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Abstract
Understanding	intraspecific	relationships	between	genetic	and	functional	diversity	is	
a	major	goal	in	the	field	of	evolutionary	biology	and	is	important	for	conserving	bio-
diversity.	Linking	 intraspecific	molecular	patterns	of	plants	 to	ecological	pressures	
and	 trait	 variation	 remains	 difficult	 due	 to	 environment-	driven	 plasticity.	 Next-	
generation	sequencing,	untargeted	liquid	chromatography–mass	spectrometry	(LC-	
MS)	 profiling,	 and	 interdisciplinary	 approaches	 integrating	 population	 genomics,	
metabolomics,	and	community	ecology	permit	novel	strategies	to	tackle	this	prob-
lem.	We	analyzed	six	natural	populations	of	the	disease-	threatened	Cornus florida	L.	
from	distinct	ecological	regions	using	genotype-	by-	sequencing	markers	and	LC-	MS-	
based	untargeted	metabolite	profiling.	We	tested	the	hypothesis	that	higher	genetic	
diversity	in	C. florida	yielded	higher	chemical	diversity	and	less	disease	susceptibility	
(screening	hypothesis),	and	we	also	determined	whether	genetically	similar	subpopu-
lations	were	 similar	 in	 chemical	 composition.	Most	 importantly,	we	 identified	me-
tabolites	that	were	associated	with	candidate	loci	or	were	predictive	biomarkers	of	
healthy	or	diseased	plants	after	controlling	for	environment.	Subpopulation	cluster-
ing	patterns	based	on	genetic	or	chemical	distances	were	largely	congruent.	While	
differences	 in	genetic	diversity	were	small	among	subpopulations,	we	did	observe	
notable	 similarities	 in	 patterns	 between	 subpopulation	 averages	 of	 rarefied-	allelic	
and	 chemical	 richness.	More	 specifically,	we	 found	 that	 the	most	 abundant	 com-
pound	of	 a	 correlated	group	of	putative	 terpenoid	glycosides	and	derivatives	was	
correlated	with	 tree	health	when	considering	 chemodiversity.	Random	 forest	bio-
marker	and	genomewide	association	tests	suggested	that	this	putative	iridoid	gluco-
side	and	other	closely	associated	chemical	features	were	correlated	to	SNPs	under	
selection.
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1  | INTRODUC TION

Plant	secondary	metabolites	are	closely	tied	to	ecological	functions	
and	 greatly	 affect	 community	 interactions	 (Dixon	 &	 Paiva,	 1995;	
Moore,	Andrew,	Külheim,	&	Foley,	2014).	Certain	secondary	metab-
olites	may	provide	plants	with	specialized	functions	like	deterrence	
to	herbivory	or	infection	(Harborne	&	Turner,	1984).	Identifying	the	
genetic	basis	of	 secondary	compounds	 for	such	 functions	 is	of	 in-
terest	 to	 the	 field	 of	 evolutionary	 ecology.	 Even	 small	 changes	 in	
genetic	diversity	may	yield	exceptionally	 large	changes	 in	 second-
ary	 metabolism—producing	 novel	 molecules	 with	 often	 unknown	
biological	 activity	 (Firn	 &	 Jones,	 2000).	While	 specific	 compound	
classes	such	as	iridoids,	phenolics,	and	tannins	are	often	the	basis	of	
study	for	ecological	function	in	plants	(Sardans,	Peñuelas,	&	Rivas-	
Ubach,	2011),	secondary	metabolite	diversity	as	a	trait,	or	chemo-
type,	 represents	 a	 special	 dimension	 of	 biodiversity	 important	 to	
natural	 and	 managed	 ecosystems	 (Bustos-	Segura	 et	al.,	 2017).	 In	
contrast	to	the	research	presented	in	this	article,	few	studies	have	
evaluated	broader	relationships	between	chemical	diversity	and	ge-
netic	diversity	within	species	(focusing	on	the	diversity	of	chemical	
compound	composition	among	individuals	in	a	population)	while	ex-
amining	 a	 select	 group	 of	metabolites	 diagnostic	 of	 health	 versus	
disease	(otherwise	known	as	biomarkers)	and	associated	with	SNPs	
under	 selection.	 Recent	 innovations	 in	 next-	generation	 sequenc-
ing	coupled	with	untargeted	chemical	profiling	provide	unique	op-
portunities	to	examine	these	relationships	in	plant	systems	(Eckert	
et	al.,	2012;	Gomez-	Casati,	Zanor,	&	Busi,	2013;	Raguso	et	al.,	2015;	
Riedelsheimer	et	al.,	2012).	Integrating	next-	generation	sequencing	
technologies	 with	 population	 genomics	 and	 community	 ecology	
permits	identification	of	chemical	compounds	and	associated	SNPs	
related	to	disease	resistance	or	other	ecologically	functional	traits.

Secondary	metabolite	richness	and	relative	abundance	of	chemi-
cals	within	individuals—a	chemotype	referred	to	as	chemodiversity—
are	informative	yet	understudied	metabolome	properties	helpful	for	
understanding	evolutionary	and	ecological	processes	(Hilker,	2014;	
Kellerman,	 Dittmar,	 Kothawala,	 &	 Tranvik,	 2014).	 Promising	 work	
has	 investigated	broader	patterns	of	natural	metabolome	variation	
in	the	context	of	natural	genetic	variation,	but	most	analyses	of	vari-
ation	in	chemical	diversity	focus	on	distance-	based	measures	versus	
explicit	measurement	of	chemical	richness.	For	example,	significant	
correlations	 between	 metabolic	 and	 genetic	 distances	 were	 de-
tected	 in	nine	Arabidopsis thaliana	accessions	exposed	to	different	
environments	 (Houshyani	 et	al.,	 2012).	 In	 a	 second	 example,	mul-
tigenerational	 lines	 inbred	 from	 different	Drosophila melanogaster 
populations	 were	 found	 to	 remain	 distinguishable	 in	 general	 lipid	
composition,	 and	 approximately	 one-	fifth	 of	 the	 lipid	 compounds	
had	clear	concentration	differences	between	male	and	female	gen-
otypes	(Scheitz,	Guo,	Early,	Harshman,	&	Clark,	2013).	More	recent	
studies	of	environmental	and	bud–leaf	metabolome	analyses	of	Pinus 
pinaster	 (ten	 European	 provenances	 in	 common	 garden)	 revealed	
two	groups	of	individuals	corresponding	to	spatially	distinct	regions	
(Meijón	et	al.,	2016).	All	these	studies	used	distance	measures	based	
on	a	reduced	dimensionality	of	abundance	differences	for	targeted	

compounds	instead	of	explicitly	calculating	and	comparing	diversity	
indices	(Appendix	S1),	which	account	for	both	chemical	compounds’	
presence–absence	and	relative	abundances	within	each	sample.

Studies	employing	diversity	 indices	of	broad	chemical	profiling	
are	rare	 (Hilker,	2014),	possibly	due	to	previous	aversion	to	adapt-
ing	 such	 indices	 outside	 of	 community	 ecology	 (Hurlbert,	 1971).	
However,	 initial	 trepidations	 regarding	 usage	 of	 these	 indices	 are	
now	 being	 addressed	with	 cautious	 interpretation	 of	 chemical	 di-
versity	indices	(Morris	et	al.,	2014).	Additional	studies	that	integrate	
advancements	in	untargeted	metabolomics	(Alonso,	Marsal,	&	Julià,	
2015;	Yi	et	al.,	2016)	and	population-	landscape	genomics	(Anderson,	
Willis,	 &	 Mitchell-	Olds,	 2011;	 Sork	 et	al.,	 2013)	 with	 adoption	 of	
these	 chemical	 diversity	 indices	 would	 further	 demonstrate	 the	
power	 of	 this	 correlative	 approach	 to	 illustrate	 how	 genetics	 (i.e.,	
locally	 adapted	 genes)	 and	 plant	 functional	 diversity	 (i.e.,	 chemo-
diversity)	 influence	plant	 health,	 after	 controlling	 for	 environment	
analytically.

We	use	a	multidisciplinary	approach	to	characterize	and	evaluate	
how	properties	of	genetic	diversity	and	chemodiversity	contribute	
to	 susceptibility	 or	 resistance	 to	 disease	 in	Cornus florida	 (L.),	 the	
flowering	dogwood	 tree.	 In	 addition,	we	have	applied	exploratory	
analyses	to	winnow	an	untargeted	list	of	metabolites	down	to	a	se-
lect	group	of	potential	antimicrobial	compounds—closely	resembling	
compounds	previously	observed	in	dogwoods	(He,	Peng,	Hamann,	&	
West,	2014;	Stermitz	&	Krull,	1998;	Yue	et	al.,	2006).	The	species	it-
self	occurs	naturally	throughout	much	of	eastern	North	America	and	
is	ecologically	important	partly	because	of	calcium	it	delivers	to	food	
chains	in	deciduous	forests	(Baird,	1980;	Blair,	1982;	Borer,	Sapp,	&	
Hutchinson,	2013;	Holzmueller,	Jose,	Jenkins,	Camp,	&	Long,	2006;	
Linzey	&	Brecht,	2003;	Lovenshimer	&	Frick-	Ruppert,	2013).	In	ad-
dition,	 the	 plant	 is	 a	 cultural	 icon,	 serves	 as	 the	 emblem	of	 three	
southern	US	states	(Jordan,	2010),	and	is	valued	in	the	horticulture	
industry	 at	 30	 million	 dollars	 in	 annual	 sales	 (NASS	 USDA,	 2007	
Census	of	Agriculture).	 In	 the	past	 three	decades,	C. florida	 popu-
lations	have	experienced	major	declines	in	health	due	to	the	intro-
duction	of	a	fungal	pathogen	(Discula destructiva)	to	North	America	
(Miller,	Masuya,	Zhang,	Walsh,	&	Zhang,	2016),	the	causal	agent	of	
dogwood	anthracnose	(Redlin,	1991).	Northern	and	mountain	pop-
ulations	have	been	hardest	affected	with	up	 to	98%	mortality	oc-
curring	in	monitored	stands	(Hiers	&	Evans,	1997;	Jenkins	&	White,	
2002;	McEwan,	Muller,	Arthur,	&	Housman,	2000;	Rossell,	Rossell,	
Hining,	&	Anderson,	2001;	Sherald,	Stidham,	Hadidian,	&	Hoeldtke,	
1996;	Williams	 &	Moriarity,	 1999).	 As	 dogwood	 anthracnose	 dis-
ease	progresses	southward	along	the	Appalachian	Mountains,	pop-
ulations	of	C. florida	continue	to	decline	 (Jones,	Smith,	&	Twardus,	
2012).	Whether	or	not	the	range	of	dogwood	anthracnose	(Figure	1)	
will	expand	to	the	southeast	overtime	is	uncertain.	Understanding	
the	 adaptive	 mechanisms	 in	 C. florida	 that	 may	 possibly	 limit	 the	
spread	of	disease	will	be	important	in	the	conservation	of	the	spe-
cies.	Iridoid	glycosides	in	particular	are	highly	abundant	in	Cornelian	
taxa	and	have	been	noted	to	play	roles	in	plant	defense	and	disease	
resistance	 (Stermitz	&	Krull,	 1998;	Yue	 et	al.,	 2006)	 in	 addition	 to	
various	phenolic	and	tannin	compounds	(Dudt	&	Shure,	1993).	In	this	
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work,	we	integrated	evidence	from	multivariate	analyses	of	flower-
ing	dogwood	tree	metabolomes,	 reduced	genome	sequences	from	
genotype	by	sequencing	 (Pais,	Whetten,	&	Xiang,	2016;	Peterson,	
Weber,	 Kay,	 Fisher,	 &	 Hoekstra,	 2012),	 and	 environmental	 data	
(model	controls)	to	address	the	following	questions:	(1)	What	is	the	
relationship	 between	 genetic	 diversity	 and	 chemodiversity?	 (2)	 Is	
there	evidence	from	candidate	SNPs	and	metabolites	 for	 local	ad-
aptation,	 and	are	 there	particular	 chemical	biomarkers	 such	as	 iri-
doid	glycosides	associated	with	either	diseased	or	healthy	plants?	(3)	
Likewise,	do	healthier	plants	exhibit	greater	chemodiversity?

2  | MATERIAL S AND METHODS

2.1 | Plant material

Natural	 populations	 of	 C. florida	 were	 sampled	 from	 the	 moun-
tain,	Piedmont,	and	Coastal	Plain	regions	of	North	Carolina	during	
the	summer	of	2012	(Pais	et	al.,	2016).	Each	region	contained	two	

populations,	and	each	population	consisted	of	one	or	two	collection	
sites,	or	subpopulations,	of	30–15	individual	trees,	respectively,	for	a	
total	of	180	mature	and	unique	trees.	Leaves	were	dried	and	stored	
in	silica	gel	under	standardized	conditions.	All	samples	were	given	an	
extended	period	to	dry	before	extracting	thermally	stable	metabo-
lites	from	leaves.

2.2 | Metabolite extraction

Metabolites	were	extracted	following	a	modified	protocol	of	Strauch,	
Svedin,	Dilkes,	Chapple,	and	Li	(2015).	For	each	tree,	extraction	ma-
terial	 (20	mg)	was	selected	from	all	sampled	leaf	tissue	visibly	free	
of	mold	or	necrosis	to	minimize	the	chances	of	sampling	metabolites	
that	 were	 unique	 to	 fungi,	 altered	 or	 degraded	 during	 collection.	
During	 the	 drying	 period,	 eight	 samples	 developed	 mold	 growth,	
which	prohibited	their	use	for	metabolic	study—leaving	172	remain-
ing	samples.	Leaf	tissue	was	ground	with	liquid	nitrogen	in	a	Retsch	
MM	400	oscillating	mill	 for	one	min	at	25	Hz.	After	 grinding,	 two	

F IGURE  1 Subset	of	collections	from	
broader	study	of	C. florida	(top)	applied	
to	metabolic	study	of	chemical	diversity	
in	North	Carolinian	populations	(bottom).	
Red	counties	have	known	incidence	
of	dogwood	anthracnose	disease.	For	
subset	of	populations	sampled	in	this	
study,	differences	in	mean	monthly	
rainfall,	length	of	growing	period,	soil	
type,	and	county	occurrence	of	dogwood	
anthracnose	are	visualized	to	demonstrate	
the	heterogeneity	in	environment	that	
exists	among	the	mountain,	Piedmont,	
and	Coastal	Plain	ecoregions	of	North	
Carolina
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ml	of	50%	methanol	was	 immediately	applied	to	samples.	Samples	
were	then	incubated	in	a	water	bath	for	30	min	at	60°C	and	allowed	
to	cool	one	hour	at	4°C	to	minimize	potential	precipitate	(soluble	in	
warm	solution)	from	being	transferred	to	final	vials.	After	centrifug-
ing	for	one	min,	remaining	supernatant	was	transferred	to	a	new	vial	
via	a	filtered	syringe	tube.

2.3 | Untargeted metabolite profiling

Untargeted	metabolite	profiling	was	performed	on	a	G6530A	Q-	TOF	
LC-	MS	system	(Agilent	Technologies,	Santa	Clara,	CA).	Five	microlit-
ers	of	leaf	extract	was	injected	onto	an	Agilent	ZORBAX	Eclipse	Plus	
C18	column	(3	×	100	mm,	1.8	μm).	Metabolites	were	separated	using	
a	binary	gradient	of	solvent	A	(0.1%	formic	acid	in	water)	and	solvent	
B	(0.1%	formic	acid	in	acetonitrile)	at	a	flow	rate	of	0.6/ml/min.	The	
elution	gradient	started	with	a	one-	min	hold	at	2%	B,	 followed	by	
ramping	up	to	45%	B	over	16	min,	and	then	was	increased	to	90%	
B	in	one	min	and	held	at	90%	B	for	2.5	min.	The	acquisition	of	mass	
spectra	was	performed	in	negative	mode	for	a	m/z	range	from	100	
to	 1,600,	 with	 the	 following	 parameters:	 drying	 gas	 temperature,	
300°C;	 drying	 gas	 flow	 rate,	 7.0	L/min;	 nebulizer	 pressure,	 40	psi;	
sheath	 gas	 temperature,	 350°C;	 sheath	 gas	 flow	 rate,	 10.0	L/min;	
Vcap,	3,500	V;	nozzle	voltage,	500	V;	 fragmentor,	150	V;	skimmer,	
65	V;	OctopoleRFPeak,	750	V.

