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Background: Transcription factors (TFs) bind specifically to TF binding sites (TFBSs) at cis-regulatory regions to
control transcription. It is critical to locate these TF-DNA interactions to understand transcriptional regulation. Efforts
to predict bona fide TFBSs benefit from the availability of experimental data mapping DNA binding regions of TFs
(chromatin immunoprecipitation followed by sequencing - ChIP-seq).

Results: In this study, we processed ~ 10,000 public ChIP-seq datasets from nine species to provide high-quality
TFBS predictions. After quality control, it culminated with the prediction of ~ 56 million TFBSs with experimental
and computational support for direct TF-DNA interactions for 644 TFs in > 1000 cell lines and tissues. These TFBSs
were used to predict > 197,000 cis-regulatory modules representing clusters of binding events in the corresponding
genomes. The high-quality of the TFBSs was reinforced by their evolutionary conservation, enrichment at active cis-
regulatory regions, and capacity to predict combinatorial binding of TFs. Further, we confirmed that the cell type
and tissue specificity of enhancer activity was correlated with the number of TFs with binding sites predicted in
these regions. All the data is provided to the community through the UniBind database that can be accessed
through its web-interface (https://unibind.uio.no/), a dedicated RESTful AP, and as genomic tracks. Finally, we
provide an enrichment tool, available as a web-service and an R package, for users to find TFs with enriched TFBSs

Conclusions: UniBind is the first resource of its kind, providing the largest collection of high-confidence direct TF-
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Introduction

The regulation of gene expression is a complex process
involving several biological mechanisms. The first step
of the regulatory process controls where, when, and at
which intensity RNAs are transcribed from their DNA
template. This level of transcriptional regulation is
mainly coordinated by transcription factors (TFs), which
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are DNA-binding proteins that recognize and bind short
DNA sequences - their TF binding sites (TFBSs) [1]. TFs
are known to co-operate through their combined bind-
ing at cis-regulatory regions proximal (promoters) or
distal (enhancers or silencers) to the genes they regulate.
These regions usually correspond to genomic locations
locally dense in TEBSs, which are often referred to as
cis-regulatory modules (CRMs), and act as genetic mod-
ulators to ensure appropriate gene expression [2].

The most popular experimental assay to detect TEF-
DNA interactions in vivo is chromatin immunoprecipita-
tion followed by sequencing (ChIP-seq) [3]. After map-
ping the reads generated by ChIP-seq to the genome of

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-021-07760-6&domain=pdf
https://unibind.uio.no/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:anthony.mathelier@ncmm.uio.no

Puig et al. BMC Genomics (2021) 22:482

interest, the computational analysis aims at identifying
genomic regions enriched for mapped reads when com-
pared to a control. The identified genomic locations are
known as ChIP-seq peaks. TF ChIP-seq peaks usually
span a few hundred base pairs. They derive from direct
and indirect TF-DNA interactions [4], where the latter
can emerge from protein-protein interactions between
the ChIP’ed TF and another protein binding the DNA.
Moreover, ChIP-seq peaks could also derive from non-
specific binding of the TF to the DNA and noise/bias/ar-
tifacts. Several repositories store ChIP-seq peaks [5-9]
and are freely available to the community. Nevertheless,
these resources do not provide precise locations of the
underlying direct TE-DNA interactions.

The TEBSs recognized by a TF are short (~10bp-
long) and degenerate sequences that can be modeled
computationally for further predictions. The most widely
used computational representations of TFBSs for a given
TF are position weight matrices (PWMs), which
summarize the probability of observing each nucleotide
at each position within a set of observed TFBSs. Such
computational models have recurrently been used to
predict TFBSs in DNA sequences. For instance, one can
apply PWMs to predict TFBSs in open chromatin re-
gions (e.g. derived from DNase-seq or ATAC-seq [10-
12]) or TF ChIP-seq peaks [13-15].

Previous efforts used PWMs to predict TFBSs within
ChIP-seq peaks and made the predictions freely available
[15-17]. These resources are specific to one or two spe-
cies. A substantial limitation of the underlying computa-
tional approach is that it relies on the same pre-defined
score threshold for all PWMs. Moreover, they do not
fully exploit the ChIP-seq peak information such as the
enrichment for the TF canonical binding motif close to
the ChIP-seq peak summit - where most of the reads
align [18]. To address these limitations, we recently de-
veloped the ChIP-eat software to specifically delineate
direct TF-DNA interactions in ChIP-seq peaks and sep-
arate them from indirect or non-specific binding and
ChIP-seq artifacts [14]. Briefly, ChIP-eat combines both
computational (high PWM score) and experimental
(centrality to ChIP-seq peak summit) support to find
high-confidence direct TE-DNA interactions in a ChIP-
seq experiment-specific manner. ChIP-eat was initially
applied to 1983 ChIP-seq peak datasets for 232 human
TFs to provide a map of direct TF-DNA interactions in
the human genome, which contained > 8 million TFBSs
stored in the UniBind database [14]. This collection of
human TFBSs was proven useful to analyze cis-
regulatory alterations in cancers [19-21] and other com-
plex diseases [22, 23].

In this report, we describe the update of the UniBind
database, which now stores > 72 million direct TE-DNA
interactions predicted using an updated ChIP-eat
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pipeline on ~ 10,000 ChIP-seq peak datasets from nine
species: Arabidopsis thaliana, Caenorhabditis elegans,
Danio rerio, Drosophila melanogaster, Homo sapiens,
Mus musculus, Rattus norvegicus, Saccharomyces cerevi-
siae, and Schizosaccharomyces pombe. After quality con-
trol, we provide the community with a robust collection
of ~ 56 million TFBSs for 644 TFs in 1096 cell lines and
tissues and > 197,000 cis-regulatory modules. A func-
tional inspection of these TFBSs and CRMs highlighted
that they are evolutionarily conserved and enriched at
active cis-regulatory regions. Furthermore, we showed
that this unique collection of TFBSs can predict TF
binding combinatorics at cis-regulatory regions. Finally,
we confirmed that a lower number of TFs binding at en-
hancers was associated with higher cell type and tissue
specificity for these enhancers and vice-versa. The Uni-
Bind database is freely available online (https://unibind.
uio.no/), through a programmatic RESTful API (https://
unibind.uio.no/api/), and via genomic tracks (https://
unibind.uio.no/genome-tracks/). Finally, it is accompan-
ied with an enrichment tool to predict TFs with an en-
richment of TFBSs in user-provided genomic regions
(https://unibind.uio.no/enrichment/).

