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Abstract

Carbapenemase-producing organisms (CPOs) are Gram-negative bacteria that are typi-

cally resistant to most or all antibiotics and are responsible for a global pandemic of high

mortality. Rapid, accurate detection of CPOs and the classification of their carbapenemases

are valuable tools for reducing the mortality of the CPO-associated infections, preventing

the spread of CPOs, and optimizing use of new β-lactamase inhibitor combinations such as

ceftazidime/avibactam, meropenem/vaborbactam and imipenem/relebactam. The current

study evaluated the performance of CPO Complete, a novel, manual, phenotypic carbape-

nemase detection and classification test. The test was evaluated for sensitivity and specific-

ity against 262 CPO isolates of Enterobacteriaceae, Pseudomonas aeruginosa and

Acinetobacter baumannii and 67 non-CPO isolates. It was also evaluated for carbapene-

mase classification accuracy against 205 CPOs that produced a single carbapenemase

class. The test exhibited 100% sensitivity 98.5% specificity for carbapenemase detection

within 90 minutes and detected 74.1% of carbapenemases within 10 minutes. In the classifi-

cation evaluation, 99.0% of carbapenemases were correctly classified for isolates that pro-

duced a single carbapenemase. The test is technically simple and has potential for

adaptation to automated instruments. With lyophilized kit storage at temperatures up to

38˚C, the CPO Complete test has the potential to provide rapid, accurate carbapenemase

detection and classification in both limited resource and technologically advanced

laboratories.

Background

Carbapenemase-producing organisms (CPOs) are Gram-negative bacteria that are typically

resistant to most or all antibiotics. The infections they cause can be difficult or impossible to

treat and constitute a major global health threat of high mortality that has been compared to

that of Ebola [1–4]. CPOs threaten to take away the utility of antibiotics to both treat infections
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and to protect vulnerable patients at risk of infection [3, 5]. The occurrence of totally resistant

infections brings back the specter of septic wards in which doctors are helpless and can only

observe if their patients recover or die. The drivers of this crisis are the extensive antibiotic

resistance that results in failures to provide effective therapy coupled with inadequate infection

control.

Rapid CPO detection and carbapenemase classification can be pivotal to reducing mortal-

ity. Speed of detection is critical for effective infection control and for prompt initiation of

combination antibiotic therapy, which is optimal for serious CPO infections [2, 3, 6–17]. The

development of the Carba NP test provided a significant advance for clinical laboratories as it

provided rapid carbapenemase detection and high accuracy in tests with isolates of Enterobac-
teriaceae and P. aeruginosa [18]. The utility of this test has been limited by the instability in

solution of its imipenem substrate, the high cost of reference standard imipenem powder [19]

and suboptimal accuracy for detection of carbapenemases in A. baumannii [20]. Its accuracy

for testing A. baumannii has been improved with the advent of a modified form of the test

[20]. The Carba NP test is not commercially available but derivatives are marketed e.g. the

RAPIDEC1 CARBA NP (bioMérieux, La Balme-les-Grottes, France) and the Neo-Rapid

CARB Kit1 (Rosco Diagnostica A/S, Taastrup, Denmark). Neither the Carba NP test nor its

marketed derivative tests classify carbapenemases.

Classification of carbapenemases can optimize appropriate use of new β-lactamase inhibitor

combinations such as ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebac-

tam, aztreonam/avibactam, meropenem/nacubactam, cefepime/zidebactam and cefepime/

VNRX-5133 and minimize their overuse. The Carba NP test II is an extension of the Carba NP

test that was developed to detect and classify the carbapenemases of Enterobacteriaceae and

Pseudomonas spp. by utilization of tazobactam and EDTA as inhibitors of carbapenemases of

classes A and B respectively [21]. Another rapid approach to rapid carbapenemase detection

and classification is immunochromatographic (ICA) testing such as the NG-Test Carba 5

(NG, Biotech, Guipry, France). These tests are capable of detecting and classifying single or co-

production of a limited range of carbapenemases such as NDM, VIM, KPC, OXA-48-like and

IMP types [22]. Compared to the comprehensive target range of the Carba NP-derived tests,

the role of the narrow-range ICA tests may be more as a second-line test after broad-spectrum

carbapenemase screening based on biochemistry [23].

The CPO Complete test is a manual CPO detection and classification test designed to pro-

vide rapid, accurate results in tests with Enterobacteriaceae, P. aeruginosa and A. baumannii.
The current study was designed to assess its speed and accuracy of CPO detection and its

potential to classify carbapenemases.

