
Identification of Candidate Gene Regions in the Rat by
Co-Localization of QTLs for Bone Density, Size, Structure
and Strength
Sofia Lagerholm1, Hee-Bok Park2, Holger Luthman2, Marc Grynpas4, Fiona McGuigan1, Maria

Swanberg1, Kristina Åkesson1,3*
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Abstract

Susceptibility to osteoporotic fracture is influenced by genetic factors that can be dissected by whole-genome linkage
analysis in experimental animal crosses. The aim of this study was to characterize quantitative trait loci (QTLs) for
biomechanical and two-dimensional dual-energy X-ray absorptiometry (DXA) phenotypes in reciprocal F2 crosses between
diabetic GK and normo-glycemic F344 rat strains and to identify possible co-localization with previously reported QTLs for
bone size and structure. The biomechanical measurements of rat tibia included ultimate force, stiffness and work to failure
while DXA was used to characterize tibial area, bone mineral content (BMC) and areal bone mineral density (aBMD). F2
progeny (108 males, 98 females) were genotyped with 192 genome-wide markers followed by sex- and reciprocal cross-
separated whole-genome QTL analyses. Significant QTLs were identified on chromosome 8 (tibial area; logarithm of odds
(LOD) = 4.7 and BMC; LOD = 4.1) in males and on chromosome 1 (stiffness; LOD = 5.5) in females. No QTLs showed significant
sex-specific interactions. In contrast, significant cross-specific interactions were identified on chromosome 2 (aBMD;
LOD = 4.7) and chromosome 6 (BMC; LOD = 4.8) for males carrying F344mtDNA, and on chromosome 15 (ultimate force;
LOD = 3.9) for males carrying GKmtDNA, confirming the effect of reciprocal cross on osteoporosis-related phenotypes. By
combining identified QTLs for biomechanical-, size- and qualitative phenotypes (pQCT and 3D CT) from the same
population, overlapping regions were detected on chromosomes 1, 3, 4, 6, 8 and 10. These are strong candidate regions in
the search for genetic risk factors for osteoporosis.
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grant to Lund University Diabetes Center, Knut och Alice Wallenbergs Stiftelse (http://www.wallenberg.com/kaw/), Malmö University Hospital Research
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Introduction

Osteoporosis is a common multifactorial disorder characterized

by reduced bone mineral density (BMD) and compromised bone

quality, with micro-architectural deterioration leading to an

increased susceptibility to fracture [1]. The ability of bone to

resist fracture is determined by several highly heritable phenotypes

including BMD, bone size, bone structure and strength [2,3,4].

Identification of genes and pathways regulating these phenotypes

and thereby underlying bone strength could provide valuable

insight regarding susceptibility to osteoporosis and fracture risk.

Translational genetics starting with experimental models is a

valuable tool to dissect complex genetic traits. By using inbred

strains and crosses between strains, genetic heterogeneity is

dramatically reduced and experimental tests, such as destructive

testing of bone, can be performed. One example of successful

translational genetics is the identification of the arachidonate

lipoxygenase 15 (Alox15) gene encoding an enzyme that modifies

polyunsaturated fatty acids, as a candidate for osteoporosis. Mice

deficient in Alox15 were found to have increased bone mass [5]

and subsequent association analyses in humans have shown

association with BMD for SNPs in the human orthologues

ALOX12 and ALOX15 [6,7].

Most experimental genetic studies on bone have been

performed in the mouse [8,9,10,11,12], but observed variations

in BMD, bone structure, and fragility between different inbred rat

strains [13], together with progress in mapping the rat genome has

established the rat as a useful genetic model for skeletal fragility

[14,15,16]. Rat models offer several advantages in studying

biomechanical phenotypes reflecting the ability of bone to resist

fracture, since the larger bone size of rats compared to mice allows

greater precision of both structural and biomechanical measure-

ments. The biomechanical three-point bending test (3PB) used in

this study provides clinically relevant phenotypes comparable to

fracture in humans [17]. Fracture susceptibility is affected by a

number of conditions including diabetes, where hyperinsulinemia
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has anabolic effects and hypoinsulinemia is associated with bone

loss and increased risk of fracture [18,19,20,21,22]. Diabetes is,

however, less extensively studied with regard to fracture compared

to many other conditions. The inclusion of a rat strain with

diabetes-associated phenotypes in linkage analysis of bone

phenotypes thus offers the possibility to identify shared mecha-

nisms e.g. by identifying overlapping quantitative trait loci (QTLs)

for these traits.

