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Abstract: Genome-wide association studies (GWAS) of circulating metabolites have revealed the
role of genetic regulation on the human metabolome. Most previous investigations focused on
European ancestry, and few studies have been conducted among populations of African descent
living in Africa, where the infectious disease burden is high (e.g., human immunodeficiency virus
(HIV)). It is important to understand the genetic associations of the metabolome in diverse at-risk
populations including people with HIV (PWH) living in Africa. After a thorough literature review, the
reported significant gene–metabolite associations were tested among 490 PWH in South Africa. Linear
regression was used to test associations between the candidate metabolites and genetic variants.
GWAS of 154 plasma metabolites were performed to identify novel genetic associations. Among
the 29 gene–metabolite associations identified in the literature, we replicated 10 in South Africans
with HIV. The UGT1A cluster was associated with plasma levels of biliverdin and bilirubin; SLC16A9
and CPS1 were associated with carnitine and creatine, respectively. We also identified 22 genetic
associations with metabolites using a genome-wide significance threshold (p-value < 5 × 10−8). In
a GWAS of plasma metabolites in South African PWH, we replicated reported genetic associations
across ancestries, and identified novel genetic associations using a metabolomics approach.

Keywords: GWAS; metabolome; HIV; African

1. Introduction

Genome-wide associations studies (GWAS), which involve investigations on associa-
tions between genetic architecture and complex disease traits, have been widely conducted
to understand how the genetic profile contributes to various diseases [1]. High-resolution
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metabolomics can measure large-scale profiles of small molecules in biological samples,
which enables metabolome-wide association studies (MWAS) to understand a variety
of diseases on a molecular basis [2]. The traditional GWAS has been hindered by the
phenotyping of exposures and risk factors that are unmeasured or even unknown. By
combining high-throughput phenotyping metabolomics data with GWAS (mGWAS), we
have broadened our insight into many complex diseases and traits [3].

Early mGWAS research found that common single nucleotide polymorphisms (SNP)
can account for as much as 12% of the variance in homeostasis of the human metabolic
profile [4]. In recent years, a number of studies of blood and urine metabolites have been
conducted, revealing many robust and reproducible associations between genetic variants
and metabolites, with many involving enzyme catalysis and transporter proteins [5,6]. With
a goal of building an integrated atlas of genomics and metabolomics, many investigations
have focused on general populations of European descent [7,8], and only a few have focused
on African Americans [9,10]. For example, the UGT1A1 gene encodes the enzyme in the
bilirubin metabolism, and its association with bilirubin and biliverdin has been successfully
established [9,11]. This particular locus is also involved in the metabolic pathways linking
to several human immunodeficiency virus (HIV) medications; however, there have been
no studies focusing on individuals of African ancestry who have HIV infection living in
South Africa, which would permit an exploration of environmental and genetic influences
on metabolic processes. In this study of people with HIV (PWH) living in South Africa
who were antiretroviral therapy (ART) naive, we aimed to assess the generalizability of
previously reported findings and explore the novel associations between genetic variants
and metabolites in this unique cohort of genetic ancestry, geography, and health condition.

2. Results
2.1. Characteristics of Study Participants

All 490 participants were South Africans, with 305 from RK Khan Hospital and 185
from Bethesda Hospital. The mean age was 34.4 (standard deviation [SD] 10.0) years, and
312 (63.7%) were female (Table 1). The ancestry map of the South African study participants
compared to the 1000 Genome Project [12] reference panel showed a well-defined South
African genetic profile partially intersecting with African (AFR) ancestry but distinct from
other ancestries (Figure 1).

Table 1. Baseline characteristics of the study cohort.

Characteristic Overall
n = 490

RK Khan
Hospital
n = 305

Bethesda
Hospital
n = 185

Ethnicity

Zulu (%) 370
(75.5)

189
(62.0)

181
(97.8)

Xhosa (%) 78
(15.9)

78
(25.6)

0
(0.0)

Other (%) 42
(8.6)

38
(12.5)

4
(2.2)

Female (%) 312
(63.7)

192
(63.0)

120
(64.9)

Age in years (SD) 34.4
(10.0)

34.1
(9.5)

34.7
(10.8)

Education in years (SD) 9.3
(3.4)

9.7
(2.9)

8.8
(4.0)

CD4 count/µL (SD) 405.034
(237.176)

427.027
(242.791)

366.286
(223.576)
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Figure 1. Ancestry map of study participants and reference panel. Reference panel of 1000 Genome
project: AFR, African; AMR, American; EAS, East Asian; EUR, European; SAS, South Asian. Study
participants: SAF, South African.