Results

Maps of direct TF-DNA interactions across nine species
Prediction of direct TF-DNA interactions

We aimed at providing a collection of direct TF-DNA
interactions by combining experimental and computa-
tional approaches in several species. We applied an up-
dated version of the ChIP-eat pipeline [14] to ChIP-seq
datasets to discriminate high-confidence TFBSs within
ChIP-seq peaks from indirect binding events and ChIP-
seq noise/artifacts (see Methods). In a nutshell, ChIP-eat
uses an entropy-based parameter-free algorithm to auto-
matically define an enrichment zone, which contains
TFBSs with high PWM scores and close proximity to
ChIP-seq peak summits. These criteria provide compu-
tational (high PWM score) and experimental (proximity
to peak summit) support for direct TF-DNA interac-
tions. This process is carried out in a ChIP-seq dataset-
specific manner. It first optimizes JASPAR PWMs [24]
using the DAMO tool [25], which adjusts the PWMs
through a perceptron algorithm to best discriminate
ChIP-seq peaks from random sequences (see Methods).
Next, the optimized PWMs are used to detect, for each
dataset, the optimal thresholds on the PWM score and
distance to the peak summits. These thresholds define
the enrichment zone, which highlights direct TF-DNA
interactions (see Methods and [14] for more details).

We collected ChIP-seq peaks for 11,373 ChIP-seq ex-
periments from ReMap 2018 [26] and GTRD [5] for
nine species: Arabidopsis thaliana, Caenorhabditis ele-
gans, Danio rerio, Drosophila melanogaster, Homo
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sapiens, Mus musculus, Rattus norvegicus, Saccharomy-
ces cerevisiae, and Schizosaccharomyces pombe. For 10,
264 datasets, we were able to associate a TF binding pro-
file in JASPAR with the ChIP’ed TF. The ChIP-eat pipe-
line was applied to each ChIP-seq peak dataset -
JASPAR PWM pair independently to predict TFEBSs.
ChIP-eat identified enrichment zones to predict direct
TE-DNA interactions in 9654 datasets. Altogether, this
analysis culminated with the prediction of ~ 72 million
TEBSs in ChIP-seq peaks for 841 TFs in 1316 cell lines
and tissues (Supplementary Figure 1; Supplementary
Table 1).

We provide these predictions through the UniBind
database at https://unibind.uio.no/ (see section “UniBind
web-application and web-services” for details). In the
database, the datasets are annotated with information
about the ChIP’ed TF (UniProt ID [27]), the cell line or
tissue name with ontology IDs from Cellosaurus [28],
Cell Line Ontology [29], Experimental Factor Ontology
[30], UBERON [31], Cell Ontology [32], and BRENDA
[33] whenever possible, and the treatment used, if any.

Quality control to establish a robust collection of direct TF-
DNA interactions

In UniBind, we aimed to create a robust collection of
bona fide direct TF-DNA interactions found in high-
quality ChIP-seq peak datasets. This robust collection
was obtained by implementing two quality control
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metrics and only retaining the datasets that satisfy the
corresponding criteria. First, we expect high-quality
ChIP-seq peak datasets to be enriched for the TF bind-
ing motif known to be bound by the ChIP’ed TF. Hence,
we filtered out datasets where the DAMO-optimized TF
binding motif, which maximizes the discrimination of
ChIP-seq peaks from random sequences, was not similar
to the expected canonical motif (see Methods). Second,
we expect the ChIP-seq peaks to be enriched for TFBSs
close to their summits. Hence, we filtered out the data-
sets where the predicted direct TF-DNA interactions did
not show a significant enrichment around the summits
(see Methods). While we provide the complete set of
TFBSs predicted by ChIP-eat in the permissive collection
to the community, we specifically contribute with the ro-
bust collection of quality-controlled direct TF-DNA in-
teractions in high-quality ChIP-seq peak datasets.

After applying the quality-control filters, the robust
collection of UniBind culminates with ~56 million
TFBSs obtained from 6902 ChIP-seq peak datasets, all
species combined (Fig. 1A; Supplementary Table 2).
Note that none of the five datasets from S. pombe passed
the quality-control criteria due to a lack of enrichment
around the ChIP-seq peak summits. The TFBSs in the
robust collection are associated with 644 distinct TFs
ChIP’ed in 1096 cell lines and tissues (Fig. 1A; Supple-
mentary Table 2). We found that the predicted TFBSs
cover between 0.04 and 6.05% of the genome of their
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respective organism (Fig. 1B). For example, human and
mouse TFBSs cover 6.05 and 5.39% of the genomes, re-
spectively (Fig. 1B). Of course, these numbers are some-
how a reflection of the number of ChIP-seq experiments
available in the corresponding species (Supplementary
Figure 2).

Since TFs are known to regulate transcription co-
operatively through locally enriched TFBSs [2], we
aimed to identify cis-regulatory modules (CRMs) corre-
sponding to clusters of TFBSs. Specifically, we used
CREAM [34] to locate DNA segments with local enrich-
ment for UniBind TFBSs, which culminated with the
predictions of > 197,000 CRMs (Supplementary Table 2).

With many TFs associated with multiple ChIP-seq
datasets and similar TF binding profiles for TFs sharing
DNA binding domains (DBDs) from the same structural
class, the TFBS collection contains redundant instances.
We aimed to reduce redundancy of the TFBS informa-
tion to facilitate visualization, analyses, and interpret-
ation [10]. Following the approach developed by Vierstra
et al. [10], we defined TF binding archetypes represent-
ing similar TF binding profiles for TFs sharing DBD
structural classes (see Methods). This approach allowed
to identify a single TFBS location from several overlap-
ping TEBSs predicted from TF profiles in the same
archetype. Supplementary Figure 3 depicts a comparison
between original and archetypal TFBSs at an exemplary
genomic loci.

To summarize, we provide a collection of TFBSs with
both experimental and computational support for direct
TE-DNA interactions in quality-controlled ChIP-seq
peak datasets. Hereafter, the complete collection of un-
filtered TFBS predictions is referred to as the “permis-
sive” collection, while the filtered, high-quality TE-DNA
interactions are referred to as the “robust” collection.

Support for the functional relevance of the TFBSs in the
robust collection of UniBind

To further confirm the high-quality of the identified
TEBSs in the robust collection of UniBind, we sought to
provide support for their biological relevance. Hence,
the analyses performed below were applied to the
complete robust collection of TFBSs, except when expli-
citly stated otherwise.

