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seminomas and nonseminomatous GCT  (type  II) are the second 
group, which is the most common form of GCT, with an annual 
incidence of about 6.0 per 100 000. The third group is spermatocytic 
seminoma (type III), which usually affect men ≥ 40 years of age with 
an incidence of approximately 0.2 per  100 000 per year. The last two 
groups are type IV (dermoid cysts, mainly the ovary) and type V (the 
hydatidiform mole in fertile woman).

In this review, we will focus on type II GCT of the testis (i.e. testicular 
germ cell tumors  [TGCT]), which have their origin in a blocked 
maturation of a PGC.10,12 As indicated, the type  II TGCT can be 
divided into seminoma (SE) and nonseminoma (NS). About 50% of 
all TGCT are seminomas, with a median age of patients at diagnosis of 
35 years. Nonseminomas develop earlier in life, with a median age at 
diagnosis of 25 years. The latter can contain different histological tumor 
components, that is, the stem cell component embryonal carcinoma, 
teratoma (somatic differentiation), choriocarcinoma (extra-embryonic 
differentiation), and YST.5,13 The nonseminomas account for 40% 
of cases. The remaining group consist of both seminoma and 
nonseminoma components and occur at an intermediate age.

INTRODUCTION TO GERM CELL TUMORS AND ITS 
CLASSIFICATION
Germ cell tumors (GCT) are a heterogeneous group of neoplasms that 
most frequently occur in the gonads, both testes and ovaries.1 GCT 
may also rarely occur at specific extragonadal sites along the midline of 
the body, such as the pineal gland-hypothalamic region, mediastinum, 
retroperitoneum, and sacrum, probably as a consequences of the 
migration route of the primordial germ cells (PGCs), being the cells 
of origin of gametogenesis during early embryogenesis.2–4

Historically, GCT were based on histological classification only.5–8 
However, in 2005, Oosterhuis and Looijenga9 proposed a classification 
system based on site of presentation, age of the patient at diagnosis, 
histological composition, pattern of genomic imprinting, and 
chromosomal constitution. This classification system includes five 
categories of GCT, which has been adopted by specialized pathologists 
and the World Health Organization (WHO).10,11 The first group (type I) 
consists of benign teratomas and malignant yolk sac tumors (YSTs), 
predominantly diagnosed in neonates and infants, with an annual 
incidence of about 0.12 per 100  000. The per definition malignant 
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TYPE II TESTICULAR GERM CELL TUMORS: INTRODUCTION
The malignant TGCT, also known as germ cell cancers, are the most 
frequent malignancy in Caucasian males between 20 and 40 years of 
age. Overall, TGCT account for approximately 1% of all solid cancers, 
but in young men, it is almost 60%.6,9 In the last 20 years, there has 
been a 70% increase in the incidence of TGCT,14–16 probably due to 
the action of (micro)environmental factors in relationship with (epi)
genetic constitution,15,17,18 to be discussed in detail later. Annually, about 
12 000 new cases of TGCT are diagnosed in Europe.19

It is currently accepted that the majority, and possibly all, type II 
TGCT  (i.e.  the seminomas and all histological elements of the 
nonseminomas) have carcinoma in situ (CIS) as common precursor.20 
However, this has not been proven so far, which also accounts for 
the possible presence of CIS without progression to a full blown 
cancer. CIS is also referred to as intratubular germ cell neoplasia 
unclassified (IGCNU, WHO definition) and testicular intraepithelial 
neoplasia, but throughout this review, the term CIS will be used in 
accordance with most literature.9 CIS originates from an embryonic 
germ cell, either a PGC or a gonocyte (i.e., a PGC located in the genital 
ridge/undifferentiated and bipotential gonad), blocked in its process 
of maturation.21 After puberty, CIS has a high risk to progress into an 
invasive cancer, shown to be 70% in 7 years, and assumed to be up to 
100% after 10 years.22,23

The overall cure rate of TGCT at 5  years, based on surgical 
interventional and depending on stage, combined with irradiation 
and/or chemotherapy,24,25 is more than 90%, even in case of presence of 
metastatic disease. However, due to treatment resistance of the cancer 
in some patients, TGCT-related death is the second cause of death in 
men between 15 and 45 years. In addition, men surviving TGCT can 
present long-term side effects of systemic cancer treatment, such as 
chronic fatigue,26,27 cardiovascular disease,28 metabolic syndrome,29,30 
infertility,31,32 and even second cancers.33–36

In contrast to the survival rates of patients with TGCT, the cure rate 
of CIS is 100%.37 Local treatment is sufficient to effectively eradicate 
CIS, that is, a low doses of testicular irradiation38 or orchidectomy. The 
consequence of this local therapy can be infertility and hypogonadism, 
especially in case of bilateral disease or monotestis.39 For these patients, 
semen preservation must be performed in advance and hormonal 
support may be indicated after this local treatment. Contrary to patients 
with an advanced stage of TGCT, men diagnosed and treated for CIS 
without an invasive component continue to live without long-term 
side effects of systemic treatment.