2.4 | LC- MS data processing

Raw	data	files	obtained	from	LC-	MS	experiments	were	converted	
to	the	mzData	format	using	Agilent	Masshunter	software,	grouped	
into	 directories	 by	 population,	 and	 then	 uploaded	 to	 the	 XCMS	
Online	platform	(Tautenhahn,	Patti,	Rinehart,	&	Siuzdak,	2012)	for	
automatic	 metabolite	 detection	 and	 alignment.	 Metabolite	 fea-
tures—peaks	defined	by	mass-	to-	charge	ratio	(m/z),	retention	time	
(RT),	 and	 intensity—were	 extracted	 with	 optimized	 parameters:	
centWave	 method,	 minimum–maximum	 peak	 width	=	8	 and	 30,	
signal-	to-	noise	 threshold	=	30,	mzdiff	=	0.01,	 prefilter	 peaks	=	3,	
prefilter	 intensity	=	2,000,	and	noise	filter	=	0.	As	retention	time	
variation	 between	 runs	 was	 minimal,	 the	 peaks	 were	 aligned	
across	all	the	samples	without	RT	correction,	using	the	following	
parameters:	 bw	=	5,	mzwid	=	0.025,	 and	minfrac	=	0.75.	A	 list	 of	
2,785	 aligned	 peaks/features	 from	172	 individuals	was	 then	 ex-
ported	 from	XCMS	Online	as	 a	 tab-	separated	 file.	A	preliminary	
PCA	 using	 autoscaled	 distances	 of	 individual	 peak	 areas	 and	 a	
distance	to	model	(DModX)	test	(implemented	in	XCMS)	detected	
individual	 UM19	 as	 a	 significant	 outlier	 sample	 (possibly	 due	 to	
extraction	error)	to	be	removed.	As	one	metabolite	may	give	rise	
to	multiple	peaks	including	isotope,	adduct,	or	fragment	peaks,	the	
2,785	 peaks	were	 further	 grouped	 by	 peak	 intensity	 correlation	
and	RT	similarity	using	built-	in	procedures	 from	the	XCMS	pipe-
line	 (Tautenhahn	 et	al.,	 2012).	 This	 resulted	 in	 377	metabolites,	
which	were	 represented	 by	 the	 largest	 peak	within	 each	 group.	
Metabolite	 annotation	 was	 performed	 by	 searching	 the	 exact	
mass	 of	 detected	metabolite	 features	 against	 the	Knapsack	 and	

Metcyc	databases	(Caspi	et	al.,	2014;	Shinbo	et	al.,	2006)	using	a	
ten	ppm	threshold.

2.5 | Chemodiversity index calculation

Calculation	 of	 the	 richness	 diversity	 index	 (S;	Whittaker,	 1972)	 is	
primarily	described	in	this	study	as	its	results	have	straightforward	
and	 biologically	 meaningful	 interpretations,	 which	 can	 be	 easily	
reconceptualized	 from	 the	 study	of	 species	 diversity	 to	 the	 study	
of	 chemodiversity.	 For	 clarity,	we	 first	 define	 richness	 in	 the	 con-
text	of	a	 typical	community	ecology	study	before	 transferring	 the	
analogy	to	studying	 intraspecific	chemodiversity.	 In	a	hypothetical	
field	divided	 into	multiple	plots,	 species	 richness	 is	 the	number	of	
unique	species	in	the	field	or	each	plot	(Whittaker,	1972).	Alpha	(α) 
richness	refers	to	the	average	richness	of	plots	while	the	total	num-
ber	of	unique	species	in	the	whole	field	is	gamma	(γ)	richness.	When	
appropriating	 these	 indices	 for	 studying	 chemodiversity,	 we	 treat	
each	“species”	as	a	metabolite	and	the	“plot	within	a	field”	is	repre-
sented	by	an	individual	plant’s	chromatogram,	which	represents	the	
sum	of	all	metabolite	 intensity	peaks.	More	simply,	 richness	 is	 the	
metabolite	count	 in	an	 individual	sample,	and	when	richness	 is	av-
eraged	among	each	tree	in	a	subpopulation,	subpopulations	can	be	
statistically	compared	by	α-	richness	(Whittaker,	1972).	 In	contrast,	
γ-	richness	represents	 total	number	of	unique	metabolites	within	a	
given	subpopulation.	As	exploratory	findings	showed	that	γ-	richness	
was	equal	among	subpopulations,	we	hereinafter	refer	to	α-	richness	
when	reporting	chemical	richness.

2.6 | Genetic marker data

We	 used	 genotype	 by	 sequencing	 (GBS;	 Peterson	 et	al.,	 2012)	 of	
two	Illumina	Hiseq	libraries,	de	novo	assembly	into	90-	bp	GBS	tags	
with	STACKS	(Catchen,	Amores,	Hohenlohe,	Cresko,	&	Postlethwait,	
2011),	 latent	 factor	mixed	modeling	 [a	 genotype–environment	 as-
sociation	 (GEA)	method;	 Frichot,	 Schoville,	 Bouchard,	 &	 François,	
2013],	and	two	FST	outlier	methods	(Excoffier,	Hofer,	&	Foll,	2009;	
Foll	&	Gaggiotti,	2008)	to	classify	putatively	neutral	SNPS	and	SNPs	
exhibiting	 varying	 support	 for	 being	 under	 selection	 (Pais	 et	al.,	
2016).	 Putatively	 neutral	 reference	 SNPs	 were	 used	 to	 calculate	
marker-	based	inbreeding	coefficients	(F;	Keller,	Visscher,	&	Goddard,	
2011)	 and	 identity-	by-	state	 matrices	 using	 PLINK	 (Purcell	 et	al.,	
2007).	We	added	an	inbreeding	coefficient	(F)	variable	into	logistic	
models	characterizing	plant	health	and	disease	(see	section	2.9)	be-
cause	we	recognized	the	need	to	account	for	greater	heterozygosity	
(fewer	homozygous	loci	than	expected)	within	an	individual,	which	
could	affect	plant	health	(Ouborg,	Biere,	&	Mudde,	2000)	by	yield-
ing	more	unique	metabolites	and	raising	plant	potential	to	respond	
to	 novel	 pathogen	 effectors	 (screening	 hypothesis;	 Jones,	 Firn,	 &	
Malcolm,	 1991).	 GBS	 samples	 were	 also	 reanalyzed	 with	 aid	 of	 a	
newly	available	C. florida	draft	genome	(Dogwood	Genome	Project	
(NSF	ID:	1444567),	and	the	draft	genome	was	used	as	an	additional	
resource	to	predict	candidate	gene	function	by	inspecting	BLAST	hit	
annotations	surrounding	SNPs	of	interest.



     |  5623PAIS et Al.

2.7 | Environmental- functional traits

We	 correlated	 climate–soil	 variables	 (obtained	 through	 collection	
site	 measurements	 and	 GIS	 extrapolation;	 Pais	 et	al.,	 2016)	 and	
temperature-	precipitation	 estimates	 at	 time	 of	 collection	 (daily–
monthly;	 PRISM	Climate	Group;	 extracted	 30	 January	 2015)	with	
chemical	 and	 genetic	 data	 (Table	1).	 Similarly,	 plant	 health	 scores	

were	plotted	against	chemodiversity	 levels.	Visual	health-diseased	
estimates	were	 taken	using	 the	procedure	of	Mielke	and	Langdon	
(1986)	based	on	 the	percent	of	 tree	 canopy	 affected	by	 leaf	 blot-
ting,	necrosis,	or	branch	dieback.	Additionally,	five	categorical	scores	
obtained	 from	 this	method	were	 converted	 into	 a	binary	variable.	
Plants	with	scores	of	 four	and	 five	were	considered	healthy	while	
plants	with	 scores	 of	 three	 and	 below	were	 considered	 diseased.	
This	recoded	binary	variable	served	as	the	response	for	mixed	model	
logistic	regressions.	For	further	description	how	environmental	vari-
ables	 were	 selected	 for	 multivariate	 modeling	 of	 chemodiversity	
levels,	see	Appendix	S1	and	additional	justification	of	mixed	logistic	
models	as	described	further	in	methods.

2.8 | Characterizing general relationships of 
chemical structure and diversity to plant health and 
genetic diversity

We	determined	the	general	structure	among	sampled	populations	and	
the	diversity	of	metabolites	from	multilocus	genotype	data.	We	first	
used	discriminant	analyses	of	principal	components	(DAPC)	to	identify	
collection	sites	that	clustered	together,	according	to	SNP	or	metabo-
lite	abundance	data.	Using	the	R	package	adegenet	(Jombart,	2008;	
Jombart,	 Devillard,	 &	 Balloux,	 2010),	 we	 performed	 discriminant	
analysis	(DA)	on	the	optimal	number	of	principal	components	(PC)	to	
maximize	among-	population	variation	and	minimize	within-	population	
variation.	We	estimated	and	analyzed	PC	scores	separately	from	two	
different	datasets	(both	scaled):	reference	SNPs	aligning	to	the	C. flor-
ida	draft	genome	and	abundance	data	(log-	transformed)	for	377	me-
tabolites.	We	conducted	DAPC	both	by	defining	groups	by	collection	
sites	and	by	allowing	the	program	clustering	algorithm	to	find	optimal	
cluster	number	(K)	without	priors.	Discriminant	analyses	of	principal	
components	 does	 not	 require	 assumptions	 on	 a	 population	 genetic	
model	(e.g.,	linkage	equilibrium	of	markers)	in	contrast	to	programs	like	
STRUCTURE	 (Pritchard,	 Stephens,	&	Donnelly,	 2000)	 so	DAPC	has	
been	widely	adopted	in	recent	population	genetic	studies	(Buchalski	
et	al.,	2016;	Cahill	&	Levinton,	2016;	Grünwald	&	Goss,	2011).	Its	use	
for	metabolic	 study	 is	 recent,	 but	 its	 efficacy	 in	 discriminating	 dif-
ferent	 biologically	meaningful	 chemotype	 classes	 has	 been	 demon-
strated	and	favored	over	other	discriminant	analysis	methods	under	
certain	circumstances	(Gromski	et	al.,	2015;	Scheitz	et	al.,	2013).

Next,	we	estimated	average	genetic	diversity	and	chemodiver-
sity	of	each	subpopulation.	Rarefied-	allelic	richness	was	calculated	
per	site	using	the	hierfstat	R	package	(Goudet,	2005)	and	the	same	
genetic	dataset	analyzed	in	DAPC.	For	each	subpopulation,	hetero-
zygosity	 (expected	 and	 observed)	 and	 nucleotide	 diversity	 were	
recalculated	 from	GBS	markers	 in	Pais	et	al.	 (2016)	aligning	 to	 the	
newly	developed	draft	genome	of	C. florida.	Genetic	diversity	esti-
mates	 from	 Pais	 et	al.	 (2016)	 were	 recalculated	 as	 heterozygosity	
and	nucleotide	diversity	were	previously	calculated	 independently	
among	two	different	sequence	libraries	and	having	a	draft	genome	
eliminated	 complications	of	 synthesizing	 two	different	 de	novo	 li-
braries.	We	note	 in	results	that	new	heterozygosity–nucleotide	di-
versity	estimates	are	congruent	with	previous	findings	in	Pais	et	al.	

TABLE  1 Chart	of	all	predictors	considered	in	current	study	
accompanied	by	abbreviations	used	in	main	text

Variable Abbreviation

Mean	precipitation	during	month	of	collection

Precipitation	at	day	of	collection

Average	temperature	at	month	of	collection

Temperature	at	day	of	collection Tcol

Health	score	(1–5) No	Abbreviation

Health	score	(binary) No	Abbreviation

Inbreeding	coefficient F

Osmometer	reading No	Abbreviation

Average	diameter	by	height No	Abbreviation

Canopy	cover	average No	Abbreviation

Proximity	to	water No	Abbreviation

Percent	humic	matter	(soil) HM

Weight–volume	ratio	(soil) WV

Acidity	(soil) pH

Base	saturation	(soil) BS

Exchangeable	acidity	(soil) Ac

Cation	exchange	capacity CEC

Phosphorus	(soil) P

Potassium	(soil) K

Calcium	(soil) Ca

Magnesium	(soil) Mg

Sulfur	(soil) S

Sodium	(soil) Na

Manganese	(soil) Mn

Copper	(soil) Cu

Zinc	(soil) Zn

Mean	annual	temperature No	Abbreviation

Mean	monthly	rainfall No	Abbreviation

Minimum	temperature	of	January Tmin1

Maximum	temperature	of	July Tmax7

Average	monthly	precipitation	in	June Prec6

Average	monthly	precipitation	in	July Prec7

Precipitation	of	driest	month Bio14

Frost-	free	period FFP

Length	of	growing	period LGP

Elevation No	Abbreviation

Longitude No	Abbreviation

Latitude No	Abbreviation
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(2016).	Chemodiversity	indices	derived	from	377	metabolites	were	
calculated	per	sample	and	averaged	by	subpopulation	for	correlation	
analyses,	and	subpopulations	were	compared	with	95%	confidence	
intervals	for	each	genetic-	chemical	diversity	estimate.

We	next	tested	for	correlations	between	environmental	gradients,	
genetic	differentiation,	and	chemical	distance	using	Mantel	tests	and	
linear	regression.	Full	and	partial	Mantel	tests	(Legendre	&	Fortin,	1989)	
were	implemented	in	the	R	package	ecodist	 (Goslee	&	Urban,	2007)	
with	9,999	permutations	and	500	bootstraps	to	determine	the	strength	
and	 significance	 of	 association	 between	 population-	level	 metabolic	
distance,	genetic	distance,	and	mean	Euclidean	distances	of	spatial	and	
environmental	variables	[i.e.,	displacement	of	collection	sites,	precip-
itation	of	driest	month	 (Bio14),	and	temperature	at	day	of	collection	
(Tcol);	 see	Environmental-	functional	 traits	 continued	 in	Appendix	S1	
for	justification	of	environmental	variables	tested].	For	these	correla-
tion	analyses,	we	employed	Arlequin	 (Excoffier	&	Lischer,	2010)	and	
reference	SNPs	(putatively	neutral	SNPs	from	Pais	et	al.,	2016)	to	cre-
ate	a	matrix	of	linearized	FST	values	between	subpopulations.	We	then	
correlated	this	FST	matrix	to	an	analogous	matrix	describing	population	
similarities	and	dissimilarities	using	metabolite	data.	To	compare	meta-
bolic	distances	between	subpopulations,	we	constructed	an	ANOSIM	
(Analysis	of	Similarities)	R	matrix	from	intersample	Euclidean	distances	
following	the	approach	of	Houshyani	et	al.	(2012)	and	Kabouw,	Biere,	
van	der	Putten,	and	van	Dam	(2009),	377	log-	transformed	metabolites,	
and	the	program	PAST	(Hammer,	Harper,	&	Ryan,	2001).	An	ANOSIM	
matrix	is	a	reduced-	dimension	matrix	describing	the	similarity	between	
pairs	of	subpopulations	based	on	differences	in	abundances	of	multiple	
metabolites.	Correlations	of	the	FST	matrix	to	the	ANOSIM	R	matrix	of	
population-	level	metabolic	distances	were	assessed	using	one-	tailed	
Mantel	tests	of	Pearson’s	r	coefficient.

The	significance	of	simple	linear	regressions	between	individual-	
specific	chemodiversity	levels,	inbreeding	coefficients,	and	all	avail-
able	 environmental	 predictors	 was	 also	 assessed.	 In	 addition,	 we	
determined	the	best	multivariate	models	describing	general	chemo-
diversity	as	the	response	(Appendix	S1).	For	these	initial	regression	
models,	we	used	chemodiversity	indices	based	on	all	2,785	chemical	
features	 as	 this	 allowed	 us	 to	more	 reliably	 detect	 general	 differ-
ences	 in	 chemical	 richness	 among	 samples.	 However,	 we	 caution	
that	inclusion	of	correlated	chemical	features	may	bias	the	calcula-
tion	of	chemodiversity	 indices,	and	as	such,	we	delegate	reporting	
and	discussion	of	such	results	in	Appendix	S1.