Human and mouse TFBSs are evolutionarily conserved

We hypothesized that functionally relevant TFBSs should
be enriched for evolutionary conservation. Indeed, conser-
vation of DNA segments through evolution represents a
hallmark of functional importance [35]. We considered
evolutionary conservation scores in the human and mouse
genomes computed by the PhyloP [36] and PhastCons
[35] methods from the PHAST package [35]. Specifically,
we investigated the average conservation of 2 kilobases
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(kb) DNA regions centered around the TFBS mid-points.
Both scores estimate the probability of each nucleotide to
belong to a conserved element [35, 36]. While phyloP
scores reflect conservation of each nucleotide, phastCons
scores consider flanking nucleotides to measure evolution-
ary acceleration (negative scores) and conservation (posi-
tive scores). For both human and mouse, we noticed that
evolutionary conservation gradually increased when the
distance to the TFBSs decreased, with sharp peaks of
higher conservation at the TFBSs (Fig. 2). Increased evolu-
tionary conservation was similarly observed at CRMs
(Supplementary Figure 4). The signal was consistently
found when considering multiple alignments of 19 (phy-
loP20way and phastCons20way, Fig. 2A) or 99 vertebrate
genomes (phyloP100way and phastCons100way, Fig. 2A)
to the human genome and 59 vertebrate genomes (phast-
Cons60way and phyloP60way, Fig. 2B) to the mouse gen-
ome. The evolutionary conservation of TFBSs is not
expected by chance as no conservation was observed
when randomly shuffling the positions of the TFBSs in the
human and mouse genomes (Fig. 2, grey lines). The acute
increase of evolutionary conservation scores right at the
TEBS locations reinforce the biological relevance of the
direct TF-DNA interactions stored in UniBind.

To further investigate evolutionary conservation, we
evaluated the conservation of predicted TFBSs at con-
served elements between human and mouse. We lifted
the mouse robust archetypal TFBSs over to the human
genome and assessed their proximity to human TFBSs
from the same archetype (see Methods). Next, we evalu-
ated the relative distances between mouse archetypal
TFBSs lifted over to the human genome and human
TFBSs from the same archetype using bedtools reldist
following [37, 38]. Across TF binding archetypes, we ob-
served an enrichment for lifted mouse TFBSs to overlap
human TEBSs (see the peak at distance 0, corresponding
to an overlap, in Fig. 2C). The relative distances between
mouse TFBSs lifted over to the human genome and hu-
man TFBSs confirm the enrichment for conservation of
TFBSs between human and mouse associated with TFs
sharing DBD structural classes.

Finally, we assessed the added value of the ChIP-eat
approach to predict TFBSs over raw PWM mapping
genome-wide. Specifically, we compared the evolu-
tionary conservation of the TFBSs from the UniBind
robust collection to TFBSs solely predicted from raw
PWMs from JASPAR (see Methods). Supporting the
functional relevance of UniBind TFBSs, we observed
that UniBind TFBSs were significantly more evolu-
tionarily conserved than TFBSs predicted from raw
PWMs (Fig. 2D).

Altogether, these results pointed to the likely func-
tional role of the TFBSs in transcriptional regulation of
gene expression.
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UniBind TFBSs are enriched at active promoters and
enhancers

Next, we sought support for the biological relevance of
the TFBSs by assessing their overlap with cis-regulatory
regions that are active in different cell types and tissues.
We started by mapping out the distribution of the
TFBSs with respect to promoter regions, 5 and 3’
UTRs, exons, introns, regions downstream of genes, and
distal intergenic regions (Fig. 3, top bar for each species).
These distributions were compared to random expecta-
tions obtained by shuffling the TFBS positions along the
corresponding genomes (Fig. 3, bottom bar for each
species). By comparing the observed and expected distri-
butions, we noticed that TFBSs were prominently found in
promoter regions (<1kb upstream of transcription start
sites). The enrichment for TFBSs in promoter regions was
further confirmed by (i) OLOGRAM [39], which uses a

Monte Carlo simulation approach and a negative binomial
model to compute the significance of overlap between two
sets of genomic regions (Supplementary Figures 5, 6, 7, 8, 9
and 10), and (ii) bedtools reldist [38], which computes the
relative distances between the TFBSs and the genomic re-
gions considered [37] (Supplementary Figure 11). Neverthe-
less, considering the distribution of TFBSs for each TF
independently in each species revealed TFs with binding
preferences for promoter regions while others prefer in-
tronic or intergenic regions (Supplementary Figures 12, 13,
14, 15 and 16). The TSS-proximal versus TSS-distal prefer-
ences could explain the previously reported short- versus
long-range regulatory effects of TFs [40].

In the vertebrate species (human, mouse, rat, and zeb-
rafish), the majority of TFBSs lie in introns and distal
intergenic regions (Fig. 3), which is expected given the
large portion of the corresponding genomes covered by
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these non-coding regions. To confirm the biological
function of the TFBSs stored in UniBind, we examined
their overlap with active cis-regulatory regions in the
mouse and human genomes. We considered the candi-
date cis-regulatory elements (cCREs) predicted using
epigenetic marks by the ENCODE consortium [41]. Spe-
cifically, DNase I hypersensitive open chromatin regions
were first identified and then overlapped with H3K4me3
and H3K27ac histone modification marks and CTCF
ChIP-seq data to predict five types of cCREs with: (1) a
promoter-like signature (PLS), (2) an enhancer-like sig-
nature proximal (pELS) or (3) distal (dELS) to TSSs, (4)
a H3K4me3 signature (DNase-H3K4me3), or (5) a
CTCF-only signature [41]. Consistently, we confirmed
that UniBind TFBSs were enriched in PLS and ELS
cCREs when considering both the OLOGRAM and bed-
tools reldist evaluations of overlap (Fig. 4A-B; Supple-
mentary Figures 17, 18). The enrichment at regions of
active promoter signature is consistent with the genomic
distribution observed above. The enrichment at regions
harbouring active enhancer signature suggests that the
TEBSs are not randomly spaced in the introns and inter-
genic regions. Furthermore, we confirmed that CRMs
were enriched for cCREs with active promoter- or
enhancer-like signatures when considering the 105,104
and 73,917 CRMs predicted in human and mouse, re-
spectively (Supplementary Figures 19, 20 and 21). Fig-
ure 4C shows an example of the UCSC Genome
Browser [42] at the human LDLR gene locus where we

observe the overlap between UniBind TFBSs, CRMs, and
cCREs.

Together, these results highlight the biological rele-
vance of the UniBind TFBSs and CRMs for transcrip-
tional regulation via their association with active
promoters and enhancers in human and mouse.

Specificity of enhancer activity in cell types and tissues
correlates with binding TF composition

We further investigated how the number of TF binding
events at enhancers could be related to their regulatory
effects. We considered enhancers that were identified
through the capture of bidirectional transcription of en-
hancer RNAs (eRNAs) at their boundaries using Cap
Analysis of Gene Expression (CAGE) in 1829 human li-
braries [43]. Cell type and tissue specificity was assessed
by considering the amount of eRNAs captured by CAGE
across the libraries [43]. We overlapped the UniBind
TEBSs with the CAGE-derived enhancers and assessed
the relationship between the expression specificity of the
enhancers and the number of TFs with binding sites in
these enhancers. We observed that cell type / tissue spe-
cific enhancers tend to harbour a lower number binding
TFs, while more ubiquitously active enhancers tend to
harbour a higher number of binding TFs (Fig. 5; Supple-
mentary Figure 22). The correlation between the num-
ber of binding TFs and cell type / tissue expression
specificity of enhancers is in line with previous observa-
tions showing an association between the number of
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TFBSs and the combinatorics of TFs at promoters and
enhancers with enhancer activity strength and specificity
[44—-46]. Altogether, these observations underline the
importance of TF cooperation for cis-regulatory activity.