In our previous studies using reciprocal F2 crosses from inbred

diabetic GK and non-diabetic F344 rats, we reported results from

a genome-wide screen for size, trabecular and cortical bone

structure of tibia [23,24]. We identified several significant QTLs

for both bone size and structure and additionally found evidence

of sex- and reciprocal cross-specific interactions with bone traits.

The reciprocal crosses differ with regard to grand-maternal origin,

either GK or F344. This has epigenetic effects on the F2 offspring,

but also results in the inheritance of different mitochondria.

Mitochondria have small, circular genomes encoding 13 proteins

taking part in the electron transport chain. The mitochondrial

encoded proteins need to interact with proteins encoded by genes

in the cell nucleus to function correctly. Polymorphisms in nuclear

or mitochondrial DNA affecting such interactions could give rise

to an observed reciprocal effect i.e. differing phenotype, depending

on the combination of nuclear and mitochondrial alleles in the F2

population. Of note, the GK and F344 rat strains used differ in

more than 100 positions in their mtDNA [25,26]. The aims of this

study were to identify QTLs linked to two-dimensional dual-

energy X-ray absorptiometry (DXA) and bone biomechanical

phenotypes in reciprocal rat F2 crosses and to combine these with

previously reported QTLs for bone size and structure. This study

thus addresses all the primary skeletal determinants of fracture risk

including areal BMD (aBMD), bone size, structure and strength

and further delineates the involvement of sex- and reciprocal cross

on the genetic regulation of bone strength related phenotypes.

Materials and Methods

Animals
Rat strains GK/KyoSwe (GK) and F344/DuCrlSwe (F344)

were maintained through brother-sister breeding. Briefly, two

separate F2 intercrosses were generated: one originating from

grand-maternal GK and grand-paternal F344 (cross 1, (GK

female6F344 male) F1), and the other from grand-maternal F344

and grand-paternal GK (cross 2, (F344 female6GK male) F1).

The two groups of reciprocal F1 progeny were mated separately to

yield two reciprocal F2 populations. The rats were maintained

under controlled conditions as reported previously [23]. F2

progeny were sacrificed at a mean age of 215 days and body

weight and length from nose tip to tail-base were recorded. The

left tibia was dissected free of fat and muscle and stored in 70%

ethanol at 220uC prior to biomechanical testing and analysis of

skeletal phenotypes. Genomic DNA was purified from rat liver as

previously described [23]. All experiments were performed with

approval from the local Animal Ethics Committee; Stockholm’s

norra djurförsöksetiska nämnd (N189/97), Malmö/Lunds djur-

försöksetiska nämnd (M215-01 and M143-04).

Bone strength-related phenotypes
Biomechanical testing (3PB test): Prior to testing, tibia were

thawed and equilibrated at room temperature (,2 hours). Tibia

were positioned on the lower supports of a three-point bending

fixture (a span of ,16 mm) and held in a stable position by a 2N

preload. Using an Instron 4465 materials testing machine (Instron

Inc., Canton, MA, USA) with a 1KN load cell, the bones were

loaded at their midpoint at a deformation rate of 1 mm/min until

fracture. Load-displacement data representing structural or

extrinsic properties of the bone were calculated from load-

displacement curves and collected using LABView data acquisition

software [27]. Parameters included: ultimate force (N; height of

curve) reflecting the maximum load the bone can absorb before

failing (i.e. bone strength), stiffness (N/mm; initial slope of the load

displacement curve), and work to failure (mJ; area under curve)

reflecting the total energy the bone can absorb before fracture.

Prior to mechanical testing, whole tibiae were scanned by DXA

using the PIXImusTM densitometer (GE Lunar, Madison, WI).