2.9 | Biomarker analyses

For	identifying	biomarkers	associated	with	healthy	versus	diseased	
trees,	 we	 primarily	 used	 random	 forests	 (RF)	 tests	 and	 a	 logistic	
mixed	model	predicting	disease	states	based	on	abundance	data	of	
each	metabolite.	Random	forests	tests	were	previously	compared	to	
partial	 least	squares	discriminant	analysis	 (PLS-	DA),	principal	com-
ponent	discriminant	analysis	(DAPC),	and	support	vector	machines	
(SVM)	 for	 their	 ability	 to	 correctly	 assign	 samples	 to	 biologically	
based	 classes	 using	metabolic	 data	 (Gromski	 et	al.,	 2015).	 Logistic	
mixed	models	predicting	healthy–diseased	states	of	plants	were	also	

considered	 given	 the	 ability	 to	 statistically	 evaluate	 a	 Bonferroni	
correction	and	analytically	control	 for	 inbreeding	coefficient,	 tem-
perature	at	collection,	and	random	effects	of	collection	site.	More	
details	on	parameters	for	RF	tests,	justification	of	variable	selection	
for	 logistic	 mixed	 modeling,	 and	 other	 biomarker	 tests	 compared	
in	exploratory	analyses	 (PLS-	DA,	DAPC,	and	SVM)	are	available	 in	
Appendix	S1	(Biomarker	analyses	continued).

2.10 | Predicting metabolite–SNP networks

To	 understand	 patterns	 between	 chemical	 data	 and	 individual	 loci	
while	controlling	for	sample	structure	and	environmental	variability,	
we	employed	a	 linear	mixed	model	 implemented	 in	EMMAX	 (Kang	
et	al.,	2010).	This	model	has	been	used	 in	genomewide	association	
(GWA)	studies	of	Arabidopsis thaliana	(Bac-	Molenaar,	Fradin,	Rienstra,	
Vreugdenhil,	 &	 Keurentjes,	 2015;	 Fournier-	Level	 et	al.,	 2011;	 Li,	
Huang,	Bergelson,	Nordborg,	&	Borevitz,	2010;	Li	et	al.,	2014;	Strauch	
et	al.,	2015)	because	of	its	computational	efficiency,	and	its	ability	to	
handle	and	control	for	population	stratification	(Price,	Zaitlen,	Reich,	
&	Patterson,	2010)	and	environment.	We	tested	for	both	SNP	associ-
ations	to	each	metabolite	and	for	SNP	associations	to	the	property	of	
chemical	richness.	We	corrected	for	population	structure	by	entering	
an	identity-	by-	state	matrix	(created	from	neutral	reference	SNPs	to	
describe	pairwise	relationships	between	individuals)	into	our	model.	
For	 SNP	 association,	 we	 log-	transformed	 metabolite	 abundances	
prior	to	association	study.	For	each	corresponding	GBS	tag	of	a	SNP,	
we	noted	any	BLAST	result,	gene	annotation	(SWISS-	PROT,	TAIR,	or	
UNI-	PROT),	and	alignment	match	to	the	transcriptome	(Zhang	et	al.,	
2013)	or	draft	genome	of	C. florida.

Chemical–genotype	 associations	 were	 calculated	 in	 EMMAX	
with:	 (1)	 no	 covariates	 present;	 (2)	 the	 Bio14	 covariate	 present;	
(3)	 the	 Tcol	 covariate	 present;	 or	 (4)	 both	 covariates	 present	 (see	
Environmental-	functional	traits	continued	in	Appendix	S1	for	justi-
fication	of	environmental	 controls	 specified).	p-	Value	distributions	
from	 output	 files	 were	 plotted	 using	 R	 package	 Haplin	 (Wilcox,	
Weinberg,	 &	 Lie,	 1998)	 to	 assess	Q–Q	 plots	 for	 each	metabolite.	
Results	were	considered	significant	for	genotype–metabolite	asso-
ciations	passing	a	Bonferroni	correction	with	an	alpha	value	of	5%.	
Only	results	from	normally	distributed	Q–Q	plots	were	considered.

To	 explore	 the	 relationship	 between	 metabolites,	 we	 applied	
Gaussian	graphical	modeling	(GGM)	to	the	377	metabolite	dataset.	
Gaussian	 graphical	 modeling	 utilizes	 partial	 full-	order	 correlation	
coefficients	to	test	for	correlation	between	two	metabolites	while	
removing	other	metabolite	effects.	Justifications	and	additional	con-
siderations	of	GGM	are	further	discussed	in	Appendix	S1	(Gaussian	
graphical	modeling	continued).

2.11 | Modeling health versus disease: Logistic 
mixed modeling with chemodiversity of a specific 
set of biomarkers

To	 assess	 whether	 chemodiversity	 of	 a	 putative	 terpenoid	 de-
rivative	network	was	 related	 to	 the	odds	of	being	healthy	versus	
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diseased,	we	employed	logistic	mixed	modeling	(previously	applied	
to	single	metabolites;	see	section	2.9)	with	chemical	richness	(or	H′,	
D1,	D2,	 E,	 and	BP	 indices;	 see	Chemodiversity	 indices	 continued	
in	Appendix	S1)	specified	as	a	 fixed	effect	 (recalculated	from	me-
tabolites	 in	 the	 GGM-	associated	 group	 of	 iridoid	 glucosides;	 see	
Candidate	metabolite–SNP	network).	 In	other	words,	we	 recalcu-
lated	chemodiversity	indices	from	a	set	of	related	iridoid	derivatives	
and	substituted	the	predictor	representing	a	given	metabolite	abun-
dance	in	our	aforementioned	mixed	logistic	model	(see	section	2.9)	
for	a	given	chemodiversity	index.	Our	justification	for	recalculating	
chemodiversity	 from	metabolites	 in	presumably	 related	biological	
pathways	was	 to	 compare	 the	 evenness	 or	 dominance	 in	 the	 ac-
cumulation	of	the	specific	set	of	metabolites	between	diseased	and	
healthy	plants.	We	also	recalculated	and	examined	chemodiversity	
among	ten	metabolites	with	common	results	among	GWA	and	bio-
marker	tests	in	exploratory	analyses	(Appendix	S1;	Table	S5).	Lastly,	
we	tested	interaction	terms	between	chemodiversity	and	the	other	
effects	found	to	influence	plant	health	(i.e.,	inbreeding	coefficient,	
temperature	at	collection,	and	random	effects	of	collection	sites).	
Upon	 adding	 interaction	 terms	 for	 temperature	 at	 collection,	 we	
consistently	 found	 the	 interaction	effects	 to	be	 insignificant.	The	
same	applied	when	 testing	 interactions	 to	 inbreeding	 coefficient.	
Thus,	we	removed	interaction	terms	from	our	models.

3  | RESULTS

3.1 | Genetic markers

Of	 1,631	 GBS	 tags	 (containing	 2,118	 SNPs)	 consistently	 geno-
typed	 from	 two	Hiseq	 libraries	 in	Pais	 et	al.	 (2016),	we	 selected	

1,860	SNPs	 for	 studying	chemical–genotype	associations.	These	
SNPs	passed	a	5%	minor	allele	frequency	filter,	a	locus	genotyping	
rate	in	80%	or	greater	of	all	samples,	and	Hardy–Weinberg	exact	
tests	 implemented	 in	 Genepop	 (Rousset,	 2008)	 indicating	 allele	
equilibrium	 in	 over	 half	 of	 the	 subpopulations.	We	 selected	one	
SNP	per	GBS	tag	to	reduce	linkage	disequilibrium	in	our	dataset,	
parsing	final	SNP	number	to	1,446.	For	GBS	tags	showing	no	evi-
dence	of	being	under	 selection	 from	Pais	et	al.	 (2016),	 SNPs	oc-
curring	closest	to	the	PstI	cut-	site	were	selected,	leading	to	1,171	
SNPs	as	the	neutral	reference.	For	GBS	tags	showing	any	evidence	
of	being	under	selection	(Pais	et	al.,	2016),	SNPs	with	the	highest	
estimated	FST	were	included	in	the	1,446	SNP	dataset	for	GWA	to	
metabolites.	 Of	 those	 1,446	 SNPs,	 1,163	 SNPs	 occurred	within	
GBS	tags	aligning	to	the	C. florida	draft	genome	and	were	applied	
to	DAPC	analyses.

3.2 | General patterns of chemical- genetic 
structure and diversity

As	shown	in	Pais	et	al.	(2016)	and	corroborated	by	recalculations	
in	this	study,	nucleotide	diversity	and	heterozygosity	levels	were	
similar	 across	 sites	 (Figure	2a–c),	 but	 subsequent	 comparisons	
of	 rarefied-	allelic	 richness	 showed	 that	 Piedmont	 subpopula-
tions	 had	 higher	 mean	 rarefied-	allelic	 richness	 than	 mountain	
and	coastal	subpopulations—especially	in	comparison	with	moun-
tain	 subpopulation	 SM2,	 which	 had	 the	 lowest	 rarefied-	allelic	
richness	 (Figure	2d);	 contrasts	 of	 chemodiversity	 between	 sub-
populations	 were	 most	 apparent	 for	 richness	 measures—with	
mountain	subpopulations	SM1	and	SM2	having	significantly	lower	
chemical	richness	on	average	compared	to	Piedmont	and	coastal	

F IGURE  2 Comparison	of	subpopulation	means	of	(a)	observed	and	(b)	expected	heterozygosity,	(c)	nucleotide	diversity,	(d)	rarefied-	
allelic	richness,	(e)	inbreeding	coefficient,	and	(f)	chemical	richness	calculated	from	377	metabolites
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subpopulations	 (Figure	2f,g;	 see	 Figure	S2	 for	 subpopulation	
means	of	other	chemodiversity	 indices).	Levels	of	 rarefied-	allelic	
richness	and	chemical	richness	were	similar,	and	significant	corre-
lations	between	subpopulation	means	were	observed	(Figure	S2).	
When	grouping	 individual	 trees	 into	healthy	or	diseased	catego-
ries	 based	 on	 a	 one	 to	 five	 scoring	 system	 (Mielke	 &	 Langdon,	
1986),	 the	 relationship	 of	 disease	 status	 to	 chemodiversity	 indi-
ces	derived	from	377	metabolites	varied	depending	on	the	index	
(Appendix	S1).	 In	 particular,	 chemical	 richness	 of	 the	 377	 me-
tabolites	highly	overlapped	 among	 the	 five	disease-	state	 groups	
(Figure	3),	but	it	showed	slight	trends	of	medians	increasing	with	
increasing	health	states	of	individual	trees	(Figure	3).

Subpopulation	clustering	patterns	based	on	metabolic	distances	
from	discriminant	analysis	of	principal	components	largely	followed	
clustering	patterns	based	on	genetic	distances	 (Figure	4).	The	only	
deviation	was	one	mountain	subpopulation	from	Pisgah	forest	(PI1)	
that	 clustered	 closer	 to	 Piedmont	 subpopulations,	 according	 to	
DAPC	results	of	metabolic	distances	(Figure	4b).	When	the	optimal	
clustering	model	was	estimated	without	defining	groups	by	subpop-
ulations,	 DAPC	 using	 genetic	 distances	 only	 supported	 two	 clus-
ters—one	 cluster	 consisting	 of	 samples	 from	 mountain–Piedmont	
ecoregions	 and	 another	 cluster	 consisting	 of	 samples	 from	 the	
Coastal	Plains	ecoregion	(Pais	et	al.,	2016;	Figure	4c,e).	In	contrast,	
DAPC	for	metabolite	data	(without	restricting	samples	to	group	by	

sampling	 location)	 supported	up	 to	 seven	clusters	 (Figure	4d,f)	 re-
lated	to	geography	and	environmental	conditions	at	collection	sites.	
The	 metabolic-	based	 clusters	 with	 high	 membership	 of	 mountain	
individuals	(i.e.,	cluster	seven	and	three)	were	located	in	the	upper	
ordination	space	while	cluster	five	(consisting	of	individuals	primarily	
from	 the	 coast)	 and	 cluster	 four	 (including	Piedmont	 samples	 and	
samples	 from	 the	 PI	mountain	 subpopulation)	were	 located	 lower	
along	 the	 ordination	 space	 (Figure	4f).	 Cluster	 one	 had	 relatively	
few	coastal	individuals;	cluster	six	included	no	members	of	the	SM	
mountain	subpopulations;	and	cluster	seven	consisted	primarily	of	
SM	mountain	samples	(Figure	4d).	These	results	confirmed	high	sen-
sitivity	of	metabolic	data	to	environment	 (i.e.,	 temperature),	which	
was	also	supported	by	Mantel	test	results	 (Table	2)	and	regression	
model	 results	of	metabolic	and	environmental	data	 (Tables	S1	and	
S2,	 and	Appendix	S1).	The	 remainder	of	 reported	 results	 focus	on	
metabolite	 associations	 with	 SNPs	 while	 controlling	 for	 the	 most	
important	environmental	factors	influencing	the	general	metabolic	
profile	of	samples	as	described	in	Appendix	S1.

3.3 | Candidate metabolite–SNP associations

To	 understand	 the	 connections	 between	 genetic	 polymorphism	 and	
metabolite	variation,	we	performed	GWA	analyses	on	all	available	SNPs	
and	metabolites.	As	each	SNP–metabolite	association	analysis	was	an	
independent	test	not	biased	by	correlations	among	chemical	features,	
each	of	the	2,785	chemical	features	of	377	metabolites	was	included.	
With	and	without	the	most	 important	environmental	covariates	con-
trolled	for	in	GWA	models,	we	identified	975	unique	chemical	features	
significantly	associated	with	347	unique	SNPs.	Overlapping	chemical	
feature	and	SNP	results	among	the	various	GWA	tests	 (different	co-
variates	specified)	are	presented	in	Figure	5	and	summarized	here	ac-
cordingly.	The	total	number	of	chemical	features	and	SNPs	associated	
without	covariates	specified	were	774	and	282,	respectively.	When	Tcol	
(temperature	at	day	of	collection)	was	specified	as	a	covariate,	 there	
were	 638	 chemical	 features	 significantly	 associated	with	 244	 SNPs.	
When	Bio14	(precipitation	of	driest	month)	was	specified	as	a	covari-
ate,	there	were	713	chemical	features	significantly	associated	with	271	
SNPs.	Specifying	both	Tcol	and	Bio14	as	covariates	yielded	527	chemical	
features	significantly	associated	with	237	SNPs.	One	SNP	(B1567_16)	
was	significantly	associated	with	the	property	of	chemical	richness	for	
all	combinations	covariate	controls.	Summary	of	similarities	and	differ-
ences	in	results	among	the	various	covariate-	dependent	GWA	tests	for	
all	chemical	features	and	SNPs	are	available	in	Appendix	S1.

We	 performed	 GGM	 to	 formulate	 hypotheses	 of	 metabolite–
metabolite	 associations	based	on	partial	 correlation.	This	 analysis,	
combined	 with	 the	 GWA	 results,	 revealed	 SNP–metabolite	 con-
nections	 for	 a	 putative	 group	 of	 terpenoid	 glucosides	 (Figure	6a).	
We	noted	GGM	connections	of	three	metabolites	consisting	of	an	
annotated	 iridoid	 glucoside/Eleganoside	 C	 (M435T576;	 Bailleul,	
Leveau,	&	Durand,	1981;	Ali,	Uzair,	Krebs,	 Jahangir,	&	Habermehl,	
2000;	Xu,	Wang,	Zhang,	&	Yang,	2008),	an	aglycone/Cornolactone	
C	 (M227T630;	 He	 et	al.,	 2014),	 and	 a	 possible	 intermediate	
(M451T432).	 Moreover,	 several	 SNPs	 were	 repeatedly	 found	 to	

F IGURE  3  (a)	Medians	of	individual-	level	chemical	richness	
values	(calculated	from	377	metabolites)	by	health	score	categories	
(coded	1-	5	with	5	being	healthiest).	Boxplots	depict	minimum	and	
maximum	values	(whiskers),	outliers	(dots),	first	quartile,	median,	
and	third	quartile.	The	notches	in	each	box	correspond	to	the	95%	
confidence	interval	of	each	median	value,	and	the	width	of	each	
box	is	proportional	to	the	square	root	of	each	groups’	sample	size,	
which	represents	three,	15,	14,	47,	and	91	samples	with	health	
scores	of	one,	two,	three,	four,	and	five,	respectively
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be	 significantly	 associated	 with	 chemical	 features	 of	 these	 three	
metabolites	 (Figure	6a).	 SNP	 loci	 with	 multiple	 significant	 associ-
ations	 (labeled	yellow;	Figure	6)	within	 this	associated	group	were	
as	follows:	B506_11,	B1401_69	(aligned	to	gene	encoding	for	oligo-
meric	Golgi	 complex;	Ostertag,	Stammler,	Douchkov,	Eichmann,	&	
Hückelhoven,	2013),	B447_54,	B977_86,	B982_75	(aligned	to	gene	
encoding	for	lectin-	domain	receptor	kinase;	Singh	&	Zimmerli,	2013),	
B536_31,	B1327_41,	and	B440_76	(aligned	to	gene	encoding	for	a	
protein	sensitive	to	rhizotoxicity;	Sawaki	et	al.,	2009;	Fan,	Lou,	Yang,	
&	Zheng,	2016).	Several	of	these	SNPs	(B1401,	B982_75,	B440_76,	
B1401_69,	B447_54,	and	B977_86)	also	showed	evidence	of	being	
under	selection	in	Pais	et	al.	(2016).