2.2. Candidate Gene–Metabolite Associations

From the 24 reported GWAS of blood-based metabolic profiles (Figure 2, Table 2), we
searched for the metabolites analyzed and annotated in the present study. We identified a
total of 29 candidate SNP-metabolite associations, including 18 independent genetic loci
and 14 metabolites from previous studies, and tested these associations in the South African
cohort (Table 3). Five metabolites including citrulline, glutamine, histidine, serine, and
urate, were identified from two different liquid chromatography platforms and were both
analyzed, resulting in 36 replications of SNP-metabolite associations. Among the 36, a total
of 24 were consistent in direction regardless of statistical significance, 7 were inconsistent,
and 5 could not be compared due to lack of beta coefficients in the publications. A total of
seven were both consistent in direction and statistically significant. The UGT1A1/UGT1A
cluster locus showed robust association, with the T allele of the lead SNP rs887829 as-
sociated with higher bilirubin (0.31 ± 0.07, p = 3.38 × 10−6) and biliverdin (0.39 ± 0.07,
p = 1.04 × 10−8) levels. The G allele of rs1171617 in SLC16A9 and A allele of rs7422339 in
CPS1 were associated with lower carnitine (−0.23 ± 0.07, p = 0.0014) and higher creatine
(0.19 ± 0.07, p = 0.0045), respectively (Figure 3, Table 3). 
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Table 2. Articles selected for the candidate gene–metabolite associations.

Year First Author Sample Number of
Metabolites

Sample Size,
Country/Region

Genetic
Ancestry

2008 Christian Gieger [4] serum 363 284, Germany European

2010 Thomas Illig [13] serum 163 Discovery: 1809, Germany
Validation: 422, UK European

2011 Karsten Suhre [8] serum 276 Cohort 1: 1768, Germany
Cohort 2: 1052, UK European

2012 Johannes Kettunen [14] serum 117 8330, Finland European

2012 Michael Inouye [15] serum 130 Cohort 1: 1905, Finland
Cohort 2: 4703, Finland European

2012 Jan Krumsiek [16] serum 517 1768, Germany European

2013 Eugene P Rhee [17] plasma 217 2076, US European

2014 So-Youn Shin [7] plasma and
serum 486 Cohort 1: 6056, UK

Cohort 2: 1768, Germany European

2014 Bing Yu [9] serum 308 1260, US African (African
Americans)

2014 Janina S Ried [18] serum 344 Discovery: 1809, Germany
Validation: 843, UK European

2015 Ayşe Demirkan [19] serum 42 2118, Netherlands European

2015 Harmen H M Draisma [5] serum 129

Discovery: 7478, Netherlands,
Germany, Australia, Estonia,

UK
Validation: 1182, Germany

European

2016 Eugene P Rhee [20] plasma 217 Discovery: 2076, US
Validation: 1528, US European

2016 Johannes Kettunen [21] plasma and
serum 123 24925, Europe European

2016 Idil Yet [22] serum 648 1001, UK European

2017 Tao Long [23] serum 644 1960, UK European

2018 Yong Li [6] serum and urine serum: 139
urine: 41 1168, Germany European

2018 Noha A. Yousri [24] plasma 826 Discovery: 614, Qatar
Validation: 382, Qatar Middle Eastern

2018 Tanya M Teslovich [25] serum 9 Discovery: 8545, Finland
Validation: 2591, Finland European

2019 Rubina Tabassum [26] plasma 141 2181, Finland, UK European

2020 Elena V Feofanova [27] serum 640
Discovery: 3926, US

Validation: 1509, US; 1960,
UK

Discovery:
Hispanic

Validation:
European

2021 Shengyuan Luo [10] serum 652 Discovery: 619, US
Validation: 818, US

African (African
Americans)

2021 Eric L Harshfield [28] serum Cohort 1: 340
Cohort 2: 399

Cohort 1: 5662, Pakistan
Cohort 2: 13,814, UK

Cohort 1: South
Asian

Cohort 2:
European

2022 Eugene P Rhee [11] plasma 537 822 White, 687 Black, US
European,

African (African
Americans)
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Table 3. Previously reported genetic associations with metabolites.