Bones were precisely positioned at the center of the X-ray cone

beam and scanned in air on the Plexiglas platform provided. A

grid on the Plexiglas platform allowed the position of each tibia to

remain consistent between samples. aBMD was automatically

calculated from the bone mineral content (BMC) and the user-

defined measured region of bone area [28]. The instrument was

calibrated daily using the manufacturer’s phantom. Additionally,

we refer to previously reported phenotypes obtained from three-

dimensional computed tomography (3D CT) and peripheral

quantitative CT (pQCT) [23,24].

Statistical analysis
All phenotypes were normally distributed or log-transformed to

obtain a normal distribution. To compare the bone phenotypes

between males and females and between the reciprocal crosses,

one-way ANOVA was used. The level of significance was set at

p,0.05. Unless stated, p-values are nominal. Phenotypes were

adjusted for reciprocal cross, age, litter size, and body-weight using

regression analyses. Residuals were checked for normality and

used in the QTL analysis. To account for gender attributed bone

quality differences, the residuals were computed separately for

each sex. Correlations between all measured bone phenotypes in

the F2 progeny were evaluated using Pearson’s correlation

coefficients.

Genotyping and linkage analysis of quantitative traits
A total of 192 genome-wide microsatellite markers at a spacing

of 10 cM, were genotyped in the F2 progeny (108 males, 98

females) and a genetic map was generated as described previously

[23]. Linkage analysis was performed for each sex separately. In

order to identify possible interaction differences between loci in the

nuclear genome and mitochondrial DNA, the sex separated F2

progeny were also separated on the basis of reciprocal cross. QTLs

on autosomes were identified employing MAP MANAGER/QTX

v. b20 [29]. R/qtl was used to include the X chromosome in the

linkage analysis and to confirm all reported autosomal QTLs [30].

Mapping QTLs on the X chromosome was conducted for each sex

separately without further separation by cross. Permutation tests

were performed to establish genome-wide significance levels by

randomization of the phenotypic data in relation to genotypic data

[31]. Significant (i.e. genome-wide false-positive rate of ,5%) and

suggestive (i.e. genome-wide false-positive rate of ,63%) linkage

was employed to establish genome-wide thresholds [32,33]. The

likelihood ratio (LR) for suggestive linkage was 10.7 (logarithm of

odds (LOD) = 2.3), and for significant linkage the LR range was

17.4–17.7 (LOD = 3.8). The approximate size of the QTL was

defined as the region covered by a 1-LOD reduction for any of the

bone traits.

Evaluation of sex- and reciprocal cross specific QTLs
Evaluation of sex- and reciprocal cross specific QTLs were

performed for QTLs that reached significant linkage (LOD$3.8),

following the method described previously [23]. To identify sex-

Co-Localization of Osteoporosis-Related QTLs
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specific QTLs, the LOD score differences between males and

females across the genome were assessed (DLODsex score). We

applied a permutation method to evaluate sex-specific QTLs,

where thresholds were established using two randomly selected

equal sized subsets of males and females [34]. The randomization

was conducted within each cross. Subsequently, the bone

phenotypes in the two subsets were permutated to calculate

DLODsex scores across the genome. Genetic markers on the X

chromosome were not included in the permutation tests. The

average DLODsex score for genome-wide significant sex-specificity

at suggestive (a= 0.63) and significant (a= 0.05) level were 2.3 and

3.7, respectively.

Within each sex, subsequent reciprocal cross-separated linkage

analyses were conducted to identify cross-specific QTLs. The

LOD score differences between cross 1 and cross 2 (DLODcross

score) across the genome were evaluated. Thresholds of the cross

specific QTLs were computed by permutation using two randomly

selected equal sized cross 1 and cross 2 subsets. The average

DLODcross score for genome-wide significant cross-specificity at

suggestive (a= 0.63) and significant (a= 0.05) level were 2.4 and

3.9, respectively.

To confirm the sex- and cross-specific QTLs identified with the

DLOD method, likelihood ratio tests were performed comparing a

full model containing a QTL6sex interaction term/cross interac-

tion term and a reduced model without the interaction term. Both

models used male and female data for sex interaction and data

from the two crosses in each sex for cross interaction.

Residuals of each phenotype were examined for normality using

normal probability plots. The level of significance for a specific

QTL interaction with sex or cross was set at p,0.05.