3.4 | Predicting disease status from 
metabolite markers

We	 identified	 39	 metabolites	 that	 were	 informative	 biomarkers	
for	predicting	plant	disease	status	using	RF	(12),	DAPC	(8),	PLS-	DA	

(12),	SVM	(11),	or	logistic	mixed	modeling	(6)	(Figures	8,	S5,	and	S6).	
The	majority	 of	 these	 biomarker	 metabolites	 accumulate	 more	 in	
healthy	 plants	 compared	 to	 diseased	ones	 (Figures	8,	 S6,	 and	S8).	
It	is	notable	that	there	were	few	overlaps	between	the	biomarkers	
detected	by	different	methods	(Figure	S9a).	Logistic	mixed	modeling	
of	 individual	metabolites	showed	that	six	metabolites	were	signifi-
cantly	correlated	with	the	log	odds	of	being	healthy	versus	diseased	
(Table	3)	after	controlling	for	temperature	at	collection,	 inbreeding	
coefficient,	and	collection	site	random	effects.	Of	the	39	biomarker	
metabolites,	five	had	significant	associations	with	SNPs	as	revealed	
from	GWA	models	controlling	for	environment	(Figure	S9a).	The	hy-
pothesized	SNP	and	GGM	associations	for	these	biomarkers	are	re-
ported	in	Figure	S10	along	with	results	of	greater	focus	concerning	
the	hypothesized	group	of	iridoid	glycosides	(Figure	6).

After	controlling	for	inbreeding	coefficient,	collection	site	random	
effects,	and	temperature	at	collection,	healthy-	diseased	class	correla-
tions	 (log	 odds)	 to	 chemodiversity	 indices	 (calculated	 from	 the	 hy-
pothesized	GGM	group	of	iridoid	glycosides	consisting	of	M227T630,	

F IGURE  4 Plots	of	discriminant	
analyses	of	principal	components	(DAPC)	
derived	from	(a)	1,171	reference	SNPs	
or	(b)	377	chemical	features	(highest	
intensity	metabolite	per	peak	group).	Dots	
of	different	colors	and	shapes	represent	
individual	trees	belonging	to	different	
collection	sites	as	indicated	by	legend.	
Mountain	sites	are	as	follows:	Smoky	
Mountains	(SM1	and	SM2)	and	Pisgah	
Forest	(PI1	and	PI2).	Piedmont	sites	are	
in	Duke	Forest	(DK)	and	Umstead	State	
Park	(UM),	and	Coastal	Plain	sites	are	in	
the	Croatan	forest	(CF)	and	the	Nature	
Conservancy’s	Ecological	Preserve	at	
Nags	Head	Woods	(TNC).	When	optimal	
cluster	models	are	determined	(i.e.,	when	
groups	are	not	defined	by	collection	
site),	assignment	plots	based	on	genetic	
distances	(c)	or	metabolic	distances	
(d)	show	cluster	membership	of	each	
individual	(rows	with	plus	marks	for	most	
probable	assignment).	Optimal	cluster	
models	(determined	by	Bayesian	criteria)	
are	represented	by	scatterplots	E	and	
F	for	genetic	and	chemical	distances,	
respectively
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M451T432,	and	M435T576)	were	significant	for	the	majority	of	diver-
sity	 indices	 (no	differences	 in	 richness	 among	 samples	 and	p-	values	
approximately	.01	for	H′,	D1,	D2,	E,	and	BP	indices).	The	Berger-	Parker	
(BP)	dominance	index	(defined	by	the	relative	abundance	of	the	most	

abundant	metabolite	per	sample;	see	Chemodiversity	indices	contin-
ued	in	Appendix	S1)	was	significantly	correlated	to	the	log	odds	of	a	
plant	being	healthy	versus	diseased	(Figure	7).	The	positive	effect	of	the	
BP	index	was	driven	primarily	by	increasing	abundances	of	M435T576,	
which	was	the	most	abundant	metabolite	within	most	samples	(among	
other	metabolites	 composing	GGM	network;	 Figure	6).	Moreover,	 it	
reflected	a	greater	unevenness	of	chemical	expression	for	this	metab-
olite	 in	healthy	plants	 relative	 to	diseased	plants	 (Figure	7).	 In	other	
words,	 M435T576	 was	 considered	 the	 most	 predictive	 biomarker	
among	 the	 two	 other	 associated	 iridoid	 glycosides	 (M227T630	 and	
M451T432)	for	distinguishing	plant	health	and	disease.

Ten	other	credible	biomarkers	not	correlated	exclusively	with	the	
hypothesized	group	of	iridoid	glycosides	were	shown	to	be	strongly	as-
sociated	with	plant	disease	status	(Figures	S8	and	S9).	Accumulations	
of	these	ten	metabolites	(including	M435T576)	were	highly	predictive	
of	 plant	health	 and	disease	 status,	 according	 to	multiple	biomarker	
test	results	(Figure	S9).	Chemodiversity	patterns	derived	from	these	
ten	 biomarkers	 also	 showed	 that	 the	 dominance	 of	M435T576	 (in	
relation	 to	 the	 relatively	 even	 expression	of	 other	 biomarkers)	was	
associated	 with	 log	 odds	 of	 a	 plant	 being	 healthy	 versus	 diseased	
(Table	S5;	Appendix	S1;	Other	candidate	biomarkers	continued).

4  | DISCUSSION

4.1 | Relationships of genetic diversity and 
chemodiversity

Our	analysis	showed	 largely	concordant	chemical-	genetic	distance	
clustering	patterns	(Figure	4).	For	instance,	mountain	subpopulations	

TABLE  2 Mantel	tests	of	correlations	between	subpopulation-	
level	metabolic,	genetic,	and	environmental	distances.	Chemical	
distance	matrix	obtained	through	Analysis	of	Similarities	(ANOSIM)	
using	377	metabolites.	Genetic	distance	matrix	consists	of	
linearized	FST	values	calculated	from	1,171	reference	(putatively	
neutral)	SNPs.	Site-	level	means	of	temperature	at	collection	(Tcol)	
and	precipitation	of	driest	month	(Bio14)	used	for	matrices	of	
Euclidean	distances,	and	geographic	distance	among	sites	
calculated	from	a	X,	Y	coordinate	system.	Vertical	bar	denotes	
partial	Mantel’s	test	controlling	for	third	matrix	right	of	“|”

Mantel formula Pearson r p (r ≤ 0)

Metabolic	distance	versus	
geographic	distance

.51134369 .02750275

Genetic	distance	versus	geographic	
distance

.70352647 .00110011

Metabolic	distance	versus	genetic	
distance

.3340171 .0670067

Metabolic	distance	versus	Tcol .64711201 .00050005

Metabolic	distance	versus	Bio14 .41785384 .05830583

Metabolic	distance	versus	genetic	
distance	|	geographic	distance

−.04212434 .57645765

Metabolic	distance	versus	genetic	
distance	|	Tcol

−.26949309 .88438844

Metabolic	distance	versus	genetic	
distance	|	Bio14

.2555054 .1271127

F IGURE  5 Total	number	of	chemical	features	associated	with	SNPs.	Venn	diagram	depicts	overlapping	results	among	various	GWA	tests	
with	different	covariates	specified	in	the	program	EMMAX.	Comparisons	include	overlapping	results	among	(a)	975	significantly	associated	
chemical	features	(of	2,785	chemical	features)	and	(b)	346	significantly	associated	SNPs	(of	1,446	SNPs).	Covariates	controlled	for	were:	
temperature	at	day	of	collection	(Tcol)	and	precipitation	of	driest	month	(Bio14)
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(cooler	 in	 temperature	 and	with	higher	disease	 severity)	 exhibited	
distinct	chemical	profiles	and	clustered	together	as	in	genetic	analy-
ses	(excluding	PI1),	and	two	studied	mountain	subpopulations	were	
lower	 in	both	metabolite	richness	 (Figures	2f	and	S2a)	and	genetic	
diversity	 (rarefied-	allelic	 richness)	 than	 the	 studied	Piedmont	 sub-
populations	 (Figure	2d).	 Moreover,	 trees	 with	 greater	 individual-	
level	 heterozygosity	 (i.e.,	 smaller	 inbreeding	 coefficients)	 showed	
greater	 chemical	 α-	richness	 after	 controlling	 for	 other	 abiotic	 ef-
fects	 (Figure	S7).	 These	 findings	 suggest	 that	 chemical	 variation	

preserved	 in	dried	 leaves	may	have	a	 link	 to	genetic	variation	and	
functional	diversity	within	a	species.

There	 is	 clear	 impetus	 to	 conserve	 genetically	 and	 chemically	
diverse	 plant	 populations	 (Bustos-	Segura	 et	al.	 2017).	 It	 has	 been	
demonstrated	 that	 even	 small	 differences	 in	 genetic	 diversity	
(such	as	single	amino	acid	substitutions)	can	yield	large	differences	
in	 chemical	 profiles	 (Kampranis	 et	al.,	 2007),	 and	 several	 studies	
have	 found	 that	higher	 intraspecific	genetic	diversity	 reduces	her-
bivory	and	disease	 in	plant	populations	 (Hughes,	 Inouye,	 Johnson,	

F IGURE  6 Summary	of	hypothesized	SNP	and	iridoid	glucoside	associations	of	interest.	(a)	Predicted	network	connections	of	gene	
products	and	secondary	metabolites	were	labeled	based	on	genomewide	association	(GWA	connections	dashed)	and	Gaussian	graphical	
modeling	(GGM	connections	solid)	results.	SNPs	are	labeled	starting	with	“B,”	and	chemical	features	are	boxed	and	labeled	by	their	mass-	
to-	charge	ratio	(M)	and	retention	time	(T).	Significant	GWA	connections	with	no	covariate	controlled	for	are	highlighted	gray.	Significant	
GWA	connections	with	at	least	temperature	of	collection	(Tcol)	controlled	for	are	highlighted	red,	and	significant	GWA	connections	with	
precipitation	mean	of	driest	month	(Bio14)	controlled	for	are	labeled	blue.	Significant	GWA	connections	with	both	covariates	controlled	for	
are	highlighted	purple.	SNPs	associated	with	multiple	chemical	features	are	highlighted	yellow	and	underlined,	and	a	particularly	noted	SNP	
of	interest	(B982_75)	is	denoted	with	an	asterisk

B506_11 M435T576
B536_31

M451T432

M227T630

Adducts, 
fragment 
ions, & 
isotopes

M227T576
M341T576
M342T575
M426T576
M436T576
M438T576
M452T576
M489T577
M534T577
M535T576
M780T576

M832T576

M833T576

B1401_69
B1327_41

B447_54 B440_76

B977_86

B982_75*

GGM
No covariate
Tcol
Bio14
Tcol + Bio14

M319T632 M404T632 M403T632

Hypothesized
associations

M452T432

Adducts, 
fragment 
ions, and 
isotopes

Adducts, fragment
ions, & isotopes 

Chemical feature Estimate SE Z value p (>|z|)

M139T346 −1.65E-	05 5.89E- 06 −2.8 .005111

M277T1265 −1.33E-	04 6.75E-	05 −1.975 .04832

M301T1021 −4.60E-	05 2.28E- 05 −2.015 .04394

M307T406 −1.54E-	05 4.04E- 06 −3.825 .000131

M447T1161 3.92E- 05 1.84E- 05 2.131 .0331

M543T1327 −1.17E-	04 3.84E- 05 −3.038 .002378

TABLE  3 Mixed	logistic	regression	of	
individual	metabolite	effects	(integrated	
intensity	of	chromatogram	peak)	on	log	
odds	of	being	healthy	versus	diseased.	
Model	controls	for	inbreeding	coefficient	
(F),	temperature	at	collection	(Tcol),	and	
random	effect	of	sites.	Reporting	six	
significant	features	of	the	377	chemical	
features	after	retaining	highest	intensity	
metabolite	per	group	of	isotopic	peaks
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Underwood,	 &	 Vellend,	 2008).	 Moreover,	 emerging	 evidence	 has	
demonstrated	 how	 variation	 in	 intraspecific	 chemodiversity	 influ-
ences	 community	 diversity	 among	 different	 trophic	 interactions	
(Glassmire	et	al.,	2016;	Richards	et	al.,	2015).	In	the	context	of	this	
study,	it	is	important	to	note	the	similarity	between	clustering	pat-
terns	derived	from	genetic	and	metabolite	data	in	addition	to	noting	
evidence	 that	 some	 diseased	 mountain	 subpopulations	 (Figure	1)	
have	lower	genetic	and	chemical	diversity.

While	dogwood	disease	may	be	constrained	to	the	niche	and	life	
history	 of	 causal	 pathogens	 (Chellemi	 &	 Britton,	 1992;	Daughtrey,	
Hibben,	Britton,	Windham,	&	Redlin,	1996;	Ennos,	2015;	Holzmueller	
et	al.,	2006),	C. florida	does	exhibit	a	gradient	of	variation	 in	genet-
ics	 and	 metabolites	 among	 North	 Carolina’s	 coast,	 Piedmont,	 and	
mountain	 ecoregions	 (Figures	2,	 4,	 and	 S1),	which	may	 correspond	
to	 variation	 in	 health	 scores	 (Figures	S1	 and	 S4;	 Pais	 et	al.,	 2016).	
Furthermore,	 relatively	 high	 chemodiversity	 estimates	 among	 377	
metabolites	 are	 observed	 in	 healthier	 plants	 (Figure	3).	 As	 healthy	
plants	occur	in	all	environments	from	the	Coastal	Plains	to	mountains,	
this	finding	suggests	that	dogwood	anthracnose	may	not	necessarily	
be	constrained	by	only	abiotic	factors	(e.g.,	cooler	and	moister	habi-
tats)	but	instead	may	also	be	affected	by	both	genetic	and	metabolite	
diversities.	Genetic	and	metabolite	diversity	may	be	important	to	dis-
ease	variation.	High	levels	of	metabolic	and	genetic	diversity	intrinsic	
to	the	host	may	benefit	individual	trees	in	staving	off	disease	infec-
tion	(Jones	et	al.,	1991).	Alternatively,	low	genetic	diversity	in	moun-
tain	populations	can	also	be	a	consequence	of	dogwood	anthracnose	
disease	effects	(Hadziabdic	et	al.,	2012).	Although	the	co-	occurrence	
of	these	patterns	in	C. florida	presents	challenges	to	distinguish	rela-
tive	roles	of	abiotic,	genetic,	and	chemical	factors,	available	evidence	
supports	an	influence	of	genetics	on	disease	as	elaborated	below.