Metabolite

Previous Literature ADReSS

First Author rsID Chr. Pos.
(GRCh38) Nearest Gene

Effect/
Non-
Effect
Allele

Effect
Allele
Freq. *

Beta
(SE) ** p

Effect
Allele
Freq.

Beta SE p

Bilirubin

Eugene P Rhee [11] rs7567229 2 233703893 UGT1A6-10 A/C 0.31 0.31
(0.04) 2.7 × 10−15 0.60 0.02 0.06 0.7778

Eugene P Rhee [11]
rs887829 2 233759924 UGT1A3-10 T/C

0.46 0.38
(0.05) 1.4 × 10−13

0.40 0.31 0.07 3.38 × 10−6

Bing Yu [9] 0.44 NA 1 × 10−17

Shengyuan Luo [10] rs4148325 2 233764663 UGT1A1,
UGT1A3-10 T/C 0.45 0.36 3.82 × 10−12 0.40 0.30 0.07 5.72 × 10−6

Biliverdin

Shengyuan Luo [10] rs1976391 2 233757337 UGT1A3-10 G/A 0.45 0.42 3.69 × 10−17 0.40 0.39 0.07 1.04 × 10−8

So-Youn Shin [7]
rs887829 2 233759924 UGT1A3-10 T/C

0.34 0.113
(0.004) 2.50 × 10−168

0.40 0.39 0.07 1.04 × 10−8

Bing Yu [9] 0.44 NA 8× 10−23

Eugene P Rhee [11] rs4148325 2 233764663 UGT1A1,
UGT1A3-10 T/C 0.33 0.27

(0.03) 5.7 × 10−19 0.40 0.38 0.07 2.36 × 10−8

Carnitine

So-Youn Shin [7] rs1466788 1 110076108 ALX3 A/G 0.41 −0.007
(0.001) 3.05 × 10−16 0.26 0.01 0.07 0.8629

So-Youn Shin [7] rs9842133 3 179946314 PEX5L T/C 0.66 0.006
(0.001) 4.20 × 10−12 0.54 0.06 0.06 0.2984

Karsten Suhre [8] rs7094971 10 59689806

SLC16A9

G/A 0.15 −0.049 3.4 × 10−14 0.11 −0.07 0.10 0.4627

Eugene P Rhee [17]
rs1171617 10 59707424 G/T

0.23 −0.42
(0.04) 5.9 × 10−26

0.24 −0.23 0.07 0.0014
Idil Yet [22] NA NA 2.3 × 10−13

Citrulline So-Youn Shin [7] rs56322409 10 95636205 ALDH18A1 T/C 0.63
−0.011
(0.002) 7.81 × 10−11 0.92

0.04 0.12 0.7471

0.02 0.12 0.8796

Creatine
Eugene P Rhee [17] rs7422339 2 210675783 CPS1 A/C 0.31 0.24

(0.04) 2.5 × 10−11 0.43 0.19 0.07 0.0045

Bing Yu [9] rs2433610 15 45393893 15kb from GATM T/C 0.49 NA 9× 10−12 0.51 0.01 0.06 0.8755
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Table 3. Cont.

Metabolite
Previous Literature ADReSS

First Author rsID Chr. Pos.
(GRCh38) Nearest Gene

Effect/
Non-
Effect
Allele

Effect
Allele
Freq. *

Beta
(SE) ** p

Effect
Allele
Freq.

Beta SE p

Glutamine Karsten Suhre [8] rs2657879 12 56471554 GLS2 G/A 0.19 −0.035 3.1 × 10−17 0.06
−0.16 0.13 0.2482

−0.07 0.14 0.5944

Histidine
Johannes Kettunen

[21] rs7954638 12 95921017 HAL A/C 0.48
−0.08
(0.01) 7.3 × 10−15 0.67

−0.09 0.07 0.1863

−0.06 0.07 0.3814

Inosine Karsten Suhre [8] rs494562 6 85407411 NT5E G/A 0.11 0.302 7.4 × 10−13 0.39 0.10 0.06 0.0939

Phenylalanine Michael Inouye [15] rs1912826 4 186228386 KLKB1 G/A MAF
0.43 NA 3.72 × 10−12 0.32 −0.01 0.07 0.8876

Proline

Eugene P Rhee [17] rs2078743 22 18979346
PRODH

A/G 0.09 0.49
(0.06) 2.2 × 10−14 0.14 0.12 0.09 0.1968

Karsten Suhre [8] rs2023634 22 18984937 G/A 0.09 0.113 2.0 × 10−22 0.11 −0.03 0.10 0.7947