Early detection of CIS is however difficult due to lack of symptoms 
and specific markers for screening.37 A testis biopsy is currently the only 
reliable method to diagnose CIS of the testis. So far, it is proven to be 
difficult to develop a noninvasive test for CIS in men with an increased 
risk of TGCT, which can be used for screening purposes and case 
finding.40 Defined risk factors for TGCT are cryptorchidism,41,42 testis 
atrophy,43 infertility,44,45 a history of unilateral TGCT,46,47 and familial 
predisposition.48,49 However, many of the men having one or more of 
these risk factors will never develop a TGCT. Furthermore, many of the 
patients diagnosed with TGCT lack one or more of these risk factors. 
Therefore, these risk factors are not found to be highly informative on 
an individual level and it must be concluded that these risk factors alone 
are not specific enough to be used for screening of TGCT. In recent 
literature, various environmental factors may also result in a higher 
risk for TGCT,50,51 but the role of these environmental factors is still 
unclear. They may play a role in the early development of CIS or in the 
transition of CIS into TGCT. In addition, a number of recent independent 

genome wide association studies  (GWAS) have been conducted, 
indicating an association between a selected number of single-nucleotide 
polymorphisms (SNPs) and presence of a TGCT.52–54 Interestingly, the 
genes likely linked to these SNPs are also known to be involved in early 
gonadal development and regulation of germ cell survival.

In this review, the early pathogenesis of CIS of the testis and TGCT 
will be discussed. A better understanding of these early pathogenetic 
steps, influenced by (micro) environmental and (epi)genetic factors, 
may help to develop an informative clinical approaches for early 
diagnosis of CIS, allowing local gonadal treatment and prevention of 
long-term side effects of systemic treatment.

PATHOGENESIS OF MALIGNANT TESTICULAR GERM CELL 
TUMORS (TYPE II)
Normal testicular development
During early embryogenesis, the early germ cells undergo subsequent 
maturation and differentiation influenced by the micro-environment of 
these cells.55 Understanding these processes is essential to create insight 
into the mechanisms involved in the earliest events of the pathogenesis 
of CIS and of the derived invasive lesions, that is, TGCT.

The initial totipotent early germ cells, named PGC, initially 
start to migrate from their origin in the posterior wall of the yolk 
sac into the hindgut along the midline of the body in the 3rd week of 
embryogenesis.2,56,57 Thereafter, they move into the mesoderm and 
travel to the genital ridge.3 The KIT/KITLG  (stem cell factor, SCF, 
c-KIT ligand) pathway is crucial for this migration.58,59

The PGC express a number of specific (embryonic) markers during 
and early after their migration to the genital ridge (Figure 1), which 
are involved in different biological mechanisms during this period of 
embryogenesis.60,61 Some of these markers, like OCT3/4 (also known 
as POU5F1),62,63 c-KIT,58 placenta like alkaline phosphatase (PLAP),64 
NANOG, SOX2  (only for nonseminoma),60 and SOX17,65 have 
diagnostic value for TGCT as well as CIS.66–68

During the 5th week of development, still the pluripotent PGC enters 
the genital ridge and are now called gonocytes. In the beginning of week 
sixth of the embryogenesis in the male genomic constitution  (XY) 
Sertoli cells are formed, due to the expression of the transcription 
factor Sex-determining Region on the Y-chromosome  (SRY) and 
subsequently SOX9 (SRY related HMG box 9).69–71 If no functional SRY 
and the subsequent downstream pathway is activated, no Sertoli cells 
will be generated, but the precursors will follow the female pathway 
and become granulosa cells.

The primitive seminiferous cords are formed in the 7th week of 
embryogenesis, in which the germ cells and Sertoli cells are not yet 
organized. Subsequently, the germ cells migrate toward the basal 
lamina of the seminiferous tubules and start to lose the expression of 
some of the forementioned embryonic markers (i.e. PLAP, OCT3/4, 
and c-KIT), happening during the 13th week of embryogenesis.68,72,73 In 
fact, OCT3/4 and PLAP disappear completely, while c-KIT can still be 
detected at a relatively low level.61,67 This is in contrast to the markers 
VASA74 and SOX17:65 they continue to be expressed after birth and 
remain even positive throughout life.

At the 13th week of development, the male gonocytes also begin to 
express Testis Specific Protein on the Y chromosome,75 which regulates 
the normal proliferation of spermatogonia and remain positive when 
the spermatogonia enter meiotic division.76 For a good regulation of 
the proliferation of the gonocytes and the protection of the cells against 
apoptosis, the contact between the Sertoli cells and now referred to 
prespermatogonia is necessary. The expression pattern of proteins on 
the gonocytes and prespermatogonia changes during embryogenesis 
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substantially: the specific embryonic proteins decrease gradually in 
number and most of them eventually disappear.64,65,67,68

Impaired testicular development and the onset of carcinoma in situ
The origin of TGCT probably starts at early embryogenesis, and is 
hypothesized to be part of the Testicular Dysgenesis Syndrome (TDS).77 
This syndrome was first described by Skakkebaek et al.77 and assumes 
that cryptorchidism, hypospadias, impaired spermatogenesis, and 
TGCT may all be manifestations of impaired testicular development 
during early embryogenesis.