Previous	ecological	genomic	analysis	using	GBS	data	(Pais	et	al.,	
2016)	has	identified	SNPs	under	selection	for	local	adaption	in	the	
species,	 and	 a	 few	 of	 these	 SNPs	 are	 associated	 with	 biomarker	
metabolites	 (predictors	 of	 plant	 health)	 after	 accounting	 for	 envi-
ronmental	 covariates	 (Figure	6).	 In	 other	words,	 our	 sampled	 sub-
populations	 showed	 evidence	 of	 locally	 adapted	 genes	 associated	
with	plant–chemical	responses	to	disease	pressure	after	controlling	
for	 environment.	 SNP	 loci	 B1401,	 B982_75,	 B440_76,	 B1401_69,	
B447_54,	and	B977_86	[previously	identified	to	be	under	selection	in	
Pais	et	al.	(2016)]	were	found	to	be	associated	with	a	notable	iridoid	
glucoside	 that	was	 identified	 as	 a	positive	RF	biomarker	of	health	
versus	disease	(M435T576;	Figures	6,	8,	S8,	and	S9).	Several	of	these	
candidate	SNPs	occurred	on	loci	with	predicted	functions	related	to	
disease	 resistance.	 Some	SNP	 loci	 such	as	B1401	may	encode	 for	
proteins	(i.e.,	an	oligomeric	Golgi	complex)	that	facilitate	glycosyla-
tion	to	inhibit	disease	(Ostertag	et	al.,	2013).	Other	loci	such	as	FST 
outlier	B982	 (Pais	et	al.,	 2016)	 are	predicted	 to	encode	 for	 signal-
ing	receptors	like	lectin-	domain	receptor	kinases,	which	have	been	
previously	 implicated	 in	 plant	 immunity	 responses	 among	 other	
signaling	processes	(Singh	&	Zimmerli,	2013),	and	recent	functional	
experimentation	 on	 resistance	 genes	 encoding	 for	 such	 receptors	
in	Solanaceous	plants	has	provided	evidence	for	resistance	against	
Phytophthora	disease	(Wang,	Weide,	Govers,	&	Bouwmeester,	2015).	
Other	SNP	loci	like	B440	may	encode	regulatory	proteins	(Fan	et	al.,	
2016;	Sawaki	et	al.,	2009),	which	similarly	respond	to	stress	by	regu-
lating	transcription	of	genes	involved	in	pathways	such	as	immunity	
response.	Biomarker	M435T576	and	its	related	metabolites	belong	
to	 a	 class	 of	 terpenoid	 derivatives	 that	 have	 known	 antimicrobial	
and	antifungal	properties	(Bartsch	et	al.,	2010;	Chang,	Xuan,	Xu,	&	
Zhang,	2001;	Meng,	Lu,	Li,	Yang,	&	Tan,	1999;	Whitehead,	Tiramani,	

F IGURE  7 Depiction	of	chemodiversity	trends	[estimated	from	three	unique	metabolites	in	GGM-	associated	group	of	iridoid	glycosides:	
M227T630,	M451T432,	M435T576],	representing	six	logistic	mixed	models	controlling	for	inbreeding	coefficient	(F),	temperature	at	
collection	(Tcol),	and	random	site	effects.	Response	is	log	odds	(LO)	of	being	healthy	versus	diseased

H′ LO (est: –7.16; p = .0110)

D1 LO (est: –11.5; p = .0106)

D2 LO (est: –6.12; p = .0133)

E LO (est: –18.3; p = .0133)

BP LO (est: 15.6; p = .0121)

Chemodiversity vs. Healthy/Diseased Log Odds
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&	Bowers,	2016)	and	are	likely	sensitive	to	disease-	mediated	signal-
ing	processes	 (Caplan,	Padmanabhan,	&	Dinesh-	Kumar,	2008).	For	
instance,	M227T630	was	 identified	 as	 Cornolactone	 C,	 an	 iridoid	
isolated	 previously	 from	C. florida	 (He	 et	al.,	 2014),	which	 belongs	
to	a	compound	class	known	to	accumulate	in	response	to	infection	
and	has	documented	antimicrobial	properties	(Marak,	Biere,	&	Van	
Damme,	2002).

These	 predicted	 chemical	 compounds	 serve	 as	 an	 important	
guide	 for	 prioritizing	 which	 SNPs	 and	 biomarkers	 to	 further	 test	
in	 future	 research.	 The	 abundance	 and	 inducibility	 of	 certain	 sec-
ondary	 metabolites	 such	 as	 flavonoids,	 other	 phenolics,	 and	 gly-
coside	 derivatives	 have	 been	 found	 to	 be	 heritable	 and	mediated	

by	 herbivore–pathogen	 pressures	 (Johnson,	 Agrawal,	 Maron,	 &	
Salminen,	2009;	Li	et	al.,	2014).	Determining	the	specific	genetic	fac-
tors	regulating	such	adaptive	metabolites	remains	an	important	goal,	
and	this	study	adds	to	emerging	efforts	to	integrate	large	secondary	
metabolite	concentration	data	with	information	from	genome	scans	
(Eckert	et	al.,	2012;	Jensen,	Foll,	&	Bernatchez,	2016;	Talbot	et	al.,	
2016).

4.2 | Herbivore/pathogen interactions influencing 
chemodiversity in plants

Explanations	for	natural	variation	of	secondary	metabolism	have	long	
been	debated	(Fraenkel,	1959).	Intraspecific	variation	of	plant	chemo-
diversity	 can	 be	 attributed	 to	 differences	 in	 the	 environment	 (e.g.,	
variation	 in	 surrounding	 plant,	 herbivore,	 fungal,	 or	 microbial	 com-
munities	as	well	as	abiotic	heterogeneity;	Tahvanainen	&	Root,	1972;	
Root,	 1973;	 Barbosa	 et	al.,	 2009;	 Sardans	 et	al.,	 2011;	 Rivas-	Ubach	
et	al.,	2014)	or	to	genetic	variation	within	the	species.	Proponents	of	
the	latter	explanation	cite	observations	used	to	argue	for	the	role	of	
chemodiversity	 in	ecological	 function	and	heritability;	namely,	 these	
authors	note	that	congruent	patterns	of	genetic	diversity	and	chemo-
diversity	are	often	inversely	related	to	herbivory	or	infection	levels	(re-
viewed	in	Moore	et	al.,	2014;	Raguso	et	al.,	2015).	As	an	example,	one	
study	of	Smallanthus macroscyphus	(Asteraceae)	reported	less	sesquit-
erpene	 lactone	diversity	 (herbivory	deterrent)	 in	populations	further	
away	from	the	equator,	which	was	explained	as	a	result	of	selection	for	
lower	toxicity	due	to	fewer	herbivore–plant	 interactions	 in	areas	far	
from	the	equator	(Aráoz,	Mercado,	Grau,	&	Catalán,	2016;	Salazar	&	
Marquis,	2012).	This	variation	of	sesquiterpene	lactone	diversity	in	the	
species	may	well	have	a	genetic	basis,	which	has	not	been	investigated.	
In C. florida,	a	subset	of	the	species	distribution	occurs	from	the	south-
ern	Appalachians	to	southeastern	Coastal	Plains	where	an	elevational-	
temperature	gradient	spans	eastward	through	the	Piedmont,	and	we	
have	 found	a	decreasing	 trend	of	chemodiversity	and	genetic	diver-
sity	in	subpopulations	more	embedded	in	the	Appalachian	Mountains	
(Figure	2d,f,g).	While	 lower	 temperatures	may	possibly	be	 related	 to	
lower	 secondary	 plant	metabolism	of	 trees	 in	 the	mountains,	 lower	
chemodiversity	 levels	 in	 mountain	 populations	 may	 be	 a	 result	 of	
lower	genetic	variation	or	a	consequence	of	the	disease	infection,	as	
mountain	populations	are	in	general	less	healthy.	While	diseased	plants	
may	show	deficiencies	 in	metabolism	due	to	necrosis,	our	standard-
ized	method	 for	 extracting	 visibly	 unaffected	 tissue	 from	 both	 dis-
eased	and	healthy	plants	makes	the	infection	scenario	less	likely.	The	
less	healthy	plants	may	possess	genotypes	that	mediate	metabolism	of	
biosynthetic	pathways	in	ways	contributing	to	 less	constitutively	ex-
pressed	products—increasing	plant	 susceptibility	 to	 initial	 infections.	
Higher	genetic	diversity	 in	certain	 individuals	 (e.g.,	 less	homozygous	
genotypes;	 Figure	S7)	 or	 subpopulations	 (e.g.,	 higher	 rarefied-	allelic	
richness;	Figure	2d)	can	confer	a	greater	range	of	gene	products	(e.g.,	
secondary	compound	precursors)	and	increase	host	ability	to	respond	
more	readily	to	any	general	infection	(Firn	&	Jones,	2000).

On	 the	other	hand,	herbivory	and	 infection	on	plants	can	also	
induce	greater	secondary	compound	diversity	or	induce	dominance	

F IGURE  8 Top	random	forest	(RF)	results	of	biomarkers	
indicative	of	healthy	or	diseased	plants.	Metabolites	arranged	top	
to	bottom	based	on	ranked	importance,	and	labeled	metabolites	
right	of	solid	black	line	on	plot	were	considered	for	biomarker	
selection.	Panel	right	of	support	index	panel	for	biomarker	tests	
indicates	relative	expression	of	each	compound	in	healthy	versus	
diseased	plants	with	black	shades	representing	higher	expression	
and	white	shades	representing	lower	expression

Random Forest

Selected frequency
(Support index)
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of	 certain	 compounds	 (Mithöfer	 &	 Boland,	 2012;	 Thoss	 &	 Byers,	
2006).	While	our	study	could	not	discriminate	between	constitutive	
and	 induced	chemical	diversity,	our	analysis	of	chemodiversity	de-
rived	from	a	specific	set	of	biomarkers	did	show	that	healthy	plants	
tended	to	have	greater	unevenness	of	chemical	expression	than	dis-
eased	plants	 (Figure	7).	The	unevenness	seemed	 largely	attributed	
to	 variation	 in	 expression	 of	 certain	 biomarkers	 (i.e.,	 M435T576).	
In C. florida,	 candidate	SNPs	 like	B982_75	and	B440_76	as	well	as	
biomarker	 M435T576	 in	 the	 iridoid	 glucoside	 network	 (Figure	6)	
may	represent	examples	of	candidate	genes	governing	variation	 in	
accumulation	and	degree	of	inducible	expression	for	certain	defense	
compounds.

5  | CONCLUSIONS

Our	 study	 demonstrates	 untargeted	metabolite	 profiling	 is	 a	 use-
ful	 approach	 for	 understanding	 biodiversity	 in	 a	 new	 dimension.	
Secondary	metabolites	preserved	 in	dried	 leaves	of	C. florida	 from	
natural	 populations	 provided	 data	 for	 evaluating	 chemodiversity	
and	 identifying	potential	disease	biomarkers.	We	found	congruent	
patterns	 of	 chemical	 and	 genetic	 variation	 and	 identified	 several	
biomarkers	indicative	of	disease	and	health	after	accounting	for	the	
effects	of	environment.	From	those	results,	a	select	group	of	candi-
date	SNPs	and	metabolites	(i.e.,	iridoid	glucosides)	of	clear	ecological	
importance	was	 identified	 to	guide	 future	 study.	Additional	 inves-
tigation	 of	 chemical	 diversity	 with	 increased	 sampling	 across	 the	
species	range	may	provide	more	details	on	the	relationship	among	
genetics,	metabolites,	and	dogwood	anthracnose	in	C. florida,	which	
in	turn	may	shed	light	on	forest	diseases	in	general.

ACKNOWLEDG MENTS

We	 thank	 North	 Carolina	 State	 University’s	 Plant	 and	 Microbial	
Biology	 Department	 for	 supporting	 the	 sequencing	 of	 flowering	
dogwood	samples.	For	aid	in	collecting	mountain	samples,	we	also	
acknowledge	 assistance	 from	 the	North	Carolina	 Forest	 Service—
Health	 Branch.	 Renee	 Strauch	 aided	 in	 processing	metabolite	 ex-
tractions	during	her	time	in	Dr.	Xu	(Sirius)	Li’s	laboratory.	The	study	
is	benefited	from	NSF	grant	DEB-	1442161.

CONFLIC T OF INTERE S T

None	declared.

AUTHOR CONTRIBUTIONS

With	the	support	of	Qiuyun	Xiang	and	Xu	Li,	Andrew	Pais	conducted	
all	 collections,	 experiments,	 and	 analyses	 under	 the	 advice	 of	 the	
co-	authors	and	members	of	his	dissertation	committee.	Xu	Li	super-
vised	 the	metabolite	 profiling	 experiments	 and	data	 analysis.	 This	
manuscript	was	drafted	by	Andrew	as	part	of	his	PhD	Dissertation	
and	was	edited	by	other	co-	authors.

DATA ACCE SSIBILIT Y

Uploaded	 datasets	 for	 R	 analyses	 available	 on	Dryad	 (https://doi.
org/10.5061/dryad.15066),	 including	 (1)	 untransformed	 matrix	 of	
all	 2,785	 chemical	 features	 exported	 from	 XCMS;	 (2)	 matrices	 of	
all	environmental-	functional-	genetic	 trait	data	used	 in	multivariate	
models;	 and	 (3)	Appendix	S1	 containing	 summary	of	 all	 significant	
GWA	 results	 with	 a	 Bonferroni	 correction	 of	 0.05	 (Table	S3)	 and	
list	 of	 compounds	 found	 in	 Knapsack	 and	Metcyc	 databases	 that	
are	similar	in	mass	(delta	ppm	<	10)	to	notable	chemical	features	re-
ported	in	this	manuscript	(Table	S4).

ORCID

Andrew L. Pais  http://orcid.org/0000-0001-6535-0990 

R E FE R E N C E S

Ali,	M.	 S.,	 Uzair,	 S.	 S.,	 Krebs,	 H.	 C.,	 Jahangir,	M.,	 &	Habermehl,	 G.	 G.	
(2000).	Eleganoside-	A,	B	and	C	from	Pseudocalymma	elegans,	a	na-
tive	of	Brazil.	Phytochemistry,	55,	359–362.

Alonso,	A.,	Marsal,	S.,	&	Julià,	A.	(2015).	Analytical	methods	in	untargeted	
metabolomics:	State	of	the	art	in	2015.	Frontiers in Bioengineering and 
Biotechnology,	3,	23.

Anderson,	J.	T.,	Willis,	J.	H.,	&	Mitchell-Olds,	T.	(2011).	Evolutionary	ge-
netics	of	plant	adaptation.	Trends in Genetics,	27,	258–266.	https://
doi.org/10.1016/j.tig.2011.04.001

Aráoz,	 M.	 V.	 C.,	 Mercado,	 M.	 I.,	 Grau,	 A.,	 &	 Catalán,	 C.	 A.	 (2016).	
Intraspecific	 variation	 of	 sesquiterpene	 lactones	 associated	 to	
a	 latitudinal	 gradient	 in	 Smallanthus macroscyphus	 (Heliantheae:	
Asteraceae).	Chemoecology,	26(4),	143–151.	https://doi.org/10.1007/
s00049-016-0213-1

Bac-Molenaar,	 J.	 A.,	 Fradin,	 E.	 F.,	 Rienstra,	 J.	 A.,	 Vreugdenhil,	 D.,	 &	
Keurentjes,	 J.	 J.	 (2015).	 GWA	 mapping	 of	 anthocyanin	 accumu-
lation	 reveals	 balancing	 selection	 of	MYB90	 in	Arabidopsis thali-
ana. PLoS One,	 10,	 e0143212.	 https://doi.org/10.1371/journal.
pone.0143212

Bailleul,	F.,	Leveau,	A.	M.,	&	Durand,	M.	(1981).	Nouvel	iridoide	des	fruits	
de Lonicera alpigena. Journal of Natural Products,	 44(5),	 573–575.	
https://doi.org/10.1021/np50017a011

Barbosa,	 P.,	 Hines,	 J.,	 Kaplan,	 I.,	 Martinson,	 H.,	 Szczepaniec,	 A.,	 &	
Szendrei,	Z.	 (2009).	Associational	 resistance	and	associational	 sus-
ceptibility:	Having	right	or	wrong	neighbors.	Annual Review of Ecology, 
Evolution, and Systematics,	 40,	 1–20.	 https://doi.org/10.1146/an-
nurev.ecolsys.110308.120242

Bartel,	J.,	Krumsiek,	J.,	&	Theis,	F.	J.	(2013).	Statistical	methods	for	the	
analysis	of	high-	throughput	metabolomics	data.	Computational and 
Structural Biotechnology Journal,	4,	1–9.

Bartsch,	M.,	Bednarek,	P.,	Vivancos,	P.	D.,	Schneider,	B.,	von	Roepenack-
Lahaye,	 E.,	 Foyer,	 C.	 H.,	 …	 Parker,	 J.	 E.	 (2010).	 Accumulation	 of	
isochorismate-	derived	 2,3-	dihydroxybenzoic	 3-	O-	beta-	D-	xyloside	
in	 arabidopsis	 resistance	 to	 pathogens	 and	 ageing	 of	 leaves.	 The 
Journal of Biological Chemistry,	 285,	 25654–25665.	 https://doi.
org/10.1074/jbc.M109.092569

Baird,	J.	W.	(1980).	The	selection	and	use	of	fruit	by	birds	in	an	eastern	
forest.	The Wilson Bulletin,	92,	63–73.

