemical reactions
like promotor binding, transcription/translation and pro-
tein-protein interactions. The system was reduced to a
two factor ODE by applying quasi-steady assumptions for
the DNA and RNA species in the system. A comparison
between simulation trajectories of the Odefy-converted
model of the AND-gated switch and the Roeder model is
displayed in Figure 6. Both systems have two non-zero
stable steady states at similar positions, and the attractor
basins for both states are virtually identical. Furthermore,
both systems comprise a third, trivial steady state where
both factors are zero. Interestingly, the parameter assign-
ments we made for the simulation of the Odefy model, in
order to achieve similarity between the model simula-
tions, is qualitatively comparable with the parameter set-
tings from the Roeder model. More precisely, the Roeder
model employs a high unspecific transcription rate (we
refer to the original publication for more details on the
parameters), which effectively reduces the mutual inhibi-
tory influences in relation to the autoregulatory activa-
tion of both factors. Accordingly, in our model we set the
self-activation threshold to 0.01, which renders both fac-
tors strongly sensitive to their own expression levels.
Taken together, we can reproduce important dynamical
features of the reaction-based system by Roeder et al.,
inluding multistability, steady state positions, and the
general shape of the attractor basins.

Mid-hindbrain boundary
Our second example of dynamic modeling using Odefy
concentrates on a multicellular biological system. During
vertebrate development, the differentiation between mid-
and hindbrain is determined by several transcription fac-
tors (e.g. Otx2, Gbx2) and secreted factors (e.g. Fgf8,
Wnt1). These genes are stably expressed in a well-defined

http://cmb.helmholtz-muenchen.de/odefy
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spatial pattern around the boundary between prospective
mid- and hindbrain, the so-called mid-hindbrain bound-
ary (Figure 7A). In a recent publication, we have applied
both Boolean modeling and the HillCube conversion
approach to this system [27]. In the following we will
show how to use Odefy for automated model selection,
that is the evaluation of an ensemble of regulatory net-
works with respect to stability of the known expression
patterns. Figure 7B displays the MATLAB code required
to fulfill this goal. First, we load a set of 9 regulatory net-
works known to give rise to the expression pattern along
with 1000 random Boolean equations (not shown in the
code) as a representative set of arbitrarily chosen regula-
tory networks. Then we iterate over all equation systems,
generate a 6 cell multicompartment version of this model
where the species representing the signaling molecules
Fgf8 and Wnt1 are flagged as intercompartmental (Figure
7C). The multi-cell system is converted to an ODE system
and simulated starting from the known stable expression
state with default parameters n = 3, k = 0.5, τ = 1. If the
activity of all players, in terms of exceeding the Hill
threshold parameter, is still correct after a given amount

of time steps, we consider the model to be valid. The
results of this experiment show that indeed only 9 net-
works can give rise to the desired system behavior (Figure
7D). Analyzing these networks we see, in particular, that
the maintenance of the boundary requires a mutual inhi-
bition of Otx2 and Gbx2 and that these two transcription
factors have antagonistic effects on Fgf8 and Wnt1
expression. Moreover, we find that Fgf8 and Wnt1 require
each other for their stable maintenance. This agrees well
with results from various loss-and gain-of-function
experiments [28]. Note that while the small network in
the former sections could still be handled manually, the
model selection problem for the mid-hindbrain network
demonstrates the absolute necessity for fully automated
approaches as implemented in our toolbox. The system
contains 6·4 = 24 differential equations with a total of up
to 20 kinetic parameters for each compartment. Obvi-
ously, a model system of this size with parameter interde-
pendencies due to multicompartmentality cannot
reasonably be handled by manual mathematical model-
ing.