Materials and methods

Isolates

Three hundred twenty nine isolates of Enterobacteriaceae, Pseudomonas aeruginosa and Acine-
tobacter baumannii from two culture collections, that of the University of Louisville and also

the Antimicrobial Resistance Isolate Bank of the Centers for Disease Control and Prevention

and Food and Drug Administration, were characterized for types of β-lactamase production

by PCR, microarray, DNA sequencing, whole genome sequencing, phenotypic and biochemi-

cal tests. Those tested in the carbapenemase detection phase of the study included isolates of

high diagnostic difficulty. They included 125 isolates producing KPC, NMC-A, IMI, and SME

class A carbapenemases; 87 isolates producing NDM, SPM, IMP, VIM and GIM class B carba-

penemases; 44 isolates producing OXA-23, 40, 48, 58, 72, 181, and 232 class D carbapene-

mases; and 6 isolates producing 2 carbapenemases. The latter comprised two isolates of
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K. pneumoniae that produced NDM + OXA-181 and NDM + OXA-232; two isolates of E. cloa-
cae that produced KPC-18 + VIM-1; and two isolates of A. baumannii that produced NDM +

OXA-23 and OXA-23 + OXA-40. The 67 carbapenemase-negative isolates (non-CPOs)

included porin mutants and producers of ESBLs, AmpCs, K1, and broad spectrum β-lacta-

mases. Classification potential was assessed for 205 CPOs that produced a single carbapene-

mase class. These comprised 185 isolates from the detection part of the study (88 class A, 56

class B, 41 class D) and an additional 10 class A (9 KPC, 1 SME), 7 class B (4 VIM, 3 NDM)

and 3 OXA-48-like class D producers. Control strains were K. pneumoniae BAA 1705 (KPC),

E. coli BAA 2452 (NDM-1), A. baumannii CDC 0035 (OXA-72), and K. aerogenes (formerly

E. aerogenes) G1614 (non-CPO).

The resistance mechanisms of the individual isolates and problematic test results are pro-

vided in the S1 Table.

Carbapenemase detection

The CPO Complete test did not require an initial lysis step prior to incubating the test. The

test solution (solution A) was prepared by dissolving 12 mg of pharmaceutical imipenem/cilas-

tatin (Hospira cat. no. NDC 0409-3507-21), 10 mg thimerosal (Enzo cat. no. ALX-400-

013-G005), 5 mg glucose (Sigma cat no. G-5000) and 4 mg polymyxin B (EMD Millipore

Corp., USA, cat. no. 5291-500MG) in a mixture of 1 ml of Mueller-Hinton broth (BD Diagnos-

tics Systems, Sparks, MD), 30 μl zinc sulfate (Sigma-Aldrich Co. cat. no Z2876) and 140 μl phe-

nol red solution (VWR International catalog # 97062–476). This solution was pH adjusted to

pH 7.0 using 10N NaOH & 12N HCl.

Thirty μl of solution A was dispensed into transparent vessels such as PCR tubes (VWR

International catalog # 20170–004) or microtiter wells. One tube was used for each test isolate

and two additional tubes were used for testing a positive and negative control isolates. Colonies

of each bacterial test isolate and a positive and negative control isolate were harvested with a

1 μl loop (VWR International, catalog # 12000–806) from blood agar (BD Diagnostics Systems,

Sparks, MD, USA). The amount of harvested inoculum was sufficient to provide a slightly

convex surface after filling the loop aperture, as opposed to a bulging loop with an excessive

amount of inoculum. Excess inoculum was avoided as it may reduce test accuracy. The inocu-

lum for each isolate was suspended in 30 μl of Solution A by vigorously rotating the loop in the

solution. Inoculated tubes were then incubated at room temperature until positive or for a

maximum of 90 minutes. The test was interpreted in bright light against a white background

by comparing the color of the inoculated test to the negative control K. aerogenes G1614. A

positive test was interpreted as the development of yellow, orange or a lighter shade of red

than the red negative control (Fig 1). Tests were performed blinded.

Carbapenemase classification

In contrast to the carbapenemase detection tests in which tests were performed blinded, the

classification phase of the study was proof-of-concept testing with carbapenemase classifica-

tions known at the time of testing.

Three solutions were used for classification. These were solutions A (described above), B

and C. Solution B contained phenyl boronic acid (VWR International catalog # BDH1115-

1LP) to inhibit class A carbapenemases and solution C contained the chelating agents pyri-

dine-2,6-dicarboxylic acid (Alfa Aesar cat no A12263) and Tris-EDTA buffer (Sigma T9285)

to inhibit class B carbapenemases. Solution B comprised 30 μl of solution A supplemented

with 2 μl of a solution prepared by dissolving 120 mg of phenyl boronic acid in 3 ml dimethyl

sulfoxide and adding this to 3 ml sterile inoculum water (Beckman Coulter, Inc. Brea, CA, cat
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no B1015-2) and 840 μl phenol red solution. The final solution was pH adjusted to pH 7.5

using 10N NaOH and 12 N HCl. Solution C comprised 30 μl of solution A supplemented with

2 μl of a solution prepared by dissolving 235 mg pyridine-2,6-dicarboxylic acid, 98% (also

known as dipicolinic acid) in 10 ml Tris-EDTA buffer solution 100x concentrate and 1,400 μl

phenol red solution. The final solution was pH adjusted to pH 6.8 using 10 N NaOH and 12N

HCl.