Benard,	C.,	Bernillon,	 S.,	Biais,	B.,	Osorio,	 S.,	Maucourt,	M.,	Ballias,	P.,	
…	 Moing,	 A.	 (2015).	 Metabolomic	 profiling	 in	 tomato	 reveals	 diel	
compositional	 changes	 in	 fruit	 affected	 by	 source-	sink	 relation-
ships.	 Journal of Experimental Botany,	 66,	 3391–3404.	 https://doi.
org/10.1093/jxb/erv151

https://doi.org/10.5061/dryad.15066
https://doi.org/10.5061/dryad.15066
http://orcid.org/0000-0001-6535-0990
http://orcid.org/0000-0001-6535-0990
https://doi.org/10.1016/j.tig.2011.04.001
https://doi.org/10.1016/j.tig.2011.04.001
https://doi.org/10.1007/s00049-016-0213-1
https://doi.org/10.1007/s00049-016-0213-1
https://doi.org/10.1371/journal.pone.0143212
https://doi.org/10.1371/journal.pone.0143212
https://doi.org/10.1021/np50017a011
https://doi.org/10.1146/annurev.ecolsys.110308.120242
https://doi.org/10.1146/annurev.ecolsys.110308.120242
https://doi.org/10.1074/jbc.M109.092569
https://doi.org/10.1074/jbc.M109.092569
https://doi.org/10.1093/jxb/erv151
https://doi.org/10.1093/jxb/erv151


     |  5633PAIS et Al.

Berger,	W.	H.,	&	Parker,	F.	L.	(1970).	Diversity	of	planktonic	foraminifera	
in	 deep-	sea	 sediments.	 Science (New York, N.Y.),	 168,	 1345–1347.	
https://doi.org/10.1126/science.168.3937.1345

Blair,	R.	M.	 (1982).	Growth	and	nonstructural	carbohydrate	content	of	
southern	browse	species	as	 influenced	by	 light	 intensity.	Journal of 
Range Management,	35,	756–760.	https://doi.org/10.2307/3898258

Borer,	C.	H.,	Sapp,	S.	G.,	&	Hutchinson,	L.	H.	(2013).	Flowering	dogwood	
(Cornus florida	 L.)	 as	mediator	of	 calcium	cycling:	New	 insights	 are	
revealed	by	analysis	of	foliar	partitioning.	Trees,	27,	841–849.	https://
doi.org/10.1007/s00468-012-0838-9

Buchalski,	M.	R.,	Sacks,	B.	N.,	Gille,	D.	A.,	Penedo,	M.	C.,	Ernest,	H.	B.,	
Morrison,	S.	A.,	&	Boyce,	W.	M.	(2016).	Phylogeographic	and	popu-
lation	genetic	structure	of	bighorn	sheep	(Ovis canadensis)	in	North	
American	 deserts.	 Journal of Mammalogy,	97(3),	 823–838.	 https://
doi.org/10.1093/jmammal/gyw011

Bustos-Segura,	C.,	Poelman,	E.	H.,	Reichelt,	M.,	Gershenzon,	J.,	&	Gols,	
R.	(2017).	Intraspecific	chemical	diversity	among	neighbouring	plants	
correlates	 positively	 with	 plant	 size	 and	 herbivore	 load	 but	 nega-
tively	with	herbivore	damage.	Ecology Letters,	20,	87–97.	https://doi.
org/10.1111/ele.12713

Cahill,	A.	E.,	&	Levinton,	J.	S.	(2016).	Genetic	differentiation	and	reduced	
genetic	diversity	at	the	northern	range	edge	of	two	species	with	dif-
ferent	dispersal	modes.	Molecular Ecology,	25,	515–526.	https://doi.
org/10.1111/mec.13497

Calcagno,	 V.	 (2013).	 glmulti: Model selection and multimodel inference 
made easy.	R	package	version	1.

Caplan,	J.,	Padmanabhan,	M.,	&	Dinesh-Kumar,	S.	P.	(2008).	Plant	NB-	LRR	
immune	 receptors:	 From	 recognition	 to	 transcriptional	 reprogram-
ming.	 Cell Host & Microbe,	 3,	 126–135.	 https://doi.org/10.1016/j.
chom.2008.02.010

Caspi,	R.,	Altman,	T.,	Billington,	R.,	Dreher,	K.,	Foerster,	H.,	Fulcher,	C.	
A.,	…	Karp,	P.	D.	 (2014).	The	MetaCyc	database	of	metabolic	path-
ways	and	enzymes	and	 the	BioCyc	collection	of	Pathway/Genome	
Databases.	 Nucleic Acids Research,	 42,	 D459–D471.	 https://doi.
org/10.1093/nar/gkt1103

Catchen,	J.	M.,	Amores,	A.,	Hohenlohe,	P.,	Cresko,	W.,	&	Postlethwait,	J.	
H.	(2011).	Stacks:	Building	and	genotyping	loci	de	novo	from	short-	
read	sequences.	G3: Genes – Genomes -  Genetics,	1,	171–182.	https://
doi.org/10.1534/g3.111.000240

Chang,	J.,	Xuan,	L.,	Xu,	Y.,	&	Zhang,	J.	(2001).	Seven	new	sesquiterpene	
glycosides	 from	 the	 root	 bark	 of	Dictamnus dasycarpus. Journal of 
Natural Products,	64,	935–938.	https://doi.org/10.1021/np000567t

Chellemi,	D.	O.,	&	Britton,	K.	O.	(1992).	Influence	of	canopy	microclimate	
on	incidence	and	severity	of	dogwood	anthracnose.	Canadian Journal 
of Botany,	70,	1093–1096.	https://doi.org/10.1139/b92-134

Daughtrey,	M.	L.,	Hibben,	C.	R.,	Britton,	K.	O.,	Windham,	M.	T.,	&	Redlin,	
S.	C.	(1996).	Dogwood	anthracnose:	Understanding	a	disease	new	to	
North	America.	Plant Disease,	80,	349–358.	https://doi.org/10.1094/
PD-80-0349

Dudt,	 J.	 F.,	 &	 Shure,	 D.	 J.	 (1993).	 The	 effect	 of	 anthracnose	 (Discula 
destructiva)	 infection	 on	 plant-	herbivore	 interactions	 in	 dogwood	
(Cornus florida). Oecologia,	 96,	 108–113.	 https://doi.org/10.1007/
BF00318037

Dixon,	R.	A.,	&	Paiva,	N.	L.	(1995).	Stress-	induced	phenylpropanoid	metabo-
lism.	The Plant Cell,	7,	1085–1097.	https://doi.org/10.1105/tpc.7.7.1085

Eckert,	A.	 J.,	Wegrzyn,	 J.	L.,	Cumbie,	W.	P.,	Goldfarb,	B.,	Huber,	D.	A.,	
Tolstikov,	V.,	…	Neale,	D.	B.	(2012).	Association	genetics	of	the	lob-
lolly	pine	(Pinus taeda,	Pinaceae)	metabolome.	New Phytologist,	193,	
890–902.	https://doi.org/10.1111/j.1469-8137.2011.03976.x

Ennos,	R.	A.	(2015).	Resilience	of	forests	to	pathogens:	An	evolutionary	
ecology	 perspective.	 Forestry,	 88,	 41–52.	 https://doi.org/10.1093/
forestry/cpu048

Excoffier,	L.,	Hofer,	T.,	&	Foll,	M.	(2009).	Detecting	loci	under	selection	
in	 a	 hierarchically	 structured	 population.	 Heredity,	 103,	 285–298.	
https://doi.org/10.1038/hdy.2009.74

Excoffier,	L.,	&	Lischer,	H.	E.	(2010).	Arlequin	suite	ver	3.5:	A	new	series	
of	 programs	 to	 perform	 population	 genetics	 analyses	 under	 Linux	
and	Windows.	Molecular Ecology Resources,	10,	564–567.	https://doi.
org/10.1111/j.1755-0998.2010.02847.x

Fan,	W.,	Lou,	H.	Q.,	Yang,	J.	L.,	&	Zheng,	S.	J.	(2016).	The	roles	of	STOP1-	
like	 transcription	 factors	 in	 aluminum	 and	 proton	 tolerance.	 Plant 
Signaling & Behavior,	11,	e1131371.	https://doi.org/10.1080/155923
24.2015.1131371

Firn,	R.	D.,	&	Jones,	C.	G.	 (2000).	The	evolution	of	secondary	metabo-
lism–a	unifying	model.	Molecular Microbiology,	37,	989–994.	https://
doi.org/10.1046/j.1365-2958.2000.02098.x

Foll,	M.,	&	Gaggiotti,	O.	(2008).	A	genome-	scan	method	to	identify	se-
lected	 loci	 appropriate	 for	 both	 dominant	 and	 codominant	 mark-
ers:	 A	 Bayesian	 perspective.	 Genetics,	 180,	 977–993.	 https://doi.
org/10.1534/genetics.108.092221

Fournier-Level,	A.,	Korte,	A.,	Cooper,	M.	D.,	Nordborg,	M.,	Schmitt,	J.,	&	
Wilczek,	A.	M.	(2011).	A	map	of	local	adaptation	in	Arabidopsis thali-
ana. Science,	334,	86–89.	https://doi.org/10.1126/science.1209271

Fraenkel,	G.	S.	(1959).	The	raison	d’etre	of	secondary	plant	substances.	Science,	
129,	1466–1470.	https://doi.org/10.1126/science.129.3361.1466

Frichot,	E.,	Schoville,	S.	D.,	Bouchard,	G.,	&	François,	O.	(2013).	Testing	
for	associations	between	loci	and	environmental	gradients	using	la-
tent	factor	mixed	models.	Molecular Biology and Evolution,	30,	1687–
1699.	https://doi.org/10.1093/molbev/mst063

Glassmire,	A.	E.,	Jeffrey,	C.	S.,	Forister,	M.	L.,	Parchman,	T.	L.,	Nice,	C.	C.,	
Jahner,	J.	P.,	…	Dyer,	L.	A.	(2016).	Intraspecific	phytochemical	varia-
tion	shapes	community	and	population	structure	for	specialist	cat-
erpillars.	New Phytologist,	212(1),	208–219.	https://doi.org/10.1111/
nph.14038

Gomez-Casati,	D.	F.,	Zanor,	M.	I.,	&	Busi,	M.	V.	(2013).	Metabolomics	in	
plants	and	humans:	Applications	in	the	prevention	and	diagnosis	of	
diseases.	BioMed Research International,	2013,	792527.

Goslee,	S.	C.,	&	Urban,	D.	L.	(2007).	The	ecodist	package	for	dissimilarity-	
based	analysis	of	ecological	data.	Journal of Statistical Software,	22,	
1–19.

Goudet,	J.	(2005).	Hierfstat,	a	package	for	R	to	compute	and	test	hierar-
chical	F-	statistics.	Molecular Ecology Notes,	5,	184–186.	https://doi.
org/10.1111/j.1471-8286.2004.00828.x

Gromski,	P.	S.,	Muhamadali,	H.,	Ellis,	D.	I.,	Xu,	Y.,	Correa,	E.,	Turner,	M.	
L.,	&	Goodacre,	R.	(2015).	A	tutorial	review:	Metabolomics	and	par-
tial	least	squares-	discriminant	analysis–a	marriage	of	convenience	or	
a	shotgun	wedding.	Analytica Chimica Acta,	879,	10–23.	https://doi.
org/10.1016/j.aca.2015.02.012

Grünwald,	 N.	 J.,	 &	 Goss,	 E.	 M.	 (2011).	 Evolution	 and	 population	 ge-
netics	 of	 exotic	 and	 re-	emerging	 pathogens:	 Novel	 tools	 and	 ap-
proaches.	Annual Review of Phytopathology,	49,	249–267.	https://doi.
org/10.1146/annurev-phyto-072910-095246

Hadziabdic,	D.,	Wang,	X.,	Wadl,	P.	A.,	Rinehart,	T.	A.,	Ownley,	B.	H.,	&	
Trigiano,	R.	N.	(2012).	Genetic	diversity	of	flowering	dogwood	in	the	
Great	Smoky	Mountains	National	Park.	Tree Genetics & Genomes,	8,	
855–871.	https://doi.org/10.1007/s11295-012-0471-1

Hammer,	 Ø.,	 Harper,	 D.,	 &	 Ryan,	 P.	 (2001).	 PAST:	 Paleontological	
Statistics	 software	 package	 for	 education	 and	 data	 analysis.	
Palaeontolia Electronica,	4,	1–9.

Harborne,	J.	B.,	&	Turner,	B.	L.	 (1984).	Plant chemosystematics.	London,	
UK:	Academic	Press.

He,	Y.,	Peng,	J.,	Hamann,	M.	T.,	&	West,	L.	M.	(2014).	An	iridoid	gluco-
side	and	the	related	aglycones	from	Cornus florida. Journal of Natural 
Products,	77,	2138–2143.	https://doi.org/10.1021/np5002362

Hiers,	 J.	K.,	&	Evans,	 J.	 P.	 (1997).	 Effects	 of	 anthracnose	on	dogwood	
mortality	and	forest	composition	of	the	Cumberland	Plateau	(USA).	
Conservation Biology,	11,	1430–1435.

Hilker,	 M.	 (2014).	 New	 synthesis:	 Parallels	 between	 biodiversity	 and	
chemodiversity.	 Journal of Chemical Ecology,	 40,	 225.	 https://doi.
org/10.1007/s10886-014-0402-8

https://doi.org/10.1126/science.168.3937.1345
https://doi.org/10.2307/3898258
https://doi.org/10.1007/s00468-012-0838-9
https://doi.org/10.1007/s00468-012-0838-9
https://doi.org/10.1093/jmammal/gyw011
https://doi.org/10.1093/jmammal/gyw011
https://doi.org/10.1111/ele.12713
https://doi.org/10.1111/ele.12713
https://doi.org/10.1111/mec.13497
https://doi.org/10.1111/mec.13497
https://doi.org/10.1016/j.chom.2008.02.010
https://doi.org/10.1016/j.chom.2008.02.010
https://doi.org/10.1093/nar/gkt1103
https://doi.org/10.1093/nar/gkt1103
https://doi.org/10.1534/g3.111.000240
https://doi.org/10.1534/g3.111.000240
https://doi.org/10.1021/np000567t
https://doi.org/10.1139/b92-134
https://doi.org/10.1094/PD-80-0349
https://doi.org/10.1094/PD-80-0349
https://doi.org/10.1007/BF00318037
https://doi.org/10.1007/BF00318037
https://doi.org/10.1105/tpc.7.7.1085
https://doi.org/10.1111/j.1469-8137.2011.03976.x
https://doi.org/10.1093/forestry/cpu048
https://doi.org/10.1093/forestry/cpu048
https://doi.org/10.1038/hdy.2009.74
https://doi.org/10.1111/j.1755-0998.2010.02847.x
https://doi.org/10.1111/j.1755-0998.2010.02847.x
https://doi.org/10.1080/15592324.2015.1131371
https://doi.org/10.1080/15592324.2015.1131371
https://doi.org/10.1046/j.1365-2958.2000.02098.x
https://doi.org/10.1046/j.1365-2958.2000.02098.x
https://doi.org/10.1534/genetics.108.092221
https://doi.org/10.1534/genetics.108.092221
https://doi.org/10.1126/science.1209271
https://doi.org/10.1126/science.129.3361.1466
https://doi.org/10.1093/molbev/mst063
https://doi.org/10.1111/nph.14038
https://doi.org/10.1111/nph.14038
https://doi.org/10.1111/j.1471-8286.2004.00828.x
https://doi.org/10.1111/j.1471-8286.2004.00828.x
https://doi.org/10.1016/j.aca.2015.02.012
https://doi.org/10.1016/j.aca.2015.02.012
https://doi.org/10.1146/annurev-phyto-072910-095246
https://doi.org/10.1146/annurev-phyto-072910-095246
https://doi.org/10.1007/s11295-012-0471-1
https://doi.org/10.1021/np5002362
https://doi.org/10.1007/s10886-014-0402-8
https://doi.org/10.1007/s10886-014-0402-8


5634  |     PAIS et Al.

Hill,	 M.	 O.	 (1973).	 Diversity	 and	 evenness:	 A	 unifying	 notation	 and	
its	 consequences.	 Ecology,	54,	 427–432.	 https://doi.org/10.2307/ 
1934352

Holzmueller,	 E.,	 Jose,	 S.,	 Jenkins,	 M.,	 Camp,	 A.,	 &	 Long,	 A.	 (2006).	
Dogwood	anthracnose	in	eastern	hardwood	forests:	What	is	known	
and	what	can	be	done?	Journal of Forestry,	104,	21–26.