Figure 5 Mutual inhibitory switch. A Regulatory network known to take a prominent role in stem cell differentiation processes (see e.g. [22]). It con-
sists of two mutual inhibitory factors (here with auto-activation). Intuitively, only one of the two factors can be fully active at any given time, leading 
to a switch-like behavior of this circuit. B This listing diplays the set of commands required to create and analyze the OR logics version of the mutual 
inhibitory switch. After initializing Odefy and generating the model structure (lines 1-2), we calculate and output Boolean steady states (lines 3-4) and 
finally convert the model into an ODE system to generate a picture of the attractor landscape (lines 5-6). C Boolean steady states of the OR and AND 
version of the mutual inhibitory switch model. D, E Phase planes visualizing the attractor landscapes of the OR (D) and AND (E) logics models. The 
figures display trajectories of both dynamical systems from various initial concentrations. Trajectories with the same color fall into the same stable 
steady state. Both systems comprise three stable continuous steady states, each of which belongs to one Boolean steady state.



Krumsiek et al. BMC Bioinformatics 2010, 11:233
http://www.biomedcentral.com/1471-2105/11/233

Page 8 of 10
Conclusions
Precise mechanistic details about regulatory interactions
required for the quantitative modeling of biological sys-
tems are rare. However, more qualitative, phenomenolog-
ical information like activation and inhibition is
frequently available. With Odefy we created a simple yet
useful toolbox to bridge the gap between qualitative and
quantitative modeling of regulatory networks. A variety
of such discrete models is already available and can
immediately be converted into ODE systems by our tool.

Quantitative modeling might reveal features not pres-
ent in the original Boolean models. For instance, quanti-
tative models allow for the estimation of system
robustness with respect to parameter perturbations, even
with ad-hoc parameter values. This provides insights into
the general capability of the system to withstand external
or intracellular fluctuations and has been demonstrated
for various biological systems like Drosophila segmenta-
tion patterns [29] and the mid-hindbrain specification
mentioned in this report. Furthermore, in [8] we deter-
mined parameter values by least-square fitting to experi-
mental data in a T-cell signaling model. We could,
amongst others, successfully predict relations between
binding affinity constants of ligand-receptor interactions,
which represent biochemical quantities not capturable in
a Boolean framework.

In this report we explained the concepts of automatic
conversion from Boolean models to systems of ordinary

differential equations. Two example cases were discussed
stressing (a) the ease-of-use of the Odefy toolbox as well
as (b) the requirement for automated conversion meth-
ods for more realistic biological systems like the Mid-
hindbrain boundary network. We demonstrated that a
discrete model converted to an ODE by Odefy displays
similar dynamical properties as a mechanistically derived
ODE model of the same system. Here we could show that,
even though the identity of dynamical parameters
between both modeling approaches is substantially dif-
ferent, qualitatively similar parameter changes show simi-
lar results.

The integration of Odefy with other modeling applica-
tions through the import and export of models extends
the scope of our toolbox. In particular, the SBML export
functionality connects our toolbox to a broad variety of
systems biology softwares supporting this common inter-
change format. With its novel modeling technique and its
easy usability, Odefy will be a valuable tool for research-
ers aiming to understand the dynamics of gene regula-
tion.

Availability and requirements
• Project name: Odefy
• Project home page: http://cmb.helmholtz-
muenchen.de/odefy
• Operating system(s): Platform independent
• Programming language: MATLAB/Octave

Figure 6 Comparison with an existing modeling study. A Phase planes visualizing the attractor landscape of the Odefy-converted AND version of 
the mutual inhibitory switch from various initial conditions. We set the Hill parameter n to 2 in order to represent dimer binding of transription factors 
as proposed in the study by Roeder et al [23]. The self-activation threshold ks was set to 0.01, resembling a highly sensitive self-activation in comparison 
to the mutual inhibition. B Simulation of the ODE system from [23] with a high unspecific transription rate. We show an exact reproduction of the phase 
plane displayed in Figure 2(h) from the original publication. Both dynamical systems are similar in terms of multistability, steady state positions and 
attractor basins, i.e. the initial values that fall into a certain steady state.

http://cmb.helmholtz-muenchen.de/odefy
http://cmb.helmholtz-muenchen.de/odefy
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• Other requirements: MATLAB 7.1 or higher (no
additional toolboxes required), Octave for non-GUI
mode
• License: Free for non-commercial purposes
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