Ayşe Demirkan [19] rs3213491 22 19177322 SLC25A1 A/C 0.95 0.38
(0.11) 7.48 × 10−4 0.70 0.10 0.07 0.1402

Serine

So-Youn Shin [7] rs1163251 1 119667132

PHGDH

T/C 0.60
0.019

(0.002) 7.05 × 10−27 0.89
0.06 0.10 0.5274

−0.10 0.10 0.3229

Karsten Suhre [8] rs477992 1 119714953 A/G 0.31 −0.051 2.6 × 10−14 0.38
−0.02 0.07 0.7487

−0.12 0.07 0.0632

So-Youn Shin [7] rs4947534 7 56011401 PSPH T/C 0.25
−0.018
(0.002) 1.96 × 10−14 0.37

−0.04 0.07 0.5866

−0.10 0.07 0.1450

Tryptophan So-Youn Shin [7] rs13122250 4 155887136 TDO2 T/C 0.55 0.006
(0.001) 8.95 × 10−12 0.13 −0.07 0.10 0.4590

Tyrosine Tanya M Teslovich
[25] rs28601761 8 125487789 49 kb downstream

of TRIB1 G/C 0.42 −0.09
(0.02) 8.8 × 10−9 0.42 0.04 0.07 0.5151

Urate Karsten Suhre [8] rs4481233 4 9954455 SLC2A9 T/C 0.19 −0.074 5.5 × 10−34 0.08
−0.13 0.11 0.2622

−0.16 0.12 0.1922

Bold font indicates statistical significance. * Minor allele frequency (MAF) listed if effect allele unknown. ** Standard error (SE) not listed if unavailable. Note: Chr.: chromosome; Pos.:
base pair position in human genome built GRCh38; Freq.: frequency; Beta: beta coefficient from linear regression models; SE: standard error from linear regression models; p: p-value.
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2.3. GWAS

The 154 inflation factors (lambda) of GWAS had a range of 0.98–1.02 (Supplementary
Table S1). The Q–Q plots and Manhattan plots are presented in Supplementary Figures
S1 and S2. A total of 22 genetic associations with metabolites passed the genome-wide
significance level of p < 5 × 10−8 (Table 4). The rs887829 variant of UGT1A1/UGT1A
cluster locus was one of the top associations in the GWAS of biliverdin. Several novel loci
were identified, such as the G allele of rs1401798 associated with higher hypoxanthine
(0.37 ± 0.06, p = 8.80 × 10−10), and the G allele of rs6874865 associated with lower 3-methyl-
2-oxindole (−0.48 ± 0.08, p = 8.66 × 10−9).
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Table 4. Genetic associations with metabolites identified in GWAS (p < 5 × 10−8).

Metabolite rsID Chr. Pos. (GRCh38) Gene Effect/
Non-Effect Allele

Effect
Allele Freq. Beta SE p

1-
aminocyclopropane-

1-carboxylate
rs112118947 9 114067084 AMBP T/G 0.13 −0.49 0.09 2.83 × 10−8

1-
methylnicotinamide rs7844962 8 110190121 Intergenic G/A 0.09 −0.62 0.11 4.87 × 10−8

3-methyl-2-
oxindole rs6874865 5 152559517 Intergenic G/A 0.17 −0.48 0.08 8.66 × 10−9

Bilirubin rs9884125 4 183605287 Intergenic G/A 0.33 0.35 0.06 3.59 × 10−8

Biliverdin rs1976391 * 2 233757337 UGT1A3-10 G/A 0.40 0.39 0.07 1.04 × 10−8

Caprylic acid rs10840643 12 122040948 BCL7A T/C 0.48 0.36 0.07 4.28 × 10−8

Creatine rs115281368 5 133290340 FSTL4 T/C 0.05 0.80 0.14 2.62 × 10−8

Creatinine rs1810668 13 113344465 GRTP1 A/G 0.31 0.38 0.07 1.83 × 10−8

D-gulonic acid
gama-lactone rs2328985 ** 13 76682571 LOC105370266,

LOC112268120 A/C 0.20 −0.40 0.07 2.58 × 10−8

Glycerate rs17136208 *** 16 3095047 ZSCAN10 C/T 0.05 0.76 0.14 3.70 × 10−8

Hypotaurine rs115656245 11 124577645 Intergenic C/T 0.06 0.72 0.13 3.98 × 10−8

Hypoxanthine rs1401798 **** 2 150817357 Intergenic G/T 0.53 0.37 0.06 8.80 × 10−10