This impaired testicular development means that some early 
PGC/gonocytes are blocked in their process of differentiation, and as 
such, these germ cells retain their early (embryonic) marker profile.66,67,78 
The reason for this development block is not yet entirely clear. It is 
probably a combination of  (micro)environmental factors and  (epi)
genetic defects.10 For example, it is believed that xeno-estrogens and 
anti-testosterones negatively affect the development of Sertoli cells 
and Leydig cells,79 causing a suboptimal environment for germ cell 
differentiation and leading to development of CIS cells,80 which are, 
as mentioned above, blocked embryonic germ cells. Furthermore, it is 
assumed that the KIT/KITLG pathway, which regulates the survival, 
migration and proliferation of PGC/gonocytes, is central to this 
development.81–83

As indicated, these CIS cells resemble PGC/gonocytes on 
different aspects.78 Both have for example expression of embryonal 
markers  (Figure  1: OCT3/4, PLAP, alkaline phosphatase  (AP-2ɣ), 
c-KIT, etc.).61,72 Normally, in the time window of about 6–12 months 
after birth all proteins related to the embryonal stage are disappeared, 
while VASA84 and TPSY remain present.75 However, there is on ongoing 
expression of these embryonal markers in CIS cells after birth,68,85 
wherein the expression of SCF (KITLG) is likely more selective for 
the niche of the CIS cells.

In the testis, these CIS cells remain, that is, resistant to apoptosis 
and maturation, and eventually progress after puberty, likely due to 
a rise in serum testosterone, into an invasive tumor.22,23 The current 
hypothesis is that all patients with this abnormality will develop an 
invasive TGCT,9 due to the fact that in the male Caucasian population, 
the incidence of CIS similar is to the lifetime risk of developing a TGCT. 
However, the exact cause for progression of CIS to TGCT is currently 
unknown. It has been suggested that loss of PTEN exposure to certain 
and environmental factors among others play a role.86 For the onset of 
CIS and the development of CIS into an invasive tumor, there is likely 
an interplay between genetic, epigenetic, and (micro)environmental 
factors also referred as the genvironment.87,88

ETIOLOGY OF TESTICULAR GERM CELL TUMORS AND THE 
GENVIRONMENTAL HYPOTHESIS
Genetic risk factors
Ethnic differences in the incidence and geographical clustering of 
TGCT suggest a genetic component in the etiology of this disease in 
addition to possible environmental influences.89 African and Asian men 
have a very low risk of developing TGCT.90 Even if these men migrate 
to a western country they maintain their low risk, which is observed 
in African-Americans living in the USA for many generations.91 This 
shows that the supposed absence of genetic risk factors in African and 
Asian men, have greater influence than exposure to environmental 
risk factors on the incidence of TGCT.92 This is in contrast to selective 
Caucasian men migrating to another country with a higher incidence 
of TGCT. The second generation of these men has the same risk of 
TGCT as the local men.89

Another important argument for a genetic component in the 
etiology of TGCT is that family history is a strong known risk factor 
for these malignancies.93–96 Several studies have shown that the risk 
for a brother of a TGCT patient is 8–10 fold higher as compared with 

Figure 1: Marker expression in normal and impaired testicular development. Marker expression from early embryogenesis till puberty during the normal and 
impaired testicular development leading to carcinoma in situ (CIS). See text for further explanation. Black sphere: germ cell (not specified for different stages 
of maturation). Blue sphere: Sertoli cell. Orange sphere: CIS cell. Green bar: normal testicular development (physiological). Red bar: impaired testicular 
development (pathological).
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the general male population.97–104 The risk for a son of a father with a 
history of TGCT is 4–6 fold higher.97–99,101,103 Also twin studies, both 
mono- and dizygotic twins, have confirmed a strong genetic component 
to TGCT.105–108 It is estimated that the genetic effects accounts for 25% 
of TGCT, which is a high rate in comparison to other cancers and even 
the third among all cancer types.94 Nevertheless most men with TGCT 
have no family member who also has the disease.

However, familial linkage studies and candidate gene approaches 
have not been very successful so far in defining genes predisposing 
to TGCT. An association study of the gr/gr deletion on the Y 
chromosome,109 which carries a number of testis - and germ cell-specific 
genes, demonstrated that this deletion provides an approximately 
two-fold risk of TGCT. It is however, not clear whether it is an effect 
specially related to this gene mutation or to the associated infertility, 
also a known risk factor for TGCT.

Since 2009 there are new genetic insights starting from two TGCT 
GWAS, one from the UK54 and one from the US.81 Subsequently, several 
additional TGCT GWAS have been done83 and recently a meta-analysis 
is performed.52 SNPs with significant associations were identified in or 
near the genes KITLG (KIT ligand), SPRY4 (sprouty 4: sprout-related, 
EVH1 domain containing 2), BAK1  (BCL2-antagonist/killer 1), 
DMRT1  (doublesex and mab-3-related transcription factor 1), TERT 
(telomerase reverse transcriptase), ATF7IP (activating transcription factor 
7 interacting protein), HPGDS (hematopoietic prostaglandin D synthase), 
MAD1L1 (mitotic arrest deficient-like 1), RFWD3 (ring finger WD 
domain 3), TEX14 (testis expressed 14) and PPM1E (protein phosphatase, 
Mg2+/Mn2+ dependent, 1E). Table 1 highlights these genes, wherein also 
their chromosomal localization as well as relevant SNPs are listed.