UniBind TFBSs reveal TF binding combinatorics at cis-
regulatory regions

We explored the capacity of UniBind TFBSs to further
pinpoint relevant TF binding combinatorics at cis-
regulatory regions. As a case study, we examined the dir-
ect TE-DNA interactions stored in UniBind and derived
from ChIP-seq experiments in the untreated MCEF7 cell

line. This cell line is representative of estrogen receptor
positive (ER+) invasive ductal breast carcinoma, which is
known to be mainly driven by the combined activity of
the TFs ESR1, GATA3, and FOXA1 [47]. We extended
the genomic locations of UniBind TFBSs predicted in
MCEF7 by 50bp on each side and intersected these re-
gions between each pair of MCF7 TEBS datasets using
the Intervene tool [48]. Next, we computed the fractions
of overlap for each pair and calculated the pairwise Pear-
son correlation coefficients of the fractions of overlap
between all pairs of datasets. A high pairwise correlation
coefficient between two datasets indicates that the
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Fig. 5 Correlation between enhancer activity and TF binding. For each enhancer predicted using Cap Analysis of Gene Expression (CAGE) by the
FANTOMS consortium, we computed the number of TFs with overlapping TFBSs in the robust collection of UniBind (x-axis). The figure provides,
for each value of the number of TFs found to bind in enhancers, the median (blue line) together with the 10th to 90th percentiles (grey area) of

expression activity

cell type specific activity of these enhancers. The expression measures were derived from CAGE (capturing enhancer RNA expression). The
specificity of activity (y-axis) is provided within the [0; 1] range with O representing ubiquitous enhancer activity and 1 exclusive

underlying TFBS regions are co-localizing. Hierarchical
clustering of the pairwise correlation coefficient revealed
4 main clusters (Fig. 6). As expected, we observed high
correlations between datasets for the same TF (e.g. red
cluster in Fig. 6 with exclusively CTCF TFBSs). The lar-
gest cluster (Fig. 6, green) was mainly composed of
TEBSs from ESR1, FOXA1, and GATAS3. Co-localization
of binding events for these TFs confirm the potential of
UniBind TFBSs to highlight TFs known to cooperate at
cis-regulatory regions. The second largest cluster (Fig. 6,
blue) contained TFBSs for E2F1, NRF1, MAX, MYC,
ELK1, ELF1, GABPA, EGR1, and SRF. Among these
TFs, MAX and MYC as well as ELK1 and SRF are
known to dimerize to bind DNA. Finally, the purple
cluster was composed of JUN and FOS TFBSs, known to
bind DNA as a dimer to form the AP1 complex. This
case study exemplifies how UniBind TFBSs can be used
to derive biologically relevant information about TF
binding combinatorics.

Altogether, the assessments of the functional and bio-
logical relevance to study transcriptional regulation out-
lined here support, a posteriori, the high-quality of the
direct TF-DNA interactions stored in the robust collec-
tion of UniBind.

UniBind web-application and web-services

Accessing and exploring UniBind data

All the direct TE-DNA interactions from the permissive
and robust collections are freely available through the
UniBind web-application at https://unibind.uio.no. The
predictions come with metadata about the associated
ChIP-seq experiments and external links to useful re-
sources such as ReMap [26], GeneCards [49], and GEO
[50]. Users can search and explore the data through the
user-friendly =~ web-interface. = The  web-application

provides a search interface for users to filter the datasets
using the metadata fields and search results are down-
loadable as a metadata table as well as FASTA and BED
files for the TFBSs. To improve the searchability of the
data, the search engine supports gene synonyms when
searching for TFs. All data can be downloaded for indi-
vidual datasets as well as through bulk download links
per species or collection. In addition, we developed a
RESTful API (https://unibind.uio.no/api/) to allow pro-
grammatic access to the stored data from any program-
ming language. Finally, we built genome track hubs that
are easily visualized through the UCSC [51] and
Ensembl [52] genome browsers. The track hubs can be
accessed through the UniBind web-application (https://
unibind.uio.no/genome-tracks/) as well as through the
public track hubs at UCSC [51] and the track hub regis-
try (https://trackhubregistry.org/).

TFBS sets enrichment application tool

A regular task when studying transcriptional regulation
is to find TFs that are the most likely to control the ac-
tivity of a set of cis-regulatory regions. Classical strat-
egies rely on the prediction of enriched potential TFBSs
for a set of TFs derived from either ChIP-seq peaks data-
sets [53-56] or PWM predictions [55, 57]. As UniBind
stores TFBSs with both ChIP-seq and PWM evidence of
direct TF-DNA interactions, one can rely on this re-
source to infer the TFs likely to bind a set of cis-
regulatory regions. The method consists in computing
the enrichment for specific TFBS sets in given DNA re-
gions compared to background regions. We provide a
web-service (and the underlying source code) to perform
this TFBS dataset enrichment analysis to the users at
https://unibind.uio.no/enrichment/ (Fig. 7A). The en-
richment computation relies on the Locus Overlap
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Fig. 6 TF combinatorial binding in invasive breast ductal carcinoma. Hierarchical clustering of the pairwise Pearson correlation coefficient
between all TFBSs from untreated MCF7 cells from the robust collection of UniBind. Different clusters and their respective TFs are coloured in red,
blue, green, and purple. In the heatmap, blue colors indicate a higher positive correlation coefficient between datasets, while red colors indicate

Analysis (LOLA) tool [58]. The enrichment tool provides
three different types of enrichment analyses: (1) using a
provided universe of potentially bound regions; (2) com-
paring enrichment with another set of genomic regions
to perform differential enrichment; or (3) comparing the
enrichment to all TFBSs stored in UniBind as a universe
(Fig. 7A).

As a case example, we applied the enrichment tool to
genomic regions surrounding CpGs found to be
demethylated in ER+ breast cancer patients [59]. As a
background set, we used all CpG probes from the Illu-
mina Infinjum HumanMethylation450 microarray. The
demethylated CpG regions in ER+ patients were pre-
dicted to be bound by FOXA1, GATA2, GATA3, ESR1
and AR (top 5 TFs, Fig. 7B). The enrichment of these
TFs is in line with the known ER+ TF drivers [59]. Fur-
ther, the enrichment tool allows users to filter the results
by restricting the search to TFBS datasets derived from
specific cell lines / tissues. In our case study, limiting to
breast-related cell types and tissues highlights FOXA1,

GATA3, and ESR1 with the most enriched TEBS sets
(Fig. 7C-D), which is in agreement with the driving role
of these TFs in ER+ carcinogenesis.