L-arabitol rs12603355 ***** 17 7829719 DNAH2 T/C 0.29 −0.38 0.07 2.71 × 10−8

Melanin N/A 1 200189144 NR5A2 G/A 0.20 −0.44 0.08 3.50 × 10−8

N-acetyl-d-
tryptophan rs75313733 ****** 6 66785398 Intergenic C/CT 0.41 −0.38 0.06 4.70 × 10−9

Palmitoleic acid rs146744192 19 6299380 Intergenic T/C 0.19 0.43 0.08 3.60 × 10−8

Pyridoxamine rs10170273 2 151664582 NEB C/T 0.34 −0.36 0.06 3.86 × 10−8

Pyruvate rs480446 18 60159460 Intergenic A/G 0.09 0.61 0.11 3.12 × 10−8

Rac-glycerol
1-myristate rs11598219 10 68140483 MYPN A/G 0.33 0.38 0.07 1.56 × 10−8
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Table 4. Cont.

Metabolite rsID Chr. Pos. (GRCh38) Gene Effect/
Non-Effect Allele

Effect
Allele Freq. Beta SE p

Sorbate rs6785673 3 68413982 TAFA1 A/C 0.25 −0.40 0.07 4.57 × 10−8

Trans-
cinnamaldehyde rs10876317 12 52655137 Intergenic C/T 0.27 0.38 0.07 4.05 × 10−8

Xanthine rs4082670 10 11285890 CELF2 T/C 0.41 0.34 0.06 3.80 × 10−8

Bold font indicates statistical significance. * Four other SNPs in Linkage Disequilibrium (LD): rs887829, chr2:233755940, rs4148325, rs4663971. ** One other SNPs in LD: rs9600758. ***
One other SNPs in LD: rs116308609. **** Twelve other SNPs in LD: rs7576640, rs6432992, rs10930292, rs7576195, rs6432994, rs1356741, rs11683080, rs2880094, rs2190374, rs1914989,
rs6715480, rs1829481. ***** One other SNPs in LD: rs10852892. ****** One other SNPs in LD: rs10806545. Note: Chr.: chromosome; Pos.: base pair position in human genome built
GRCh38; Freq.: frequency; Beta: beta coefficient from linear regression models; SE: standard error from linear regression models; p: p-value.
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3. Discussion

Low- and middle-income countries, such as South Africa, are facing unique public
health challenges with high prevalence of infectious disease, and the growing burden
of noncommunicable diseases [29]. However, most genomic and metabolic studies have
been conducted on individuals of European ancestry from high-income countries. Due to
different genetic ancestries and environmental exposures, the genomic and metabolomic
profiles and associations with European ancestry may not apply to people with non-
European ancestry from low- and middle-income countries. The present mGWAS in
South Africans provides one of the first catalogs to start filling the knowledge gap in
diverse global populations. Understanding the genomic and metabolic characteristics
from underrepresented populations is critically needed to identify molecular mechanisms
driving risks for chronic infections and noncommunicable diseases. The -omics findings
will also shed light on novel precision medicine applications for at-risk populations from
low- and middle-income countries to reduce health disparities.