Single-nucleotide polymorphisms at 12q22 likely related to KITLG 
have the strongest association with the development of TGCT, with 
a risk greater than 2.5-fold of TGCT per major allele.54,81 KITLG has 
been shown to be required for multiple aspects of PGC/gonocyte 

development.112 This gene is involved in the KITLG–KIT pathway, 
which system regulates the survival, proliferation, and migration of 
embryonic germ cells.113 Delayed differentiation of PGC/gonocytes 
and subsequent development of TGCT can be the result of retained 
activation of this pathway.114

In addition, for TGCT somatic alterations in KIT have been 
described.72,115,116 In 21% of seminomas and 9% of nonseminomas, 
an increased copy number of the KIT gene has been observed.117,118 
Probably, somatic KIT mutations can occur very early in embryogenesis, 
because there are known cases of bilateral disease with the same 
mutation in both testes.82,119

It is suggested that there is a relationship with these genes and 
infertility.2,114,120 The link between cancer and infertility can, therefore, 
further be investigated in studies of KITLG variation in men with a 
history of infertility with and without TGCT.

SPRY4, on chromosome 5, is an inhibitor of the mitogen-activated 
protein kinase pathway, which is activated by the KITLG–KIT pathway.121 
An increased expression of SPRY4 can induce downregulation of the 
KIT–KITLG pathway.122 A risk of 1.5-fold of TGCT per major allele on 
chromosome 5 loci is described.54,81 BAK1, on chromosome 6, binds 
and then provide apoptosis by antagonizing the apoptosis suppressor 
activity of BCL2 and other anti-apoptotic proteins.123 In testicular germ 
cells, expression of BAK1 is repressed by the KIT–KITLG pathway and 
interaction of BAK1 with anti-apoptotic proteins provides apoptosis 
in germ cell. Therefore, TGCT susceptibility might also come through 
BAK1 and its response to signaling through the KIT–KITLG pathway. 
A  1.5-fold increased risk was identified per major allele for the 
chromosome 5 and 6 loci.54 It is suggested that a positive interaction 
between the loci on chromosomes 5, 6, and 12 gives a combined risk 
greater than the sum of the individual risks.

DMRT1 is a transcription factor with a highly conserved DNA-binding 
motif, which is similar to many vertebrate sex-determination 
pathways.114,124 There is much evidence that this gene is related to 
testicular determination, differentiation and tumorigenesis.114,110 Higher 
expression levels of DMRT1 are required for testicular differentiation and 
lower expression levels result in ovarian differentiation.111,125,126 DMRT1 
deficiency in mice is associated with a high rate of teratomas, so type 
I TGCT.127 In humans seems a lower expression level of DMRT1 more 
strongly associated with nonseminomas type II TGCT, of which teratoma 
is one type, than with seminomas.126

Telomerase reverse transcriptase encodes the catalytic subunit of 
the telomerase ribonucleoprotein complex. Telomerase counterbalances 
loss of chromosome ends, which is normal in actively dividing 
cells, by extending the TTAGGG telomeric nucleotide repeats.114 
Telomere shortening is associated with increased genome instability 
and neoplasia.128–131 TERT is endogenously expressed during 
embryogenesis, but testicular germ cells are the only normal adult 
tissue in which telomerase continues to be expressed.132,133 Seminomas 
show high TERT expression, high telomerase activity and long 
telomeres, as seen in normal testicular germ cells.110 Minimal TERT 
expression and no telomerase activity are seen at nonseminomas, 
such as teratomas.132,133 This is also confirmed by the fact that SNP 
identified at this locus were more strongly associated with seminomas 
than nonseminomas.110 ATF7IP activates the expression of TERT and 
its associated RNA component, TERC. Knock down of ATF7IP results 
in a significant decrease in TERT and TERC expression and also in 
telomerase activity.134 In short, both TERT and ATF7IP maintain 
telomere length and are reactivated in a range of tumor types.

Hematopoietic prostaglandin D synthase is expressed in the early 
embryonic male gonad in mice and seems to control nuclear localization 