Discussion

Through the uniform processing of > 10,000 ChIP-seq
peak datasets, we provide maps of direct TF-DNA inter-
actions in nine species. Altogether, this process culmi-
nated with the prediction of >72 million TFBSs, ~ 56
million of which passed stringent QC criteria to com-
pose the robust collection of direct TF-DNA interactions
in UniBind. The robust collection is associated with 644
distinct TFs from 6902 ChIP-seq datasets derived from
1096 cell lines and tissues. Functional assessments of the
robust collection of TFBSs through evolutionary conser-
vation and strong overlap with active promoters and en-
hancers in human and mouse highlighted the high-
quality and biological relevance of the collection. Fur-
ther, we showed that the TFBSs can provide insights
into enhancer activity and TF binding combinatorics at
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Fig. 7 The UniBind TFBS set enrichment tool. A The UniBind enrichment web-application allows users to select the enrichment analysis type, set
a title, provide an email address for notification upon completion of the analysis, upload of the required input files based on the enrichment
analysis type, and select the species and collection to compute the enrichment. B Enrichment results shown as swarm plots of the -log;o(p-
values) (Fisher exact tests; see Methods). Each point corresponds to a TFBS set for a given TF in a given ChIP-seq experiment. Distinct colors are
assigned to the top 10 TFs with at least one TFBS set enriched (see legend). C The enrichment results can be further explored by restricting the
output to TFBS sets obtained in specific cell lines and tissues, which can be searched by keywords and selected. D Swarm plot similar to (B) but
restricted to TFBS sets obtained from breast-related tissues and cell lines

cis-regulatory regions. Previous works combined with
the results outlined here underline the functional rele-
vance of analyzing TFBS combinatorics at cis-regulatory
elements to shed light on the molecular mechanisms
underlying transcriptional regulation. Besides the func-
tional assessment done in this manuscript, we showed in
the original publication describing ChIP-eat [14] that
predicted TFBSs likely represent direct TF-DNA interac-
tions, which are recapitulated by the ChExMix comple-
mentary approach on ChIP-exo [60]. While the
predictions show strong experimental and computa-
tional support for their biological relevance, it is ex-
pected that not all TFBSs and CRMs stored in UniBind
have a biological function. However, the predictions pro-
vide the community with an unprecedented access to
high-quality TFBSs across nine species.

We provide this resource freely to the community
through a dedicated web-application, a RESTful API,
and genome tracks for the UCSC and Ensembl genome
browsers. Finally, TEBS dataset enrichment analyses can

be performed through an online web-service and a
stand-alone tool to predict the TFs acting upon a set of
genomic regions.

The TFBS predictions provided in the current version
of UniBind were obtained using PWMs as computa-
tional models. While several resources storing TF
PWMs exist, we decided to rely on high-quality JASPAR
profiles from the CORE collection, which have been
manually curated and confirmed via orthogonal evi-
dence. In the original version of UniBind dedicated to
human [14], we provided predictions obtained from four
different computational models: PWMs, binding energy
models [61], transcription factor flexible models
(TFFMs) [62], and DNA shape-based models (DNAsha-
pedTEBS models) [63]. The ChIP-eat pipeline is agnostic
to the computational model used to predict the enrich-
ment zone with high computational and experimental
evidence of direct TE-DNA interactions. Hence, we fore-
see that more sophisticated models than PWMs could
be used to predict TFBSs to be stored in UniBind in the
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future, should they become extensively used by the
community.

UniBind relies on the availability of ChIP-seq peak
datasets made available to the community. The
current release relies on the ReMap and GTRD data-
bases. These databases were selected as they (1)
encompass a large part of the publicly available
ChIP-seq experiments for several species, (2) process
ChIP-seq data uniformly, and (3) are regularly up-
dated and under active maintenance. UniBind will be
updated on a regular basis, as soon as new ChIP-seq
datasets become available in ReMap and GTRD.
Moreover, we are open to including other ChIP-seq
peak resources that fulfill the criteria described
above (e.g. repositories specialized in some species
or taxa) for the upcoming updates of UniBind.

Methods

ChiIP-seq peak datasets and TF binding profiles

A total of 11,373 ChIP-based datasets with peaks pre-
dicted by MACS [64] were retrieved from the ReMap
(2018 version) [26] and GTRD [5] databases. ReMap
datasets were the same as the ones used in the previ-
ous UniBind release and were reprocessed with new
JASPAR PWMs. Note that some datasets were ob-
tained using the ChIP-seq or ChIP-exo protocols; we
refer to ChIP-seq datasets as a whole in this manu-
script for simplicity.

ChIP-seq peak datasets were associated with JASPAR
(version 2020) [24] TF binding profiles (provided as pos-
ition frequency matrices, PFMs) whenever possible. Spe-
cifically, we used the HGNC gene symbols to search the
collection of JASPAR TF binding profiles in the same
taxonomic group as the ChIP’ed TF. For the datasets
where no TF binding profile was found, we used the
mygene bioconductor package [65] to obtain all possible
gene synonyms and used the synonyms to search for
JASPAR TF binding profiles. We filtered out ChIP-seq
datasets for which no JASPAR PFM was found for the
ChIP’ed TF. Altogether, JASPAR PFMs were assigned to
10,264 datasets out of 11,373. Note that some ChIP-seq
peak datasets stored in ReMap and GTRD are not asso-
ciated with TFs but general transcriptional regulators
(e.g. EP300, RAD21, SMC4), so no PFM in JASPAR
could be assigned; for some TFs, no PFM was available
in JASPAR.

Genome assemblies

The genome assemblies used for each species were: /g38
(H. sapiens), mml10 (M. musculus), Rnor_6.0 (R. norvegi-
cus), WBcel235 (C. elegans), dm6 (D. melanogaster),
GRCz11 (D. rerio), TAIRIO (A. thaliana), R64—1-1 (S.
cerevisiae), and ASM294v2 (S. pombe).
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Identification of direct TF-DNA interactions

We applied the ChIP-eat pipeline (https://bitbucket.org/
CBGR/chip-eat/) to each ChIP-seq peak dataset inde-
pendently, following a similar method to the one de-
scribed in [14]. Compared to the original version of
ChlIP-eat [14], we made the two following modifications:
(1) we used DAMO [25] (version 1.0.1) with default pa-
rameters to optimize the PWMs in a dataset-specific
manner; (2) once the thresholds (on the distance to peak
summits and PWM score) defining the enrichment
zone were predicted, we rescanned the peaks with the
DAMO-optimized PWMs and kept the best hit (highest
PWM score) per peak that fall within the enrichment
zone, if any. DAMO was used to optimize the JASPAR
PWMs in a ChIP-seq dataset-specific manner following
the approach described in [14]. Specifically, for each
ChIP-seq dataset, we considered (i) sequences of 50 bp
around the ChIP-seq peak summits as a positive set and
(ii) 100 bp genomic sequences matching the %GC con-
tent of the positive sequences using the g subcommand
of BiasAway [66]. DAMO used a perceptron training
strategy to find the optimal PWM that maximizes the
area under the receiver operating curve, which evaluates
the discriminative power of a PWM between sequences
from the positive and negative sets [25].