In this mGWAS conducted among 490 PWH from Africa, we replicated previously
reported genetic associations primarily from European individuals living in high-income
countries. The UGT1A1/UGT1A cluster locus was associated with biliverdin and biliru-
bin, which are both bile pigments formed during the breakdown of hemoglobin in red
blood cells. Biliverdin can be converted as unconjugated bilirubin by biliverdin reduc-
tase before being further metabolized. The UGT1A1 gene encodes the bilirubin uridine
diphosphate-glucuronosyltransferase, which is the enzyme responsible for conjugation,
detoxification, and clearance of bilirubin, and it has been found among European, African,
and Asian populations; mutations of the gene may cause unconjugated hyperbilirubine-
mia [30–34]. Further, elevated bilirubin levels were found associated with lower risk in
cardiovascular events among PWH [35], and the UGT1A1 gene is particularly of interest in
future studies of HIV, since it was involved in the metabolic pathways linking to several
HIV medications, such as Bictegravir, Cabotegravir, Dolutegravir, Elvitegravir, and Ral-
tegravir (https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-
adolescent-arv/characteristics-integrase-inhibitors, accessed on 15 June 2022). The CPS1
locus encodes a mitochondrial enzyme responsible for carbamoyl phosphate synthesis
from ammonia and bicarbonate with the use of adenosine triphosphate. This is the first
step of the urea cycle, which can generate arginine, a critical precursor of creatine synthe-
sis [17]. Creatine can be both naturally synthesized or ingested in a usual diet to supply
energy to the muscles, and then is converted to creatinine, filtered from the blood by the
glomerulus [36]. The association between CPS1 and creatine was previously reported
among participants of European descent in the Framingham Heart Study [17], and another
study of European participants, which demonstrated that the locus was also associated with
creatinine [37]. As another critical compound in energy metabolism, carnitine transports
long-chain fatty acids into the mitochondria to be oxidized and produce energy [38,39]. The
product of SLC16A9 is a carnitine efflux transporter [8]; its association with carnitine was
previously established among several studies in European populations but has not been
generalized to other ancestries [8,17,22]. In addition, we found a borderline statistically
significant association of serine and the PHGDH gene, which encodes the enzyme involved
in the process of serine synthesis [7,8].

To the best of our knowledge, this is the first population study of genome-metabolome
cross-talk among individuals of African ancestry living in Africa, which represents a pop-
ulation facing a unique public health burden of both non-communicable diseases and
chronic infectious diseases. Although the relatively moderate sample size limited us from
identifying more genome-wide significant association with metabolites, our results demon-
strated the value of such a mGWAS in this under-represented population. Beyond several
gene–metabolite associations that are generalizable across ancestries, several novel dis-
coveries provide candidates for replication and may benefit future research endeavors in
African countries. The identified gene–metabolite associations can be used as genetic in-
strumental variables in the Mendelian Randomization framework to investigative potential

https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-adolescent-arv/characteristics-integrase-inhibitors
https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-adolescent-arv/characteristics-integrase-inhibitors
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causal relationship between metabolites and disease outcomes. There are a few limitations
associated with the present study. For example, the plasma samples were not collected
during fasting, and information on diet was not surveyed, which may influence the abun-
dance of certainly diet-related metabolites. A causal pathway may not be directly inferred
from these observed associations. Future studies are warranted to provide guidance on
translation and clinical implementations of identified genes and metabolites among the
PWH population. In addition, future studies with improved metabolomic coverage and
annotation will help establish a more complete atlas of genome-metabolome relationship in
this unique population. With more and larger mGWAS in African populations, improved
statistical power will facilitate robust findings of gene–metabolite associations to better
understand molecular mechanisms, and to investigate the functional role of less frequent
genetic variants on disease risk.

4. Materials and Methods
4.1. Study Participants

Ethics approval from the Biomedical Research Ethics Committee of the University of
KwaZulu-Natal, the Emory University, and Mass General Brigham institutional review
boards was obtained prior to the start of the study. After signed informed consent, people
with HIV (PWH) who were at least 18 years of age and qualified for anti-retroviral therapy,
were enrolled into the HIV AIDS Drug Resistance Surveillance Study (ADReSS). This study
was based on a sub-cohort from the ADReSS participants recruited from KwaZulu-Natal,
South Africa. The recruitment was conducted in 2014–2016 at two participating clinical
sites, the RK Khan Hospital and Bethesda Hospital in KwaZulu-Natal, South Africa [40].
A total of 490 participants from the study with both genomics and metabolomics data
available were included in the analysis. Full summary statistics of the results presented in
the study are available upon request. Individual level dataset underlying this study can
be requested and shared in compliance with the informed consent and IRB approval from
participating institutes.

4.2. Genotyping and Imputation

Genotyping was performed on DNA extracted from blood samples of 998 participants,
using the Illumina Global Screening Array. Genotype imputation for the 998 samples was
performed based on the TOPMed reference panel in the genome build GRCh38 [41], using
590,511 genotyped SNPs. A total of 8,568,848 genetic variants with imputation quality
R2 > 0.5, genotype call rate >95%, Hardy–Weinberg equilibrium p > 10−6, and minor allele
frequency >0.05 entered analysis. Total of 490 participants with African ancestry also had
metabolomics data from plasma samples after quality control procedures.