Table 1: The TGCT risk-SNPs and their likely related genes

Gene Chromosome SNP References

UCK2 1 rs4657482 Rapley et al. 200954

HPGDS 4 rs17021463 Chung et al. 201352

CENPE 4 rs4699052 Rapley et al. 200954

TERT 5 rs2736100 Turnbull et al. 2010110

TERT/CLPTM1L 5 rs4635969 Turnbull et al. 2010110

SPRY4 5 rs4624820 Rapley et al. 200954

rs4324715 Kanetsky et al. 200981

rs6897876 Kanetsky et al. 200981

BAK‑1 6 rs210138 Rapley et al. 200954

MAD1L1 7 rs12699477 Chung et al. 201352

DMRT1 9 rs755383 Turnbull et al. 2010110

Kanetsky et al. 2011111

rs7040024 Kanetsky et al. 2011111

AFT7IP 12 rs2900333 Turnbull et al. 2010110

KITLG 12 rs995030 Rapley et al. 200954

rs1508595 Rapley et al. 200954

rs3782179 Kanetsky et al. 200981

rs4474514 Kanetsky et al. 200981

RFWD3 16 rs4888262 Chung et al. 201352

TEX14 17 rs9905704 Chung et al. 201352

PPM1E 17 rs7221274 Chung et al. 201352

The Single‑Nucleotide Polymorphisms (SNPs) with their chromosomal localization that 
appear to be associated with the presence of TGCT, which is demonstrated in recent 
independent Genome Wide Association Studies (GWAS). The genes likely linked to these 
SNPs are also known to be involved in early gonadal development and regulation of germ 
cell survival. See text for further explanation
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of the SOX9 protein.52,135 Disruption of HPGDS leads to modification 
of the phenotype of apcMin/+mice.136 MAD1L1 gene encodes MAD1, 
prevents aneuploidy and maintains genomic stability.52 MAD1 is in 
fact a spindle assembly checkpoint protein that delays the onset of 
anaphase in the mitotic cell cycle until all sister chromatid s achieve 
proper alignment and microtubule attachment.137 Remarkably, the 
risk allele (C) at the most significant SNP without study heterogeneity, 
rs12699477, is more prevalent in population of European  (29%) 
than those of African ancestry (8%) in 1000 Genomes.138 This might 
indeed be one of the possible explanations for the intrinsic incidence 
of TGCT among Caucasians compared to Africans, as well as Asians, 
as mentioned above. This also indicates that the genomic constitution 
of these SNPs is dominant over the exposure to environmental 
compounds. RFWD3 is an E3 ubiquitin ligase that controls p53 stability 
by forming a RFWD3-MDM2-p53 complex, thereby protecting p53 
from degradation by MDM2 polyubiquitination.139,140 The role of p53 
in the pathogenesis is on interest in this context as well.

In conclusion, there are identified a number of SNPs for TGCT 
predisposition within fourteen genes that are biologically plausible 
candidates for disease susceptibility. This increased understanding of 
the genetic etiology of TGCT will lead to further improvement in the 
clinical management of this disease.

Environmental and other risk factors
In recent years, various potential risk factors for TGCT have been 
investigated, both prenatal, perinatal as well as postnatal. These include 
a variety of risk factors, such as related to environmental exposures, 
lifestyle factors, and prenatal characteristics. The knowledge on the 
impact of these particular risk factors is based on epidemiological 
research only,141 because there are so far no informative animal models 
available for TGCT.50 Some studies have focused on the etiology of 
TGCT in utero and early life, because CIS is supposed to develop in 
that period  (as discussed above), and other studies have examined 
potential risk factors during childhood and adolescence. Overall, 
the results of these studies are inconsistent,142 partly because of their 
small sample sizes, multiple testing, self-report data, and recall bias. 
Recent meta-analyses have provided insight into the influence of these 
factors on the development of TGCT.50,51,143 In this review only the 
most important environmental factors in the context of development 
of TGCT will be highlighted.

The following prenatal risk factors for the development of TGCT 
have been investigated; maternal exposure to estrogens and nausea 
during pregnancy (being related to the first), diethylstilbestrol (synthetic 
estrogen DES), maternal hypertension, preeclampsia, maternal 
bleeding during pregnancy, maternal smoking, and maternal age.17,18,51 
No association is found for nausea,143 and excess of endogenous 
hormones (likely estrogen) that can cause nausea, during pregnancy,144 
similarly as for maternal hypertension, preeclampsia, and maternal 
age. DES, a nonsteroidal estrogen, has been used from the late 1940s 
to the early 1970s to prevent abortions and pregnancy complications,145 
has been suggested that it can cause TGCT as well, but it remains 
uncertain so far.145–147 Maternal bleeding during pregnancy is a risk 
factor for TGCT with an odds ratio  (OR) of 1.33  (95% confidence 
interval (CI) 1.02–1.73) in a recent meta-analysis.51 The association 
between maternal smoking and TGCT is inconsistent.148–154

Many perinatal factors have been investigated, including 
cryptorchidism, birth weight, gestational age, inguinal hernia, 
twinning, and hypospadias. Cryptorchidism is the most defined factor 
associated with TGCT, with a population attributable risk between 4.3% 
and 10%.143,155–159 Low birth weight was associated with an increased 

risk TGCT (OR 1.19–1.34)18,143 and gestational age was inversely related 
to the risk of TGCT.143 A meta-analysis of two other perinatal factors, 
inguinal hernia and twinning, shows OR of, respectively, 1.63 (95%CI 
1.37–1.94) and 1.22 (95% CI 1.03–1.44).143 Due to the small number 
of patients who participated in only a few studies no meta-analysis of 
hypospadias as a risk factor for TGCT could be performed.43,160,161 The 
variables birth length, breast feeding, and neonatal jaundice were not 
associated in a meta-analysis with TGCT.143 Some perinatal factors 
of the mother were examined and birth order and sibship size were 
inversely associated with the risk of TGCT.51 For breech delivery and 
cesarean, no association with TGCT was found.51