Using a separate 1 μl loop for each tube, sets of the three solutions were inoculated for each

of 205 isolates that produced a single carbapenemase. Tests with solutions B and C were inocu-

lated by the same procedure used for tests with solution A. The isolates comprised 98 produc-

ers of class A carbapenemases, 63 producers of class B carbapenemases and 44 producers of

class D carbapenemases. Only CPOs (i.e. positive result with solution A) were assessed for car-

bapenemase classification. Tests with solutions B and C scored as positive or negative by inter-

preting visually for a change from the initial red color to a lighter color. The interpretation was

based on which of solutions B or C was more positive (i.e. lighter in color). Occasionally the

color changes in solutions B or C were slower and less intense than the color change in solu-

tion A. Tests with solutions B and C were ignored if solution A yielded a negative result. Classi-

fications were interpreted according to Table 1. Figs 2–4 show representative classification test

results.

Fig 1. A positive test was interpreted as the development of yellow, orange or a lighter shade of red than the

negative control. Tests with the positive control isolate, KPC-producing K. pneumoniae BAA 1705 and the negative

control isolate K. aerogenes G1614 are shown.

https://doi.org/10.1371/journal.pone.0220586.g001
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Results

Carbapenemase detection

All 262 CPOs yielded positive tests within 90 minutes (100% sensitivity) and only one of 67

non-CPOs yielded a falsely positive result (98.5% specificity) (Table 2). The carbapenemases of

74.1% of the CPOs were detected within seconds to 10 minutes and 98.1% were detected

within 1 hour. Notably, KPC-producing P. aeruginosa isolates typically yielded positive results

within 1 minute, 91.3% of isolates producing an OXA carbapenemase were positive within 60

minutes, and positive results were obtained with isolates of high diagnostic difficulty such as

KPC-producing A. baumannii, KPC-4-producing K. pneumoniae and IMP-27-producing Pro-
teus mirabilis. The single falsely positive result occurred with an AmpC-producing E. cloacae
isolate.

Carbapenemase classification

As shown in Table 2, 99% of isolates producing a single carbapenemase were correctly classi-

fied. All class A and B carbapenemases were classified correctly and 42 of the 44 class D carba-

penemases were classified correctly. Two OXA-48-producing K. pneumoniae isolates yielded a

positive but unclassified result.

Of the isolates that produced two carbapenemases, the three isolates that produced NDM

plus a class D carbapenemase yielded a class B classification. The isolate that produced two

class D carbapenemases yielded a class D classification, and the two isolates that produced

KPC-18 + VIM-1 yielded a class D classification.

Discussion

The high mortality and continuing emergence of resistance of CPOs make it essential that lab-

oratories provide a strong diagnostic contribution in meeting the need to reduce the mortality

and control the spread of these pathogens. Rapid, accurate CPO detection can facilitate

prompt, appropriate, targeted therapy and effective infection control measures [24]. Detection

tests that require overnight incubation are too slow for therapeutic and infection control needs

but may be suitable for epidemiological studies [25, 26]. It is also important to use detection

tests that minimize falsely positive results as these can have adverse consequences for patients

such as being repeatedly subjected to unwarranted infection control precautions and receiving

suboptimal, toxic therapy such as polymyxins [27].

It is now vitally important that laboratories rapidly classify carbapenemases to inform clini-

cians about the potential therapeutic utility of the new β-lactamase inhibitor combinations.

Identification of class A carbapenemases indicates that the currently FDA-approved agents,

ceftazidime/avibactam, meropenem/vaborbactam and imipenem/relebactam, are potential

therapeutic options, while the detection of a class B carbapenemase contraindicates these

Table 1. Guide to Interpretation of carbapenemase classification tests.

Carbapenemase Classification Solution

A B C

Class A Positive Negative Positive

Class B Positive Positive Negative

Class D Positive Positive Positive

Positive Untyped Positive Negative Negative

Negative Negative Not applicable Not applicable

https://doi.org/10.1371/journal.pone.0220586.t001
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Fig 2. Classification test for Class A CPO, KPC-producing K. pneumoniae BAA 1705 after 10 minutes incubation. Tubes A

and C are positive (yellow). Tube B is negative (red). Tube A contains only the test solution and indicates that the isolate is

carbapenemase-positive. Tubes B and C contain the test solution plus inhibitors of Class A and B carbapenemases respectively.

https://doi.org/10.1371/journal.pone.0220586.g002
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Fig 3. Classification test for Class B CPO, NDM-5-producing E. coli CDC 0150 after 1 minute incubation showing positive

results in tubes A and B and a negative result in tube C.

https://doi.org/10.1371/journal.pone.0220586.g003
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Fig 4. Classification test for Class D CPO, OXA-23-producing A. baumannii G1703 after 30 minutes incubation showing

positive results in all three tubes.

https://doi.org/10.1371/journal.pone.0220586.g004
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agents. Classification can be a clinically powerful source of information about whether or not

these agents are contenders for therapy but it does not eliminate the need for antibiotic suscep-

tibility testing [16].