Quality control metrics for the robust collection

Quality control was performed on all processed datasets.
TEBSs in the permissive collection were filtered using
two quality control (QC) metrics. (1) To ensure similar-
ity between the DAMO-optimized PFM and the original
JASPAR PEFM, we only kept in the robust collection the
datasets providing a TOMTOM (version 4.11.4) [67]
similarity p-value strictly below 0.05. This QC metric en-
sures that the canonical motif known to be recognized
by the ChIP’ed TF is enriched in the ChIP-seq peaks. (2)
To ensure a strong enrichment for direct TF-DNA inter-
actions in the vicinity of the peak summits, we com-
puted a centrality enrichment following the method
described in CentriMo [68]. Only TFBS datasets with a
centrality p-value < 0.05 were kept in the robust collec-
tion. This QC metric ensures that TFBSs are enriched in
the vicinity of the peak summits overall in the ChIP-seq
peaks considered (some of which are not predicted to
contain a direct TF-DNA interactions / TFBS).

Computation of descriptive statistics

For both the robust and permissive collections, the num-
ber of TFBSs was computed as the sum of the number
of unique instances of genomic loci bound by each TF.
The computation was performed by extracting the col-
umns of interest from the BED files for an organism and
collection, sorting them using the sort -k1,1 -k2,2n com-
mand and getting the unique instances using the unig
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command. Finally, the number of unique instances were
counted using the wc -/ command.

Proportions of the covered genome were computed by
dividing the total number of nucleotides covered by the
TEBSs by the total number of nucleotides in the genome.
To compute the number of nucleotides covered by the
TEBSs, we compiled a BED file for all TEBSs, sorted the
genomic regions using the sort -kI,1 -k2,2n command,
and subsequently merged the overlapping locations using
the merge subcommand from bedtools (version 2.26.0).

TF motif archetypes and archetypal TFBSs

TF motif archetypes were computed following the ap-
proach described in [10]. We retrieved PFMs from JAS-
PAR 2020 [24] for insects, fungi, nematodes, plants, and
vertebrates. For each taxon, we computed pairwise simi-
larity between all PFMs using Tomtom [67]. The e-
values computed by Tomtom were -log; transformed.
The corresponding values were used to perform hier-
archical clustering of the PFMs using correlation dis-
tance as the distance metric and complete linkage as the
clustering method with the cluster library from scipy
(version 1.3.0). Next, we manually inspected the hier-
archical clusterization to define clusters of similar PFMs.
For each cluster, we computed the archetype motif asso-
ciated to each DBD structural class by aligning all PFMs
and creating a consensus motif following the method
used in [10] (code available at https://bitbucket.org/
CBGR/unibind_manuscript/).

Cis-regulatory modules

For each species, we considered unique locations of permis-
sive and robust TFBSs separately and used CREAM [34]
with default parameters to compute cis-regulatory modules.

Random positioning of TFBSs

The random distribution of TFBSs was obtained by shuf-
fling the original unique TFBS coordinates along the ge-
nomes using the shuffle subcommand of the bedtools
(version 2.25.0) [38] with the -chrom option to keep the
same number of TFBSs per chromosome.

Evolutionary conservation

The evolutionary conservation scores were retrieved
from the UCSC genome browser data portal as bigWig
files for the human and mouse genomes. Specifically, we
downloaded the bigWig files corresponding to the tracks
phastCons100way, phastCons20way, phyloP100way, and
phyloP20way for human and phastCons60way and phy-
loP60way for mouse. We considered unique locations of
human and mouse TFBSs from the robust collection
and the average conservation scores in 2 kb regions cen-
tered around the TFBS mid-points were computed using
the agg subcommand of bwtool (version 1.0) [69]. The
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same strategy was applied to the random positions of
TFBSs and the CRMs.

We retrieved genome-wide JASPAR TFBSs predicted
from raw PWMs (at http://expdata.cmmt.ubc.ca/
JASPAR/downloads/UCSC_tracks/2020/hg38/) for all
TF binding profiles associated with the UniBind robust
TFBS collection. We randomly sampled 1,000,000 TFBSs
ten times from JASPAR and UniBind TFBSs, respect-
ively. For each set of randomly selected TFBSs, we com-
puted the average evolutionary conservation in the
surrounding genomic regions following the methodology
described above. Moreover, for each iteration, we
shuffled the TFBSs with the subcommand shuffle from
bedtools (version 2.26.0) to compute the random expect-
ation of evolutionary conservation scores. Finally, we
plotted, in Fig. 2D, the median conservation score over
the 10 random sampling for the UniBind and JASPAR
predicted/shuffled TFBSs.

Genomic distributions

For each species, the genomic coordinates of all TFBSs
were retrieved and duplicate coordinates (from multiple
ChIP-seq experiments) were filtered out to conserve
only unique genomic locations. The distributions of
these unique TFBS positions with respect to promoters,
5" and 3" UTRs, exons, introns, regions downstream of
genes, and intergenic regions were obtained using the
ChlIPseeker Bioconductor package (version 1.20.0) [70].
We used the following genome annotations with ChIP-
seeker: TxDb.Athaliana.BioMart.plantsmart28 (A. thali-
ana), TxDb.Celegans.UCSC.cell.refGene (C. elegans),
TxDb.Drerio.UCSC.danRerl1.refGene (D. rerio), TxDb.
Dmelanogaster. UCSC.dmé6.ensGene (D. melanogaster),
TxDb.Hsapiens.UCSC.hg38.knownGene (H. sapiens),
and TxDb.Mmusculus.UCSC.mm10.knownGene (M.
musculus). The genome annotations for R. norvegicus
and S. cerevisiae were built from GTF files obtained
from Ensembl by using the makeTxDbFromGFF func-
tion from the GenomicFeatures Bioconductor package
[71] (version 1.36.4). The same methodology was applied
to the random distribution of TFBSs.

The enrichment for the unique TFBS positions at the
different genomic features was computed using the
OLOGRAM function of the giftk package (version 1.2.1)
[39, 72]. Note that no result is provided for H. sapiens
and M. musculus as OLOGRAM did not manage to
complete the computations.

Relative distances and enrichment with candidate cis-
regulatory elements (cCREs)

The genomic coordinates of human and mouse cCREs pre-
dicted by ENCODE were retrieved as BED files from the
SCREEN web-portal at https://screen.encodeproject.org/.
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The relative distances between the unique TFBS posi-
tions and the ENCODE cCREs were computed using the
reldist subcommand of the bedtools (version 2.25.0). The
same methodology was applied to the CRMs and the
randomly distributed TFBSs.

The enrichment for the unique TFBS positions at the
ENCODE cCREs was computed using the OLOGRAM
function of the gtftk package (version 1.2.1) [39, 72]. The
same methodology was applied to the CRMs.