Various postnatal factors influence the development of TGCT, 
which are subdivided in direct case-related factors, lifestyle of men, and 
environmental influences. Most studied case-related factors are age at 
puberty, body mass index (BMI), height, infertility, history of TGCT, and 
socioeconomic status (SES). Late age at puberty is associated with a large 
reduction in the risk of TGCT.162–165 The results of studies of BMI are 
often inconsistent166–172 as well as height as TGCT risk factor.164,167,169,170,172 
Infertility is associated with a higher risk for TGCT.44,164,173,174 A history 
of TGCT has a strong relationship with the risk of TGCT.46,47,175 SES 
has been studied in various ways, as well as social class as education, 
however, the association with TGCT is uncertain.163,176–179 The influence 
of some lifestyle factors on risk of TGCT has also been studied. There 
is no association with smoking and TGCT risk.17 The effect of physical 
activity on the risk of TGCT is unclear.160,179–181

The environmental influences during life on the risk of 
TGCT developing have been studied extensively, but there are no 
clear associations between TGCT and environmental exposure 
so far. Various industrial exposures have been investigated, like 
working in the paper industry182–193 plastic-related industries190,192 
and metal industries,188,194–197 with different results and no clear 
association with TGCT. Studies on construction and related 
occupations,187,188,192,193,196,198–200 like construction workers, electrical 
workers, painters, wood workers, and lumber-jacks, find some with 
inconsistent results and others with no association. Other jobs that 
haven been studied, like firemen,201–205 policemen,185,196,206,207 and 
military and related occupations187,196,208–215 shows divergent results. In 
general, no significant results were found in all studies who investigated 
TGCT risk with pesticides exposures among agricultural workers, 
pesticides applicators or in occupations associated.187,188,193,196,199,216–224

Other environmental influences that have been studied are 
magnetic and electric field exposure, organochlorines exposure and 
living in rural areas. Magnetic and electric field exposure have been 
investigated in five studies193,199,225–227 without a clear association with 
TGCT. Environmental exposure to organochlorines was studied by 
using blood samples220,223,228–233 or questionnaires,220,223 and overall 
no relation was found. Living in rural areas has been suggested as a 
surrogate for environmental exposure to pesticides,192,193,223,234–236 but 
the several studies are inconsistent in their results. In conclusion, there 
are a number of well-defined prenatal and perinatal risk factors for the 
development of TGCT. The only prenatal factor that indicates a risk for 
TGCT is maternal bleeding during pregnancy. Perinatal risk factors of 
the son are cryptorchidism, a lower gestational age, inguinal hernia, and 
twinning. Birth order and sibship size are the two perinatal factors of 
the mother who are inversely associated with the risk of TGCT. There 
is a lack of association of most postnatal factors who could be influence 
the development of TGCT, which is in line with current hypotheses of 
the early embryogenic origin of TGCT. Only infertility and a late age at 
puberty are well-established postnatal factors.
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Figure 2: Genvironmental risk model. The genvironmental risk model shows the different etiological factors which have an influence on the development of 
testicular germ cell tumors. 1No association is found for nausea during pregnancy, maternal hypertension, preeclampsia and maternal age. 2No association is 
found for birth length, breastfeeding and neonatal jaundice. 3Inversely related. 4No association is found for smoking and organochlorines exposure. 5Working 
on the paper industry, construction and related occupations, fireman, policemen and military and related occupations. 6Pesticides exposures, magnetic and 
electric field exposure and living in rural areas.

Genvironmental hypothesis
Current evidence for the etiology of TGCT included genetic and 
environmental factors as mentioned above, but at this time, these 
factors separately are insufficient to make a risk assessment for TGCT 
on an individual level. Probably the combined action of (epi)genetic 
factors and (micro)environmental factors will lead to the development 
of TGCT,229 named as the genvironmental hypothesis (Figure 2).87,88

EARLY DETECTION OF TESTICULAR GERM CELL TUMORS
Current methods
To date, an open testicular biopsy is still the gold standard for the 
diagnosis of CIS.237 A single biopsy of at least 3 mm is usually sufficient 
to detect CIS,238,239 since sensitivity for CIS detection is above 99% 
provided that at least 10% of tubules contain CIS cells. Contralateral 
biopsy is not routinely performed in most countries.240 It may be 
considered in selected cases, such as in men with cryptorchidism, 
atrophic testes and ultrasonographic abnormalities.

Guidelines on the use of fixatives for testicular biopsies are 
contradictory on the use of Stieve’s or Bouin’s solution or formalin.241,242 
Formalin is commonly used for fixation, despite some shrinkage 
artefacts, along with at least one solid immunohistochemical marker 
such as OCT3 ⁄ 4,63,243 PLAP,244 AP-2ɣ61,245 or c-KIT.246 With the use of 
these robust CIS markers only in less than 0.5% false-negative biopsies 
occur,247 as a consequence of a heterogeneous distribution of CIS within 
the testis248–250 or surgical damage of the tissue.