Houshyani,	B.,	Kabouw,	P.,	Muth,	D.,	de	Vos,	R.	C.,	Bino,	R.	J.,	&	Bouwmeester,	
H.	J.	(2012).	Characterization	of	the	natural	variation	in	Arabidopsis thali-
ana	metabolome	by	the	analysis	of	metabolic	distance.	Metabolomics,	8,	
131–145.	https://doi.org/10.1007/s11306-011-0375-3

Hughes,	A.	R.,	Inouye,	B.	D.,	Johnson,	M.	T.,	Underwood,	N.,	&	Vellend,	M.	
(2008).	Ecological	consequences	of	genetic	diversity.	Ecology Letters,	
11,	609–623.	https://doi.org/10.1111/j.1461-0248.2008.01179.x

Hurlbert,	 S.	H.	 (1971).	The	nonconcept	of	 species	diversity:	A	critique	
and	 alternative	 parameters.	 Ecology,	 52,	 577–586.	 https://doi.
org/10.2307/1934145

Jenkins,	M.	A.,	&	White,	P.	S.	(2002).	Cornus florida	L.	mortality	and	un-
derstory	 composition	changes	 in	western	Great	Smoky	Mountains	
National	 Park.	 Journal of the Torrey Botanical Society,	 129(3),	 194–
206.	https://doi.org/10.2307/3088770

Jensen,	 J.	D.,	 Foll,	M.,	 &	Bernatchez,	 L.	 (2016).	 The	 past,	 present	 and	
future	 of	 genomic	 scans	 for	 selection.	Molecular Ecology,	 25,	 1–4.	
https://doi.org/10.1111/mec.13493

Johnson,	 M.	 T.,	 Agrawal,	 A.	 A.,	 Maron,	 J.	 L.,	 &	 Salminen,	 J.	 (2009).	
Heritability,	 covariation	 and	 natural	 selection	 on	24	 traits	 of	 com-
mon	 evening	 primrose	 (Oenothera biennis)	 from	 a	 field	 experi-
ment.	 Journal of Evolutionary Biology,	 22,	 1295–1307.	 https://doi.
org/10.1111/j.1420-9101.2009.01747.x

Jombart,	 T.	 (2008).	 adegenet:	 A	R	 package	 for	 the	multivariate	 analy-
sis	 of	 genetic	 markers.	 Bioinformatics,	 24,	 1403–1405.	 https://doi.
org/10.1093/bioinformatics/btn129

Jombart,	T.,	Devillard,	S.,	&	Balloux,	F.	 (2010).	Discriminant	analysis	of	
principal	components:	A	new	method	for	the	analysis	of	genetically	
structured	populations.	BMC Genetics,	11,	1.

Jones,	 C.	 G.,	 Firn,	 R.	 D.,	 &	 Malcolm,	 S.	 (1991).	 On	 the	 evolution	 of	
plant	 secondary	 chemical	 diversity	 [and	 discussion].	 Philosophical 
Transactions of the Royal Society of London B: Biological Sciences,	333,	
273–280.	https://doi.org/10.1098/rstb.1991.0077	

Jones,	W.	E.,	Smith,	W.	D.,	&	Twardus,	D.	B.	(2012).	Tracking	population	
loss	in	Cornus	florida	since	discovery	of	Discula	destructiva,	causal	
agent	of	dogwood	anthracnose,	in	eastern	North	America.	In:	K.	M.	
Potter	&	B.	L.	Conkling	(Eds.),	Forest health monitoring: 2009 national 
technical report.Gen.Tech.Rep.SRS-167	 (pp.	 191–197).	 Asheville,	 NC:	
US	 Department	 of	 Agriculture	 Forest	 Service,	 Southern	 Research	
Station.

Jordan,	 R.	 (2010).	 State	 Tree	 and	 State	 Flowers.	 The	 United	 States	
National	Arboretum.	Web.	Retrieved	7	June	2016	from	http://www.
usna.usda.gov/Gardens/collections/statetreeflower.html.

Kabouw,	P.,	Biere,	A.,	van	der	Putten,	Wim	H.,	&	van	Dam,	N.	M.	(2009).	
Intra-	specific	 differences	 in	 root	 and	 shoot	 glucosinolate	 profiles	
among	 white	 cabbage	 (Brassica oleracea	 var.	 capitata)	 cultivars.	
Journal of Agricultural and Food Chemistry,	58,	411–417.

Kampranis,	S.	C.,	Ioannidis,	D.,	Purvis,	A.,	Mahrez,	W.,	Ninga,	E.,	Katerelos,	
N.	A.,	…	Johnson,	C.	B.	(2007).	Rational	conversion	of	substrate	and	
product	specificity	in	a	Salvia	monoterpene	synthase:	Structural	in-
sights	into	the	evolution	of	terpene	synthase	function.	The Plant Cell,	
19,	1994–2005.	https://doi.org/10.1105/tpc.106.047779

Kang,	H.	M.,	Sul,	J.	H.,	Service,	S.	K.,	Zaitlen,	N.	A.,	Kong,	S.	Y.,	Freimer,	N.	
B.,	…	Eskin,	E.	(2010).	Variance	component	model	to	account	for	sam-
ple	 structure	 in	 genome-	wide	 association	 studies.	Nature Genetics,	
42,	348–354.	https://doi.org/10.1038/ng.548

Keller,	M.	C.,	Visscher,	P.	M.,	&	Goddard,	M.	E.	(2011).	Quantification	of	
inbreeding	due	to	distant	ancestors	and	its	detection	using	dense	sin-
gle	nucleotide	polymorphism	data.	Genetics,	189,	237–249.	https://
doi.org/10.1534/genetics.111.130922

Kellerman,	A.	M.,	Dittmar,	T.,	Kothawala,	D.	N.,	&	Tranvik,	L.	 J.	 (2014).	
Chemodiversity	 of	 dissolved	 organic	matter	 in	 lakes	 driven	 by	 cli-
mate	and	hydrology.	Nature Communications,	5,	3804.

Krumsiek,	 J.,	 Suhre,	 K.,	 Evans,	 A.	M.,	Mitchell,	 M.	W.,	Mohney,	 R.	 P.,	
Milburn,	M.	V.,	…	Kastenmüller,	G.	 (2012).	Mining	 the	unknown:	A	
systems	 approach	 to	 metabolite	 identification	 combining	 genetic	
and	metabolic	information.	PLoS Genetics,	8,	e1003005.	https://doi.
org/10.1371/journal.pgen.1003005

Krumsiek,	J.,	Suhre,	K.,	Illig,	T.,	Adamski,	J.,	&	Theis,	F.	J.	(2011).	Gaussian	
graphical	 modeling	 reconstructs	 pathway	 reactions	 from	 high-	
throughput	metabolomics	data.	BMC Systems Biology,	5,	1.

Legendre,	P.,	&	Fortin,	M.	J.	(1989).	Spatial	pattern	and	ecological	anal-
ysis.	Vegetatio,	80,	107–138.	https://doi.org/10.1007/BF00048036

Li,	 Y.,	Huang,	Y.,	Bergelson,	 J.,	Nordborg,	M.,	&	Borevitz,	 J.	O.	 (2010).	
Association	 mapping	 of	 local	 climate-	sensitive	 quantitative	 trait	
loci in Arabidopsis thaliana. Proceedings of the National Academy of 
Sciences of the United States of America,	107,	21199–21204.	https://
doi.org/10.1073/pnas.1007431107

Li,	X.,	Svedin,	E.,	Mo,	H.,	Atwell,	S.,	Dilkes,	B.	P.,	&	Chapple,	C.	 (2014).	
Exploiting	 natural	 variation	 of	 secondary	 metabolism	 identifies	 a	
gene	 controlling	 the	 glycosylation	 diversity	 of	 dihydroxybenzoic	
acids	 in	Arabidopsis thaliana. Genetics,	198,	 1267–1276.	https://doi.
org/10.1534/genetics.114.168690

Linzey,	D.,	&	Brecht,	C.	(2003).	American	beavers	(Castor	canadensis)—
biodiversity	of	Great	Smoky	Mountains	National	Park.	Discover	Life	
in	America,	Gatlinburg,	TN	37738.

Lovenshimer,	J.,	&	Frick-Ruppert,	J.	(2013).	Nutritional	values	of	six	native	
and	introduced	fall-	ripening	fruit	species	in	western	North	Carolina.	
BIOS,	84,	218–226.	https://doi.org/10.1893/0005-3155-84.4.218

Marak,	H.	B.,	Biere,	A.,	&	Van	Damme,	J.	M.	(2002).	Systemic,	genotype-	
specific	 induction	 of	 two	 herbivore-	deterrent	 iridoid	 glycosides	 in	
Plantago lanceolata	 L.	 in	 response	 to	 fungal	 infection	 by	Diaporthe 
adunca	 (Rob.)	Niessel.	 Journal of Chemical Ecology,	28,	 2429–2448.	
https://doi.org/10.1023/A:1021475800765

McCune,	B.,	Grace,	J.	B.,	&	Urban,	D.	L.	(2002).	Analysis of ecological com-
munities.	Gleneden	Beach,	OR:	MjM	software	design.

McEwan,	R.,	Muller,	R.,	Arthur,	M.,	&	Housman,	H.	(2000).	Temporal	and	
ecological	patterns	of	flowering	dogwood	mortality	in	the	mixed	me-
sophytic	 forest	of	eastern	Kentucky.	Journal of the Torrey Botanical 
Society,	127,	221–229.	https://doi.org/10.2307/3088759

Meijón,	M.,	Feito,	I.,	Oravec,	M.,	Delatorre,	C.,	Weckwerth,	W.,	Majada,	
J.,	&	Valledor,	L.	(2016).	Exploring	natural	variation	of	Pinus	pinaster	
Aiton	using	metabolomics:	Is	it	possible	to	identify	the	region	of	ori-
gin	of	a	pine	from	its	metabolites?	Molecular Ecology,	25(4),	959–976.	
https://doi.org/10.1111/mec.13525

Meng,	 J.,	 Lu,	H.,	 Li,	H.,	 Yang,	 L.,	&	Tan,	R.	 (1999).	A	 new	antibacterial	
sesquiterpene	 glycoside	 and	 other	 bioactive	 compounds	 from	
Biebersteinia heterostemon. Spectroscopy Letters,	 32,	 1005–1012.	
https://doi.org/10.1080/00387019909350045

Mielke,	M.,	&	Langdon,	K.	(1986).	Dogwood	anthracnose	fungus	threat-
ens	Catoctin	Mountain	Park.	Park Science,	6,	6–8.

Miller,	S.,	Masuya,	H.,	Zhang,	J.,	Walsh,	E.,	&	Zhang,	N.	(2016).	Real-	time	
PCR	 detection	 of	 dogwood	 anthracnose	 fungus	 in	 historical	 her-
barium	specimens	 from	Asia.	PLoS One,	11,	 e0154030.	https://doi.
org/10.1371/journal.pone.0154030

Mithöfer,	 A.,	 &	 Boland,	 W.	 (2012).	 Plant	 defense	 against	 herbivores:	
Chemical	 aspects.	 Annual Review of Plant Biology,	 63,	 431–450.	
https://doi.org/10.1146/annurev-arplant-042110-103854

Moore,	B.	D.,	Andrew,	R.	L.,	Külheim,	C.,	&	Foley,	W.	J.	(2014).	Explaining	
intraspecific	diversity	in	plant	secondary	metabolites	in	an	ecologi-
cal	context.	New Phytologist,	201,	733–750.	https://doi.org/10.1111/
nph.12526

Morris,	 E.	 K.,	 Caruso,	 T.,	 Buscot,	 F.,	 Fischer,	 M.,	 Hancock,	 C.,	 Maier,	
T.	 S.,	 …	 Rillig,	 M.	 C.	 (2014).	 Choosing	 and	 using	 diversity	 indices:	
Insights	 for	 ecological	 applications	 from	 the	 German	 Biodiversity	

https://doi.org/10.2307/1934352
https://doi.org/10.2307/1934352
https://doi.org/10.1007/s11306-011-0375-3
https://doi.org/10.1111/j.1461-0248.2008.01179.x
https://doi.org/10.2307/1934145
https://doi.org/10.2307/1934145
https://doi.org/10.2307/3088770
https://doi.org/10.1111/mec.13493
https://doi.org/10.1111/j.1420-9101.2009.01747.x
https://doi.org/10.1111/j.1420-9101.2009.01747.x
https://doi.org/10.1093/bioinformatics/btn129
https://doi.org/10.1093/bioinformatics/btn129
https://doi.org/10.1098/rstb.1991.0077
http://www.usna.usda.gov/Gardens/collections/statetreeflower.html
http://www.usna.usda.gov/Gardens/collections/statetreeflower.html
https://doi.org/10.1105/tpc.106.047779
https://doi.org/10.1038/ng.548
https://doi.org/10.1534/genetics.111.130922
https://doi.org/10.1534/genetics.111.130922
https://doi.org/10.1371/journal.pgen.1003005
https://doi.org/10.1371/journal.pgen.1003005
https://doi.org/10.1007/BF00048036
https://doi.org/10.1073/pnas.1007431107
https://doi.org/10.1073/pnas.1007431107
https://doi.org/10.1534/genetics.114.168690
https://doi.org/10.1534/genetics.114.168690
https://doi.org/10.1893/0005-3155-84.4.218
https://doi.org/10.1023/A:1021475800765
https://doi.org/10.2307/3088759
https://doi.org/10.1111/mec.13525
https://doi.org/10.1080/00387019909350045
https://doi.org/10.1371/journal.pone.0154030
https://doi.org/10.1371/journal.pone.0154030
https://doi.org/10.1146/annurev-arplant-042110-103854
https://doi.org/10.1111/nph.12526
https://doi.org/10.1111/nph.12526


     |  5635PAIS et Al.

Exploratories.	 Ecology and Evolution,	 4,	 3514–3524.	 https://doi.
org/10.1002/ece3.1155

NASS	 USDA	 (2007).	 Census of agriculture.	 Washington,	 DC:	 US	
Department	of	Agriculture,	National	Agricultural	Statistics	Service.

Ostertag,	M.,	Stammler,	J.,	Douchkov,	D.,	Eichmann,	R.,	&	Hückelhoven,	
R.	 (2013).	 The	 conserved	 oligomeric	 Golgi	 complex	 is	 involved	
in	 penetration	 resistance	 of	 barley	 to	 the	 barley	 powdery	 mil-
dew	 fungus.	 Molecular Plant Pathology,	 14,	 230–240.	 https://doi.
org/10.1111/j.1364-3703.2012.00846.x

Ouborg,	N.,	Biere,	A.,	&	Mudde,	C.	(2000).	Inbreeding	effects	on	resis-
tance	 and	 transmission-	related	 traits	 in	 the	 Silene-	Microbotryum	
pathosystem.	Ecology,	81,	520–531.

Pais,	A.	 L.,	Whetten,	R.	W.,	&	Xiang,	Q.	 J.	 (2016).	Ecological	genomics	
of	local	adaptation	in	Cornus florida	L.	by	genotyping	by	sequencing.	
Ecology and Evolution,	7,	441–465.

Peterson,	B.	K.,	Weber,	J.	N.,	Kay,	E.	H.,	Fisher,	H.	S.,	&	Hoekstra,	H.	E.	
(2012).	Double	digest	RADseq:	An	inexpensive	method	for	de	novo	
SNP	 discovery	 and	 genotyping	 in	 model	 and	 non-	model	 species.	
PLoS One,	7,	e37135.	https://doi.org/10.1371/journal.pone.0037135

Price,	A.	 L.,	 Zaitlen,	N.	A.,	 Reich,	D.,	&	Patterson,	N.	 (2010).	New	 ap-
proaches	 to	 population	 stratification	 in	 genome-	wide	 associa-
tion	 studies.	 Nature Reviews Genetics,	 11,	 459–463.	 https://doi.
org/10.1038/nrg2813

Pritchard,	J.	K.,	Stephens,	M.,	&	Donnelly,	P.	 (2000).	 Inference	of	pop-
ulation	 structure	 using	 multilocus	 genotype	 data.	 Genetics,	 155,	
945–959.