4.3. Metabolomic Profiling

The high-resolution metabolic profiling was performed using liquid chromatography
with high-resolution mass spectrometry (Thermo Scientific Fusion, Waltham, MA, US)
based on an established protocol [42–44]. Plasma samples collected from participants prior
to antiretroviral therapy initiation were stored at −80 Celsius before thawing for analysis by
liquid-chromatography mass spectrometry (Thermo Scientific Fusion, Waltham, MA, USA).
Thawed plasma was treated with acetonitrile containing an internal isotopic standard
mix [44,45], then centrifuged for 10 min at 4 Celsius to remove protein. The remaining
supernatant was then maintained in a Dionex Ultimate 3000 autosampler at 4 Celsius until
analysis. Two liquid chromatography strategies were used, including Supelco Ascentis
Express HILIC 100 × 2.1 mm (53939-U) columns and Higgins C18100 × 2.1 mm (TS-1021-
C185) columns with positive and negative ionization mode, respectively. All samples
were analyzed in triplicate, with the standard reference samples of National Institute
of Standards and Technology 1950 analyzed at the beginning and end of the analysis,
and pooled plasma reference samples inserted at the beginning and end of each batch of
20 study samples [46]. Metabolic feature extraction was performed using apLCMS and
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xMSanalyzer [47,48]. Batch effect was corrected using Combat [49]. A metabolic feature
was defined by the mass-to-charge ratio (m/z) ranging from 85 to 1275, and retention time
up to 5 min. Pearson correlation coefficient ≥0.7 within triplicates of the metabolic feature
intensities were retained, and the triplicates of intensities were median summarized based
on the non-zero readings. Then, the zero readings of each metabolic feature were imputed
as random numbers below the minimum intensity across all study samples. Annotations
of metabolic features were matched to an in-house library of confirmed metabolites, which
were of Level 1 identification confidence per established criteria [50,51]. The matching of
annotations allowed m/z differences of 10 parts-per-million and retention time differences
of 30 s. After removing metabolic features with multiple matches of annotations, a total
of 154 metabolites were successfully and uniquely matched, as shown in Supplementary
Table S1.

4.4. Literature Review

The diagram of the literature review is shown in Figure 2. We searched PubMed for
the key words “GWAS” and “Metabolome” and found 566 articles from 2008–2022. Among
those, a total of 386 articles were human studies in the English language. We reviewed
these articles and found 24 blood-based GWAS of metabolic profile in Table 2. We then
identified statistically significant gene–metabolite associations to pursue replication in this
present study of South Africans.

4.5. Statistical Analysis

Genetic background of the 490 study participants were analyzed coupled with the
1000 Genome Project [12] reference panel, which included African (AFR), American (AMR),
East Asian (EAS), European (EUR), and South Asian (SAS). Principal components (PCs)
were computed, and the ancestry map was generated based on the top two PCs that
explained the most variance. For the analysis of gene–metabolite associations, the intensities
of metabolites were rank-based inverse normal transformed to achieve normality. Linear
regression and additive genetic models were used to test the associations between the
candidate metabolites and SNPs, controlling for age, gender, study sites, and the top ten
PCs, which were derived from PC analysis of the study participants. We also performed
GWAS for each of the 154 metabolites identified to explore novel genetic loci, using the
same statistical model. For candidate gene–metabolite association analysis, we considered
p < 0.05 as statistically significant, and the genome-wide significance threshold p < 5 × 10−8

was used for GWAS. All analyses were conducted in R version 4.0.2 (Vienna, Austria. URL
Available online: https://www.R-project.org/ (accessed on 15 June 2022) and the PLINK
software [52].

5. Conclusions

Among a cohort of PWH living in South Africa prior to ART initiation, we identified
genetic associations with metabolites across ancestries as well as unique to ancestry group,
which supports the importance of genomic association studies in diverse ancestries. Find-
ings in gene–metabolite associations from diverse ancestries and geographic regions can
provide insights to the disease risk at the molecular level and reduce health disparities for
underrepresented populations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12070624/s1, Supplementary Table S1: The 154 metabo-
lites analyzed in GWAS; Supplementary Figure S1: Q-Q plots for the GWAS of 154 metabolites;
Supplementary Figure S2: Manhattan plots for the GWAS of 154 metabolites.

https://www.R-project.org/
https://www.mdpi.com/article/10.3390/metabo12070624/s1
https://www.mdpi.com/article/10.3390/metabo12070624/s1
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