A statistical power calculation for sample size, using the method

of Lynch and Walsh [35] was performed as described previously

[23]. Using a LOD score of 2.4 to control false positive detection

of linkage, a sample size of 52 is necessary to achieve 80%

statistical power for detecting a QTL with R2 value (i.e. fraction of

phenotypic variance explained) of 0.25.

Results

Influence of sex and reciprocal cross on biomechanics
and DXA

Strong sexual dimorphism was observed for all biomechanical

and DXA traits in the F2 progeny with significantly higher mean

values in males. In contrast, no differences were observed between

phenotypic mean values in the two reciprocal F2 crosses (Table 1).

QTLs linked to biomechanics
Results from the sex- and reciprocal cross separated QTL

analyses for biomechanical phenotypes of tibia are summarized in

Table 2. No significant linkage to biomechanical properties was

identified in males when both reciprocal crosses were combined.

When separating males by reciprocal cross, a QTL on

chromosome 15 linked to ultimate force reached genome-wide

significance in cross 1 with GK grand-maternal origin. This QTL

met the criteria for genome-wide cross-specificity at the suggestive

level (DLODcross$2.4), and the likelihood ratio test confirmed a

cross-specific interaction for this locus (LR = 10.4, p = 0.005)

(Fig. 1B). An overlapping QTL in females from cross 2 was

suggestively linked to work to failure (Table 2).

The maximum LOD-score for biomechanical phenotypes in

females was 5.5 on chromosome 1 (18–43 cM) with significant

linkage to stiffness. This locus also showed linkage to ultimate force

at the suggestive level. The chromosome 1 QTL linked to stiffness

reached genome-wide significance for female-specific interaction

with DLODsex evaluation (DLODsex$3.7, results not shown) but

did not reach significance in the likelihood ratio test. Suggestive

QTLs for biomechanical phenotypes are reported in table S1.

QTLs linked to DXA phenotypes
Results from the sex- and reciprocal cross separated QTL analysis

for DXA traits are summarized in Table 2. In all males, significant

linkage to BMC and to area was identified on chromosome 8 (35–

59 cM). The chromosome 8 BMC QTL indicated male-specific

Table 1. Biomechanical and DXA data from tibia of female and male F2 progeny generated from GK and F344 in two reciprocal
crosses.

Sex Effects Reciprocal Cross Effects

Irrespective of cross Females Males

Females
(n = 98)

Males
(n = 108)

% Difference
(p)

Cross 1
(n = 48)

Cross 2
(n = 50)

% Difference
(p)

Cross 1
(n = 66)

Cross 2
(n = 42)

% Difference
(p)

General Characteristics

Body weight (g) 248627 426644 242 (,1024) 247625 248628 20.4 (NS) 423644 423645 20.05 (NS)

Body length (cm) 21.360.7 24.960.8 214 (NS) 21.360.7 21.260.8 0.5 (NS) 24.960.8 24.960.7 ,0 (NS)

Tibia length (mm) 38.961.3 43.861.3 211 (,1024) 39.161.2 38.761.3 1.0 (NS) 43.961.3 43.661.2 0.7 (NS)

3- Point Bending Test

Ultimate force (N) 73.4610.0 118615.3 238(,1024) 73.469.4 73.3610.6 0.1 (NS) 118615.3 118615.5 ,0 (NS)

Work to failure (mJ) 42.8612.0 73.6627.3 242(,1024) 44.3613.6 41.4610.3 7.0 (NS) 72.6626.7 75.1628.4 23.3 (NS)

Stiffness (N/mm) 205635.6 340665.8 240(,1024) 207635.4 204636.0 1.5 (NS) 334656.6 348678.3 24.0 (NS)

DXA

aBMD (g/cm2) 0.1660.01 0.1860.01 211 (,1024) 0.1660.01 0.1660.01 ,0 (NS) 0.1860.008 0.1860.009 ,0 (NS)

BMC (g) 0.3160.04 0.4460.05 230(,1024) 0.3160.03 0.3060.04 3.3 (NS) 0.4460.05 0.4460.05 ,0 (NS)