An open testicular biopsy is, however, an invasive procedure 
with potential complications, although infrequent: overall, 2.8% 
complications were noted,251 like superficial wound infections, 
intra-testicular hematoma and decline in semen quality secondary to 
the biopsy. A diagnostic testicular biopsy is nowadays only considered 
in men at high risk of TGCT. These include men with risk factors for 
TGCT, like infertility,174,252 cryptorchidism,43,253 atrophic testes43 and a 
history of TGCT,254 together with ultrasonographic abnormalities.255,256 
The most significant abnormalities found on the ultrasound are 
testicular microlithiasis  (TM, Figure  3a), an inhomogeneous 

parenchyma  (Figure  3b) and solid testicular lesions  (Figure  3c).257 
TM is defined as all hyperechogenic foci smaller than 3 mm without 
shadowing irrespective of their number.258 An inhomogeneous 
parenchyma of the testis is described as a heterogeneous parenchyma 
with hypo-  and hyper-echoic areas and often very small cysts.257 
Testicular lesions are presented as focal solid hypo-echoic or 
hyper-echoic structures inside the parenchyma.257

Use of markers in semen of infertile males and testicular germ cell 
tumors patients
Efforts have been made to develop a noninvasive method for the 
detection of CIS cells in semen in the last decades, since these CIS cells 
are exfoliated from the seminiferous tubules into seminal fluid.259 The first 
studies were based on cytological examination by plain microscopy260–263 
or after immunohistochemistry  (IHC) using PLAP264 and IHC with 
magnetic beads and the M2A antibody,265,266 which all proved to be 
unsuccessful or too laborious. Another approach was to use the aneuploid 
DNA content in CIS cells as a marker.267–270 However, normal semen 
contains cells with differences in numbers of chromosomal copies, and 
possible CIS cells could be proved only in a very small window.

After the discovery of novel stem cell-related markers of 
CIS, including AP-2ɣ,271,272 NANOG,272 and OCT3⁄4,272,273 an 
immunocytochemical assay for the detection of CIS cells in semen 
was tested again  (Figure  4). In contrast to previous studies, which 
used cytoplasmic markers of CIS, these proteins are localized in the 
nucleus, and thereby better protected from degradation in semen or 
during processing of the sample. In these studies, the identification 
of CIS cells in semen has a high specificity; nevertheless, the 
sensitivity remained relatively low. Even the double staining method 
with of immunocytological staining for AP-2ɣ or OCT3/4 and 
rapid cytochemical AP reaction has its limitations, like unspecific 
cross-reaction and still some false-positive results due to a weak 
staining of AP-2ɣ and OCT3/4 in the epithelial cells of the epididymis, 
prostate gland, and seminal vesicles.274,275

Most recently, the two cancer-testis antigens MAGE-A4276 and 
NY-ESO-1, which are expressed by TGCT, were tested in semen by 
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immunological staining in TGCT patients and healthy semen donors.277 
Although this may seem promising results, there are too much 
false-positive cells. Moreover, there is only assumed that these markers 
also are expressed in CIS cells, but this has never been demonstrated 
in semen of men with CIS.

Despite some progress, none of the above-mentioned semen-based 
methods for CIS detection are currently used in standard clinical practice. 
This is due to different causes, like for example the low numbers of CIS 
cells in seminal samples and degradation of the CIS cells or impaired 
shedding from the seminiferous tubules. In addition to this, the 
relatively high number of false-positive results in the most promising 
immunocytochemical techniques is a problem too. False-positive cells 
were observed in some patients, probably due to a weak expression of 
some of the used markers, that is, OCT3/4, AP-2ɣ, NANOG, in the 
epithelial cells of epididymis, prostate and seminal vesicles.278 The limits 
of these investigated markers are an important reason not to apply these 
techniques in standard clinical practice. Thus, this field still awaits a 
noninvasive method for CIS detection, ultra-sensitive and fail-safe, which 
could be applied to routine screening of population at risk for TGCT.

Detection of microRNA in blood and semen of testicular germ cell 
tumors patients and infertile males
microRNAs  (miRNAs) are small noncoding RNA molecules, with 
approximately 22 nucleotides in length.279,280 In the early 1990s, the first 
miRNAs were characterized in C. elegans,281 but their role in biological 
processes is better understood since the beginning of this age. These 
relatively small sequences interact with messenger RNA (mRNA) in 
the mammalian system, and they are involved in the fine-tuning of the 
translation process from mRNA to protein.282 It has been found that 
these miRNAs are crucial for normal development, of which some in 
stem cell formation.283,284

Over 500 miRNAs exist within the human genome285 and different 
sets of expressed miRNAs are found in various cell types and tissues.283 
It is found that aberrations in regulation of expression of miRNAs can 
be involved in the development of cancers,286–291 so they can act as both 

oncogenes and tumor suppressor genes.290,292,293 There is increasing 
interest in their potential use as biomarkers in various cancer types 
and other disorders due to their secretion into body liquids, in which 
they have proved to be very stable.294–296

R e cent ly,  i t  i s  demonst rate d  t hat  miRNAs  of  t he 
miR-371~373  (miR-371-372-373)297,298 and miR-302/367  (miR302a, 
b,c,d/367) clusters299 are overexpressed in all TGCT,300 regardless of 
patient age, histologic subtype (except teratoma), or anatomic site of 
the tumor. All main members of the miR-371~373 and miR-302/367 
clusters were elevated in the serum and returned to normal after 
treatment of the disease within only a few days or even less.301–303 The 
hypothesis reported that these miRNAs are not only expressed in all 
TGCT, but also in CIS.304 Remarkable is that these miRNAs are not 
up-regulated in other tumor types or disorders.