Carbapenemase classification has a second vital role in antibiotic stewardship for preven-

tion of emergence of resistance to the new β-lactamase inhibitor combinations. These agents

provide the opportunity to safely treat patients with CPO infections and avoid highly toxic

agents such as the polymyxins and aminoglycosides. It is of critical importance to ensure that

the currently approved new β-lactamase inhibitor combinations are not overused and select

resistance, not only to themselves, but possibly also to the other β-lactamase inhibitor combi-

nations currently in development. In particular, the potential for development of resistance to

avibactam [28, 29] is a concern as this may impart cross-resistance to the related diazobicy-

clooctane analogs, relebactam and nacubactam. Similarly, resistance to vaborbactam may

impart cross-resistance to its chemically related counterpart, VNRX-5133. Carbapenemase

classification is a tool that can help to prevent overuse and guide appropriate use of the current

new inhibitor combinations so that they are used almost solely for infections caused by class A

CPOs and are restricted for infections by pathogens with other resistance mechanisms. This is

vital because, despite the efficacy of these agents for class A CPO infections [30–34], gram-neg-

ative resistance continues to emerge [25, 35–40] and threatens our current window of oppor-

tunity for treating CPO infections with agents less toxic than those previously available.

A strength of this study was the variety of genotypes and phenotypes tested that included

isolates of considerable diagnostic difficulty. Limitations were the non-blinded nature of the

carbapenemase classification testing and the failure to include a complete range of types and

levels of expression of carbapenemases and other β-lactamases. It is now necessary to deter-

mine the accuracy of classifications in blinded testing, to extend the range of carbapenemases

and non-carbapenemases tested, and to test a larger collection of isolates that produce more

than one class of carbapenemase. Based on the small sample of dual carbapenemase produc-

ers in this study it would be premature to make conclusions about one type of carbapenemase

always being phenotypically dominant over another in classification tests. Phenotypic

classification results for dual carbapenemase producers may depend not only on the enzyme

classes but also on the relative amounts of activity of the co-produced enzymes. It was, never-

theless, a promising finding that for isolates producing a single carbapenemase CPO Com-

plete correctly classified 99% of carbapenemases and that no class B CPOs were misclassified

as class A.

Table 2. CPO detection and classification test results.

CPO Detection No. of Isolates Positive Negative

Class A 125 125 0

Class B 87 87 0

Class D 44 44 0

Dual Carbapenemases 6 6 0

All CPOs 262 262 (100%) 0 (0%)

Non-CPOs 67 1 (1.5%) 66 (98.5%)

Classification

Single Carbapenemase CPOs

No. of Isolates Correct Incorrect or Unclassified

Class A 98 98 0

Class B 63 63 0

Class D 44 42 2

All 205 203 (99.0%) 2 (1.0%)

https://doi.org/10.1371/journal.pone.0220586.t002
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In conclusion, in this study the CPO Complete test detected all carbapenemases rapidly,

with a 10-minute detection rate of 74.1%. The speed and accuracy of the test, coupled with its

potential to classify carbapenemases, and its applicability not only to Enterobacteriaceae and

P. aeruginosa but also to A. baumannii, can be applied successfully to meeting what has

become one of the world’s most urgent infectious disease challenges [3, 8, 14, 26, 41–49]. In

addition to its accurate performance, the test has potential for incorporation in currently avail-

able automated susceptibility tests. Unlike molecular probes that may be able to detect only a

small number of molecular targets and unable to distinguish between carbapenemase and

non-carbapenemase blaKPC variants, this and other phenotypic tests are likely to become

increasingly useful as KPC variants continue to emerge [24, 40].

Furthermore, CPO Complete can be stored lyophilized at temperatures up to 38˚C making

it amenable to implementation in both limited resource and technologically advanced labora-

tories. In all, these features suggest that CPO Complete can contribute to the challenges of

improving patient management, reducing CPO-associated mortality, and containing the

spread of CPOs.

Supporting information

S1 Table. Characteristics of isolates and problematic results. Table provides details of indi-

vidual isolates–identify, resistance mechanism(s), Ambler classification of carbapenemases,

incorrect test results.
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