Cell type and tissue specific enhancer expression
The genomic coordinates (hgl9 genome assembly) of the
43,011 permissive enhancers predicted from CAGE exper-
iments [43] were retrieved as BED files from http://
enhancer.binf.ku.dk/presets/. Coordinates were converted
to the hg38 genome assembly using the UCSC [iftOver
tool [73]. For each TF, we considered unique genomic co-
ordinates and intersected these locations with the enhan-
cer coordinates using the intersect subcommand of the
bedtools (version 2.29.2) using the options -wa -filenames
-C. The results were used to compute the number of TFs
with at least one TFBS overlapping the enhancers.
Enhancer cell type and tissue specific expressions

were obtained from Andersson et al. [43] and com-

entropy(enhancerexpression)
log2(numberof celltypes tissues

puted as 1-( >). The vector of ex-

pression values for each enhancer over cell types or
tissues corresponded to the mean of the enhancer ex-
pression in each cell type or tissue [43].

Pairwise correlation computation for TFBS datasets from
MCF7

The TFBS datasets associated with the MCF7 cell line
were retrieved from the UniBind database using the
search functionality of the web-application. Metadata
was used to restrict the datasets to the ones where no
treatment was introduced in the MCEF7 cells. For each
dataset, TFBS positions were expanded by 50 bp on each
side using the slop subcommand of the bedtools and
then merged using the sort and merge subcommands of
the bedtools. These genomic regions were used as input
to the pairwise subcommand of the Intervene tool [48]
to compute the fraction of intersections between each
pair of datasets. Pairwise Pearson correlation coefficients
between the vectors of fraction of intersections between
each pair of datasets were computed using Intervene.
Hierarchical clustering was obtained through the Inter-
vene Shiny application (https://intervene.shinyapps.io/
intervene/) with the Heatmap.2 function.

Genome track hubs

Genome track hubs were built following the specifica-
tions at https://genome.ucsc.edu/goldenPath/help/
hgTrackHubHelp.html. Moreover, we computed the
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“archetype” track for the robust collection with non-
redundant binding events (see section TF motif arche-
types and archetype TFBSs).

Enrichment tool and web-service

The enrichment tool relies on the LOLA Bioconductor
package (version 1.14.0) [58] to assess enrichment of over-
laps based on Fisher exact tests. For each species, a dedi-
cated LOLA database was built with all the predicted TFBSs
and the corresponding metadata informing about cell type /
tissue, treatment, and TF name. The databases were gener-
ated following the instructions provided at http://databio.
org/regiondb and are available as RDS R objects on Zenodo
at https://doi.org/10.5281/zenodo.4704641. The web-service
is freely available at https://unibind.uio.no/enrichment/ with
source code for the standalone software available at https://
bitbucket.org/CBGR/unibind_enrichment/.

UniBind web-application

The UniBind web-application is developed in Python
using the model-view-controller framework Django. It
uses SQLite to store TFBS metadata and Bootstrap as the
frontend template engine. The search function relies on
the RESTful API (see below). It allows for searching for
gene name synonyms using naming data from the Entrez
Gene and SwissProt databases and combining such data
with JASPAR matrix profile information to yield a relevant
collection of synonyms (source code at https://bitbucket.
org/CBGR/synonyms). The source code of the UniBind
web-application together with installation instructions are
available at https://bitbucket.org/CBGR/unibind.

RESTful API

The RESTful API is implemented in Python as part of the
UniBind web-application using the Django REST Frame-
work. An Apache HTTP server provides access to the ap-
plication and thus to the API, with the underlying SQLite
database system supporting queries constructed by the API
implementation to retrieve data requested by users of the
APL The available REST API endpoints are “Datasets”,
“Cell types”, “Collections”, “Species”, and “Transcription
factors”. The API is available at https://unibind.uio.no/api/.

Abbreviations

API: Application programming interface; ATAC-seq: Assay for transposase-
accessible chromatin using sequencing; bp: Base pairs; CAGE: Cap analysis of
gene expression; cCRE: Candidate cis-regulatory element; ChExMix: ChIP-exo
mixture model; ChIP: Chromatin immunoprecipitation; ChIP-seq: Chromatin
immunoprecipitation followed by sequencing; CREAM: Clustering of
genomic regions analysis method; CRM: Cis-regulatory module;