Clinical management of TGCT is greatly based on serum biomarker 
monitoring.305 At the moment the markers alfa-fetoprotein, b-human 
chorionic gonadotropin, and lactate dehydrogenase are used, but only 60% 
of all TGCT patients have elevations of these markers.306 For this reason, 
the above-mentioned miRNA are promising candidate biomarkers for 
disease monitoring and potentially also in the diagnosis of TGCT.303,304,307 
Possibly, these miRNAs may also be used as screening method of semen 
in men at risk for CIS/TGCT. To date, no studies have been performed of 
these TGCT miRNA in semen and further research is required.

However, specific miRNA for infertility in semen has been tested 
in several studies in infertile population.308–313 Gene expression is active 
during spermatogenesis and miRNAs are differentially expressed during 
this differentiation period.314,315 To understand the role of miRNAs in the 
different forms of spermatogenic failure, miRNA expression profiles have 
been studied in normal and infertile testicular tissues in mice.316 With this 
knowledge, several clinical case–control studies were conducted in men 
and five of these studies have mapped the well-defined expression profiles 
of miRNAs in semen between normal and infertile men (Table 2).308–311,317 
Each study has made its own choice which miRNAs are tested in the 
semen and they all made a different case-selection. Therefore, the results 
of the studies are difficult to compare with each other. Yet, because of 
these studies, there is sufficient evidence that it is possible to detect in 
semen specific miRNAs related to infertility.

It can be concluded that specific seminal plasma miRNAs have been 
explored as potential biomarkers for the diagnosis and classification 
of male factor infertility. Therefore miRNAs, both for male factor 
infertility and CIS/TGCT, need to be further investigated in different 
patient population and follow-up studies.

CONCLUSIONS AND REMARKS
This review focused on the etiology and early pathogenesis of TGCT, its 

Figure 4: Carcinoma in situ (CIS)‑cell in semen with OCT3/4 staining. 
A positive CIS‑cell in semen, detected with the immunocytochemical marker 
OCT3/4.

Figure 3: Ultrasonographic abnormalities that may be present in men at risk 
for testicular germ cell tumors. (a) Testicular microlithiasis in the parenchyma 
of the testis. (b) Inhomogeneous parenchyma of the testis. (c) Hypo‑echoic 
lesions in the parenchyma of the testis.
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relation to testicular development and the current and future possibilities 
for noninvasive early detection methods of TGCT. Currently, the early 
detection methods for TGCT by the detection of CIS are not well-suited 
for clinical use, while there are considerable health benefits if CIS could 
be detected in a noninvasive way. All men diagnosed and treated for 
CIS only instead of a TGCT continue to live without long-term side 
effects of systemic treatment, such as chronic fatigue, cardiovascular 
disease, metabolic syndrome, infertility, and even second cancers. An 
open testicular biopsy is currently the only reliable method to diagnose 
CIS of the testis. Therefore, this biopsy is only considered for a specific 
group of patients, such as in men with cryptorchidism, atrophic testes, 
and ultrasonographic abnormalities. However, for screening purposes, it 
is required to develop a sensitive and specific noninvasive early detection 
method and to compose a well-defined TGCT risk profile.

Key aspects of the etiology of TGCT were discovered in the past 
few years. Since 2009, a several GWAS have found SNPs with significant 
associations in or near the genes KITLG, SPRY4, BAK1, DMRT1, TERT, 
ATF7IP, HPGDS, MAD1L1, RFWD3, TEX14, and PPM1E. Many of these 
genes are involved in the early gonadal development, which explains 
their involvement in the pathogenesis of CIS. Prenatal, perinatal, and 
postnatal risk factors also influence the onset of CIS. These genetic and 
environmental factors play an essential role in the pathogenesis of TGCT 
but are individually insufficient to identify men at high risk for TGCT. 
Additional national and international collaborative studies, to obtain 
enough power, into the combined effects of these factors are required to 
develop a well-defined TGCT risk profile for screening purposes.

Research has been done on a noninvasive method for the 
detection of CIS cells in semen for many years. Diagnostic methods 
like cytological examination and IHC with cytoplasmic and nucleus 
markers, like OCT3/4, AP-2c, NANOG, etc., have been assessed. 
None of these semen-based methods for CIS cell detection proved to 

be sufficiently valid, due to the high number of false positive results. 
A promising noninvasive method for CIS screening seems to be the 
detection of specific TGCT miRNAs in semen, because there was 
demonstrated that miRNAs of the miR-371~373 and miR-302/367 
clusters are highly overexpressed in serum in all TGCT and specific 
miRNA associated to infertility has already been found in semen.

In summary, a screening method for population at increased 
risk for TGCT is needed to diagnose men at the CIS-stage, such that 
they do not have to undergo systemic treatment and suffer from the 
related long-term effects. Further research is needed to develop a 
well-defined TGCT risk profile, based on environmental interactions, 
and a noninvasive detection method, in which the miRNA detection 
in semen seems to be very promising.
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