Purcell,	S.,	Neale,	B.,	Todd-Brown,	K.,	et	al.	(2007).	PLINK:	a	tool	set	for	
whole-	genome	 association	 and	 population-	based	 linkage	 analyses.	
The American Journal of Human Genetics,	 81,	 559–575.	 https://doi.
org/10.1086/519795

Raguso,	 R.	 A.,	 Agrawal,	 A.	 A.,	 Douglas,	 A.	 E.,	 Jander,	 G.,	 Kessler,	 A.,	
Poveda,	K.,	&	Thaler,	J.	S.	(2015).	The	raison	d’être	of	chemical	ecol-
ogy. Ecology,	96,	617–630.	https://doi.org/10.1890/14-1474.1

Randlkofer,	B.,	Obermaier,	E.,	Hilker,	M.,	&	Meiners,	T.	(2010).	Vegetation	
complexity—the	influence	of	plant	species	diversity	and	plant	struc-
tures	on	plant	chemical	complexity	and	arthropods.	Basic and Applied 
Ecology,	11,	383–395.	https://doi.org/10.1016/j.baae.2010.03.003

Redlin,	S.	C.	(1991).	Discula destructiva	sp.	nov.,	cause	of	dogwood	anthrac-
nose.	Mycologia,	83,	633–642.	https://doi.org/10.2307/3760218

Richards,	L.	A.,	Dyer,	L.	A.,	Forister,	M.	L.,	Smilanich,	A.	M.,	Dodson,	C.	
D.,	Leonard,	M.	D.,	&	Jeffrey,	C.	S.	 (2015).	Phytochemical	diversity	
drives	plant-	insect	community	diversity.	Proceedings of the National 
Academy of Sciences of the United States of America,	 112,	 10973–
10978.	https://doi.org/10.1073/pnas.1504977112

Riedelsheimer,	C.,	Czedik-Eysenberg,	A.,	Grieder,	C.,	Lisec,	J.,	Technow,	
F.,	Sulpice,	R.,	…	Melchinger,	A.	E.	(2012).	Genomic	and	metabolic	pre-
diction	of	complex	heterotic	traits	in	hybrid	maize.	Nature Genetics,	
44,	217–220.	https://doi.org/10.1038/ng.1033

Rivas-Ubach,	 A.,	 Gargallo-Garriga,	 A.,	 Sardans,	 J.,	 Oravec,	M.,	Mateu-
Castell,	L.,	Pérez-Trujillo,	M.,	…	Peñuelas,	J.	(2014).	Drought	enhances	
folivory	 by	 shifting	 foliar	 metabolomes	 in	Quercus ilex	 trees.	New 
Phytologist,	202,	874–885.	https://doi.org/10.1111/nph.12687

Root,	R.	B.	(1973).	Organization	of	a	plant-	arthropod	association	in	sim-
ple	 and	 diverse	 habitats:	 The	 fauna	 of	 collards	 (Brassica oleracea). 
Ecological Monographs,	43,	95–124.	https://doi.org/10.2307/1942161

Rossell,	 I.	M.,	 Rossell,	C.	R.	 Jr,	Hining,	K.	 J.,	&	Anderson,	R.	 L.	 (2001).	
Impacts	of	dogwood	anthracnose	(Discula	destructiva	Redlin)	on	the	
fruits	of	flowering	dogwood	(Cornus florida	L.):	Implications	for	wild-
life.	The American Midland Naturalist,	146,	379–387.	https://doi.org/1
0.1674/0003-0031(2001)146[0379:IODADD]2.0.CO;2

Rousset,	F.	(2008).	Genepop’007:	A	complete	re-	implementation	of	the	ge-
nepop	software	for	Windows	and	Linux.	Molecular Ecology Resources,	
8,	103–106.	https://doi.org/10.1111/j.1471-8286.2007.01931.x

Salazar,	D.,	&	Marquis,	R.	J.	(2012).	Herbivore	pressure	increases	toward	
the	 equator.	Proceedings of the National Academy of Sciences of the 

United States of America,	109,	12616–12620.	https://doi.org/10.1073/
pnas.1202907109

Sardans,	 J.,	 Peñuelas,	 J.,	 &	 Rivas-Ubach,	 A.	 (2011).	 Ecological	 me-
tabolomics:	 Overview	 of	 current	 developments	 and	 future	 chal-
lenges.	 Chemoecology,	 21,	 191–225.	 https://doi.org/10.1007/
s00049-011-0083-5

Sawaki,	 Y.,	 Iuchi,	 S.,	 Kobayashi,	 Y.,	 Kobayashi,	 Y.,	 Ikka,	 T.,	 Sakurai,	 N.,	
…	Koyama,	H.	 (2009).	STOP1	regulates	multiple	genes	that	protect	
Arabidopsis	 from	 proton	 and	 aluminum	 toxicities.	Plant Physiology,	
150,	281–294.	https://doi.org/10.1104/pp.108.134700

Schäfer,	J.,	&	Strimmer,	K.	(2005).	A	shrinkage	approach	to	large-	scale	co-
variance	matrix	estimation	and	implications	for	functional	genomics.	
Statistical Applications in Genetics and Molecular Biology,	4,	32.

Scheitz,	 C.	 J.,	 Guo,	 Y.,	 Early,	 A.	 M.,	 Harshman,	 L.	 G.,	 &	 Clark,	 A.	 G.	
(2013).	 Heritability	 and	 inter-	population	 differences	 in	 lipid	 pro-
files	 of	Drosophila melanogaster. PLoS One,	 8,	 e72726.	 https://doi.
org/10.1371/journal.pone.0072726

Shannon,	 C.	 (1948).	 A	 mathematical	 theory	 of	 communication,	 bell	
System	 technical	 Journal	 27:	 379-	423	 and	 623–656.	Mathematical 
Reviews	(MathSciNet),	MR10,	133e.

Sherald,	J.,	Stidham,	T.,	Hadidian,	J.,	&	Hoeldtke,	J.	(1996).	Progression	of	
the	dogwood	anthracnose	epidemic	and	the	status	of	flowering	dog-
wood	in	Catoctin	Mountain	Park.	Plant Disease,	80,	310–312.	https://
doi.org/10.1094/PD-80-0310

Shinbo,	 Y.,	 Nakamura,	 Y.,	 Altaf-Ul-Amin,	 M.,	 Asahi,	 H.,	 Kurokawa,	 K.,	
Arita,	M.,	…	Kanaya,	S.	(2006).	KNApSAcK:	A	comprehensive	species-	
metabolite	 relationship	database.	Plant Metabolomics,	57,	165–181.	
https://doi.org/10.1007/3-540-29782-0

Simpson,	 E.	 H.	 (1949).	 Measurement	 of	 diversity.	 Nature,	 163,	 688.	
https://doi.org/10.1038/163688a0

Singh,	P.,	&	Zimmerli,	L.	Z.	(2013).	Lectin	receptor	kinases	in	plant	innate	
immunity.	Frontiers in Plant Science,	4,	124.

Smith,	B.,	&	Wilson,	J.	B.	(1996).	A	consumer’s	guide	to	evenness	indices.	
Oikos,	76,	70–82.	https://doi.org/10.2307/3545749

Sork,	V.,	Aitken,	S.,	Dyer,	R.,	Eckert,	A.,	Legendre,	P.,	&	Neale,	D.	(2013).	
Putting	 the	 landscape	 into	 the	 genomics	 of	 trees:	 Approaches	
for	 understanding	 local	 adaptation	 and	 population	 responses	 to	
changing	climate.	Tree Genetics & Genomes,	9,	901–911.	https://doi.
org/10.1007/s11295-013-0596-x

Stekhoven,	 D.	 J.,	 &	 Bühlmann,	 P.	 (2012).	 MissForest—non-	parametric	
missing	 value	 imputation	 for	 mixed-	type	 data.	 Bioinformatics,	 28,	
112–118.	https://doi.org/10.1093/bioinformatics/btr597

Stermitz,	F.	R.,	&	Krull,	R.	E.	(1998).	Iridoid	glycosides	of	Cornus canaden-
sis:	 A	 comparison	 with	 some	 other	 Cornus	 species.	 Biochemical 
Systematics and Ecology,	 26,	 845–849.	 https://doi.org/10.1016/
S0305-1978(98)00050-7

Strauch,	R.	C.,	Svedin,	E.,	Dilkes,	B.,	Chapple,	C.,	&	Li,	X.	(2015).	Discovery	
of	a	novel	amino	acid	racemase	through	exploration	of	natural	vari-
ation	in	Arabidopsis thaliana. Proceedings of the National Academy of 
Sciences of the United States of America,	112,	11726–11731.	https://
doi.org/10.1073/pnas.1503272112

Tahvanainen,	 J.	O.,	&	Root,	R.	B.	 (1972).	The	 influence	of	vegetational	
diversity	 on	 the	 population	 ecology	 of	 a	 specialized	 herbivore,	
Phyllotreta cruciferae	 (Coleoptera:	 Chrysomelidae).	 Oecologia,	 10,	
321–346.	https://doi.org/10.1007/BF00345736

Talbot,	B.,	Chen,	T.,	Zimmerman,	S.,	Joost,	S.,	Eckert,	A.	J.,	Crow,	T.	M.,	…	
Manel,	S.	(2016).	Combining	genotype,	phenotype,	and	environment	
to	infer	potential	candidate	genes.	Journal of Heredity,	108,	esw077.	
https://doi.org/10.1093/jhered/esw077

Tautenhahn,	 R.,	 Patti,	 G.	 J.,	 Rinehart,	 D.,	 &	 Siuzdak,	 G.	 (2012).	 XCMS	
online:	 A	web-	based	 platform	 to	 process	 untargeted	metabolomic	
data.	Analytical Chemistry,	84,	5035–5039.	https://doi.org/10.1021/
ac300698c

Thoss,	 V.,	 &	 Byers,	 J.	 A.	 (2006).	 Monoterpene	 chemodiver-
sity	 of	 ponderosa	 pine	 in	 relation	 to	 herbivory	 and	 bark	

https://doi.org/10.1002/ece3.1155
https://doi.org/10.1002/ece3.1155
https://doi.org/10.1111/j.1364-3703.2012.00846.x
https://doi.org/10.1111/j.1364-3703.2012.00846.x
https://doi.org/10.1371/journal.pone.0037135
https://doi.org/10.1038/nrg2813
https://doi.org/10.1038/nrg2813
https://doi.org/10.1086/519795
https://doi.org/10.1086/519795
https://doi.org/10.1890/14-1474.1
https://doi.org/10.1016/j.baae.2010.03.003
https://doi.org/10.2307/3760218
https://doi.org/10.1073/pnas.1504977112
https://doi.org/10.1038/ng.1033
https://doi.org/10.1111/nph.12687
https://doi.org/10.2307/1942161
https://doi.org/10.1674/0003-0031(2001)146[0379:IODADD]2.0.CO;2
https://doi.org/10.1674/0003-0031(2001)146[0379:IODADD]2.0.CO;2
https://doi.org/10.1111/j.1471-8286.2007.01931.x
https://doi.org/10.1073/pnas.1202907109
https://doi.org/10.1073/pnas.1202907109
https://doi.org/10.1007/s00049-011-0083-5
https://doi.org/10.1007/s00049-011-0083-5
https://doi.org/10.1104/pp.108.134700
https://doi.org/10.1371/journal.pone.0072726
https://doi.org/10.1371/journal.pone.0072726
https://doi.org/10.1094/PD-80-0310
https://doi.org/10.1094/PD-80-0310
https://doi.org/10.1007/3-540-29782-0
https://doi.org/10.1038/163688a0
https://doi.org/10.2307/3545749
https://doi.org/10.1007/s11295-013-0596-x
https://doi.org/10.1007/s11295-013-0596-x
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1016/S0305-1978(98)00050-7
https://doi.org/10.1016/S0305-1978(98)00050-7
https://doi.org/10.1073/pnas.1503272112
https://doi.org/10.1073/pnas.1503272112
https://doi.org/10.1007/BF00345736
https://doi.org/10.1093/jhered/esw077
https://doi.org/10.1021/ac300698c
https://doi.org/10.1021/ac300698c


5636  |     PAIS et Al.

beetle	 colonization.	 Chemoecology,	 16,	 51–58.	 https://doi.
org/10.1007/s00049-005-0331-7

Wang,	Y.,	Weide,	R.,	Govers,	F.,	&	Bouwmeester,	K.	 (2015).	L-	type	 lec-
tin	receptor	kinases	in	Nicotiana benthamiana	and	tomato	and	their	
role	 in	Phytophthora	resistance.	Journal of Experimental Botany,	66,	
6731–6743.	https://doi.org/10.1093/jxb/erv379

Whitehead,	S.	R.,	Tiramani,	J.,	&	Bowers,	M.	D.	(2016).	Iridoid	glycosides	
from	 fruits	 reduce	 the	 growth	 of	 fungi	 associated	 with	 fruit	 rot.	
Journal of Plant Ecology,	 9,	 357–366.	 https://doi.org/10.1093/jpe/
rtv063

Whittaker,	R.	H.	(1972).	Evolution	and	measurement	of	species	diversity.	
Taxon,	21,	213–251.	https://doi.org/10.2307/1218190

Wilcox,	A.	J.,	Weinberg,	C.	R.,	&	Lie,	R.	T.	(1998).	Distinguishing	the	ef-
fects	of	maternal	and	offspring	genes	through	studies	of	“case-	parent	
triads”.	American Journal of Epidemiology,	148,	893–901.	https://doi.
org/10.1093/oxfordjournals.aje.a009715

Williams,	C.	E.,	&	Moriarity,	W.	J.	(1999).	Occurrence	of	flowering	dog-
wood (Cornus florida	 L.),	 and	 mortality	 by	 dogwood	 anthracnose	
(Discula	 destructiva	 Redlin),	 on	 the	 northern	 Allegheny	 Plateau.	
Journal of the Torrey Botanical Society,	 126,	 313–319.	 https://doi.
org/10.2307/2997315

Xia,	J.,	Sinelnikov,	I.	V.,	Han,	B.,	&	Wishart,	D.	S.	(2015).	MetaboAnalyst	
3.0—making	metabolomics	more	meaningful.	Nucleic Acids Research,	
43,	W251–W257.	https://doi.org/10.1093/nar/gkv380

Xu,	M.,	Wang,	D.,	Zhang,	Y.,	&	Yang,	C.	(2008).	Iridoidal	glucosides	from	
Gentiana rhodantha. Journal of Asian Natural Products Research,	10,	
491–498.	https://doi.org/10.1080/10286020801966815

Yi,	 L.,	 Dong,	N.,	 Yun,	 Y.,	 Deng,	 B.,	 Ren,	D.,	 Liu,	 S.,	 &	 Liang,	 Y.	 (2016).	
Chemometric	 methods	 in	 data	 processing	 of	 mass	 spectrometry-	
based	metabolomics:	A	review.	Analytica Chimica Acta,	914,	17–34.	
https://doi.org/10.1016/j.aca.2016.02.001

Yue,	W.,	Zhengquan,	L.,	 Lirong,	C.,	&	Xiaojie,	X.	 (2006).	Antiviral	 com-
pounds	and	one	new	iridoid	glycoside	from	Cornus officinalis. Progress 
in Natural Science,	16,	142–146.	https://doi.org/10.1080/100200706
12331343205

Zhang,	J.,	Franks,	R.	G.,	Liu,	X.,	Kang,	M.,	Keebler,	J.	E.,	Schaff,	J.	E.,	…	
Xiang,	Q.	Y.	(2013).	De	novo	sequencing,	characterization,	and	com-
parison	 of	 inflorescence	 transcriptomes	 of	 Cornus canadensis and 
C. florida	(Cornaceae).	PLoS One,	8,	e82674.	https://doi.org/10.1371/
journal.pone.0082674

SUPPORTING INFORMATION

Additional	 supporting	 information	 may	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	the	article.	

How to cite this article:	Pais	AL,	Li	X,	Xiang	Q-Y.	Discovering	
variation	of	secondary	metabolite	diversity	and	its	
relationship	with	disease	resistance	in	Cornus florida	L.	Ecol 
Evol. 2018;8:5619–5636. https://doi.org/10.1002/ece3.4090

https://doi.org/10.1007/s00049-005-0331-7
https://doi.org/10.1007/s00049-005-0331-7
https://doi.org/10.1093/jxb/erv379
https://doi.org/10.1093/jpe/rtv063
https://doi.org/10.1093/jpe/rtv063
https://doi.org/10.2307/1218190
https://doi.org/10.1093/oxfordjournals.aje.a009715
https://doi.org/10.1093/oxfordjournals.aje.a009715
https://doi.org/10.2307/2997315
https://doi.org/10.2307/2997315
https://doi.org/10.1093/nar/gkv380
https://doi.org/10.1080/10286020801966815
https://doi.org/10.1016/j.aca.2016.02.001
https://doi.org/10.1080/10020070612331343205
https://doi.org/10.1080/10020070612331343205
https://doi.org/10.1371/journal.pone.0082674
https://doi.org/10.1371/journal.pone.0082674
https://doi.org/10.1002/ece3.4090