DAMO: Discriminative additive model optimization; DBD: DNA binding
domain; dELS: Distal enhancer-like signature; DNA: Deoxyribonucleic acid;
DNase-seq: DNase | hypersensitive sites sequencing; ELS: Enhancer-like
signature; ENCODE: Encyclopedia of DNA elements; eRNA: Enhancer
ribonucleic acid; ER +: Estrogen receptor positive; GEO: Gene expression
omnibus; GTRD: Gene transcription regulation database; LOLA: Locus overlap
analysis; MACS: Model-based analysis of ChIP-seq; OLOGRAM: OverlLap Of
Genomic Regions Analysis using Monte Carlo; PFM: Position frequency
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Additional file 1: Table S1. Overview of the permissive collection.
Table providing the number of datasets, TFs, cell / tissue types, and TFBSs
in the permissive collection of UniBind. The number of TFBSs was
computed as the number of unique instances of genomic loci bound by
a TF. Table S2. Overview of the robust collection. Table providing the
number of datasets, TFs, cell /tissue types, and TFBSs in the robust
collection of UniBind. The number of TFBSs was computed as the
number of unique instances of genomic loci bound by a TF. Figure S1.
Visual overview of the permissive collection. (A) Barplots showing the
number of TFs (dark orange), TFBSs (green), datasets (blue), and cell and
tissue types (light orange) stored in the permissive collection of UniBind
for each analyzed species. All values are log10-transformed. (B) Distribu-
tion of the percentages of the genomes covered by robust TFBSs in each
species (one color per species, see legend). Figure S2. Relationship be-
tween number of datasets and genome coverage. Scatter plots repre-
senting the percentage of genome coverage (y-axes) with respect to the
number of datasets in the permissive (A) and robust (C) collections or
the number of TFs in the permissive (B) and robust (D) collection (x-axes).
Each colored point in each panel represents the data associated to one
species (see legend for color coding). Figure S3. The UniBind 2021 com-
pressed and robust tracks with all TFBSs from the robust human collec-
tion. An example of a random genomic locus showing the comparison
between the original and archetypal TFBSs. The tracks shown are, from
top to bottom: RefSeq track with the first intron of the human TTC6
gene, the UniBind compressed track with archetypal TFBSs, and the Uni-
Bind robust track showing all TFBSs at the same location. Figure S4. Evo-
lutionary conservation at human and mouse robust CRMs. Distributions
of the average base-pair evolutionary conservation scores (phyloP and
phastCons scores using multi-species genome alignments, see legend) at
regions centered around UniBind human (A) and mouse (B) CRMs from
the robust collection. Conservation of random CRMs was obtained by
shuffling the original CRMs and obtaining the conservation score of the
new regions. Figure S5. Enrichment analysis for A. thaliana TFBSs in gen-
omic regions. Barplots representing the expected (grey bars) versus ob-
served (blue bars) overlap lengths (A) or number of intersections (B)
between A. thaliana TFBSs from the robust collection and genomic anno-
tations (x-axis). The plots and computed p-values (green: enrichment; or-
ange: depletion) were obtained using the OLOGRAM command of the
GTF toolkit. Figure S$6. Enrichment analysis for C. elegans TFBSs in gen-
omic regions. Barplots representing the expected (grey bars) versus ob-
served (blue bars) overlap lengths (A) or number of intersections (B)
between C. elegans TFBSs from the robust collection and genomic anno-
tations (x-axis). The plots and computed p-values (green: enrichment; or-
ange: depletion) were obtained using the OLOGRAM command of the
GTF toolkit. Figure S7. Enrichment analysis for D. rerio TFBSs in genomic
regions. Barplots representing the expected (grey bars) versus observed
(blue bars) overlap lengths (A) or number of intersections (B) between D.
rerio TFBSs from the robust collection and genomic annotations (x-axis).
The plots and computed p-values (green: enrichment; orange: depletion)
were obtained using the OLOGRAM command of the GTF toolkit. Figure
S8. Enrichment analysis for D. melanogaster TFBSs in genomic regions.
Barplots representing the expected (grey bars) versus observed (blue
bars) overlap lengths (A) or number of intersections (B) between D. mela-
nogaster TFBSs from the robust collection and genomic annotations (x-
axis). The plots and computed p-values (green: enrichment; orange: de-
pletion) were obtained using the OLOGRAM command of the GTF toolkit.
Figure S9. Enrichment analysis for R. norvegicus TFBSs in genomic re-
gions. Barplots representing the expected (grey bars) versus observed
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(blue bars) overlap lengths (A) or number of intersections (B) between R.
norvegicus TFBSs from the robust collection and genomic annotations (x-
axis). The plots and computed p-values (green: enrichment; orange: de-
pletion) were obtained using the OLOGRAM command of the GTF toolkit.
Figure S$10. Enrichment analysis for S. cerevisae TFBSs in genomic re-
gions. Barplots representing the expected (grey bars) versus observed
(blue bars) overlap lengths (A) or number of intersections (B) between S.
cerevisae TFBSs from the robust collection and genomic annotations (x-
axis). The plots and computed p-values (green: enrichment; orange: de-
pletion) were obtained using the OLOGRAM command of the GTF toolkit.
Figure S11. Analysis of the overlap of robust TFBSs with respect to gen-
omic annotations in all species in UniBind. Fraction of TFBSs in the Uni-
Bind robust collection (y-axis) with respect to increasing relative distances
(x-axis) from different genomic regions computed using the bedtools rel-
dist command. When two genomic tracks are not spatially related, one
expects the fraction of relative distance distribution to be uniform. Fig-
ure S12. Genomic distribution of TFBSs in A. thaliana, C. elegans and D.
rerio. Distribution of the proportion of A. thaliana, C. elegans and D. rerio
UniBind robust TFBSs overlapping with different types of genomic re-
gions (colors; see legend) across TFs (columns). Figure S13. Genomic
distribution of TFBSs in D. melanogaster and H. sapiens. Distribution of the
proportion of D. melanogaster and H. sapiens UniBind robust TFBSs over-
lapping with different types of genomic regions (colors; see legend)
across TFs (columns). Figure S14. Genomic distribution of TFBSs in H. sa-
piens (continued) and M. musculus. Distribution of the proportion of H. sa-
piens (continued) and M. musculus UniBind robust TFBSs overlapping
with different types of genomic regions (colors; see legend) across TFs
(columns). Figure S15. Genomic distribution of TFBSs in M. musculus
(continued). Distribution of the proportion of M. musculus (continued) Uni-
Bind robust TFBSs overlapping with different types of genomic regions
(colors; see legend) across TFs (columns). Figure $16. Genomic distribu-
tion of TFBSs in R. norvegicus and S. cerevisiae. Distribution of the propor-
tion of R. norvegicus and S. cerevisiae UniBind robust TFBSs overlapping
with different types of genomic regions (colors; see legend) across TFs
(columns). Figure S17. Enrichment analysis for H. sapiens TFBSs in EN-
CODE cCREs. Barplots representing the expected (grey bars) versus ob-
served (blue bars) overlap lengths (A) or number of intersections (B)
between H. sapiens TFBSs from the robust collection and ENCODE cCREs
(x-axis). The plots and computed p-values (green: enrichment; orange: de-
pletion) were obtained using the OLOGRAM command of the GTF toolkit.
Figure S$18. Enrichment analysis for M. musculus TFBSs in ENCODE cCREs.
Barplots representing the expected (grey bars) versus observed (blue
bars) overlap lengths (A) or number of intersections (B) between M. mus-
culus TFBSs from the robust collection and ENCODE cCREs (x-axis). The
plots and computed p-values (green: enrichment; orange: depletion)
were obtained using the OLOGRAM command of the GTF toolkit. Figure
$19. Enrichment analysis for H. sapiens CRMs in ENCODE cCREs. Barplots
representing the expected (grey bars) versus observed (blue bars) overlap
lengths (A) or number of intersections (B) between H. sapiens CRMs from
the robust collection and ENCODE cCREs (x-axis). The plots and com-
puted p-values (green: enrichment; orange: depletion) were obtained
using the OLOGRAM command of the GTF toolkit. Figure $20. Enrich-
ment analysis for M. musculus CRMs in ENCODE cCREs. Barplots represent-
ing the expected (grey bars) versus observed (blue bars) overlap lengths
(A) or number of intersections (B) between M. musculus CRMs from the
robust collection and ENCODE cCREs (x-axis). The plots and computed p-
values (green: enrichment; orange: depletion) were obtained using the
OLOGRAM command of the GTF toolkit. Figure S21. Relative distance
distributions between CRMs and ENCODE cCREs. Fraction of CRMs in the
UniBind robust collection (y-axis) with respect to increasing relative dis-
tances (x-axis) from ENCODE cCREs computed using the bedtools reldist
command for human (A) and mouse (B). When two genomic tracks are
not spatially related, one expects the fraction of relative distance distribu-
tion to be uniform. Figure $22. Correlation between enhancer activity
and TF binding. For each enhancer predicted using Cap Analysis of Gene
Expression (CAGE) by the FANTOMS5 consortium, we computed the num-
ber of TFs with overlapping TFBSs in the robust collection of UniBind (x-
axis). The figure provides, for each value of the number of TFs found to
bind in enhancers, the median (blue line) together with the 10th to 90th
percentiles (grey area) of tissue specific activity of these enhancers. The
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expression measures were derived from CAGE (capturing enhancer RNA
expression). The specificity of activity (y-axis) is provided within the [0; 1]
range with 0 representing ubiquitous enhancer activity and 1 exclusive
expression activity.
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