Projected area (cm2) 1.9260.14 2.4660.17 222(,1024) 1.9460.13 1.9060.15 2.1 (NS) 2.4660.18 2.4760.16 20.4 (NS)

Phenotypes are uncorrected and presented as mean 6 sd. Cross 1 originate from grand-maternal GK- and cross 2 from grand-maternal F344 rats.
Percentage difference (female compared to male or cross 1 compared to cross 2) is indicated, and nominal p-values determined by ANOVA are given when p,0.05.
doi:10.1371/journal.pone.0022462.t001
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Figure 1. Cross-specific QTLs in males. (A) QTL for aBMD on chromosome 2 and (B) QTL for ultimate force on chromosome 15. Cross 1 represents
males with GKmtDNA and cross 2 represents males with F344mtDNA.
doi:10.1371/journal.pone.0022462.g001

Table 2. QTLs linked to biomechanics and DXA phenotypes in male and female F2 rats. Suggestive QTLs are reported if
overlapping a significant QTL.

LOD scores

Chr QTL region Position (cM) Phenotype Male (n = 108)
Cross 1
(n = 66)

Cross 2
(n = 42)

Biomechanics 15 D15Rat109-D15Mit2 10–32 Ult force 1.8 3.9b,c 0.2

DXA 2 D2Mit24-D2Mgh5 45–59 BMC 2.2 0.4 2.8a

2 D2Mit24-D2Mgh5 45–57 aBMD 2.5a 0.8 4.7b,d

6 D6Mgh11-D3Mit19 25–58 BMC 2.5a 0.8 4.8b,d

6 D6Mgh11-D3Mit19 30–60 Area 2.8a 1.3 3.1a

8 D8Mit3-D8Mit2 35–58 BMC 4.1b 1.3 2.9a

8 D8Mit2-D8Mgh4 43–59 Area 4.7b 1.4 3.3a

Female (n = 98) Cross 1 (n = 48)
Cross 2
(n = 50)

Biomechanics 1 D1Rat7-D1Mit9 17–40 Ult force 3.6a 2.5a 2.5a

1 D1Rat7-D1Mit9 18–43 Stiffness 5.5b 4.7b 3.1a

15 D15Mit2-Bmyo 25–37 Work to fail 0.5 0.1 2.8a

DXA 4 D4Mit9-D4Mit24 37–49 aBMD 1.8 3.7a 0.3

4 D4Mit9-D4Mit24 36–48 BMC 1.7 5.1b 0.3

X DXRat20-DXRat103 52–74 Area 3.9b

QTL size defined as the region covered by a 1-LOD reduction for any of the bone traits.
aGenome-wide suggestive QTL (LOD$2.3).
bGenome-wide significant QTL (LOD$3.8).
cSuggestive cross-specific QTLs (DLODcross$2.4) validated by likelihood ratio (LR) tests for QTL-by-cross interaction (p,0.05).
dSignificant cross-specific QTLs (DLODcross$3.9) validated by likelihood ratio (LR) tests for QTL-by-cross interaction (p,0.05).
doi:10.1371/journal.pone.0022462.t002
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interaction (DLODsex.2.3, results not shown) but was not confirmed

in the likelihood ratio test. In males with F344 grand maternal origin

(cross 2), significant linkage was detected on chromosome 2 for

aBMD, and on chromosome 6 for BMC. The QTL on chromosome

2 also overlapped with a suggestive QTL linked to BMC in cross 2

males. The significant QTLs on chromosome 2 (aBMD) (Fig. 1A) and

6 (BMC) reached genome-wide significance in the DLODcross

evaluation (DLODcross$3.9) and cross-specific interactions were

confirmed for both by likelihood ratio tests (LR = 10.4, p = 0.005

and LR = 10.9, p = 0.004) respectively.

In females, QTL analysis on the X chromosome without

separation by cross identified a significant QTL linked to tibial

area. The cross-separated QTL analysis revealed significant

linkage to BMC on chromosome 4 (36–48 cM) in females with

GK grand maternal origin (cross 1). An overlapping region also

showed suggestive linkage to aBMD in cross 1. The QTL

identified on chromosome 4 significantly linked to BMC reached

genome-wide significance in the DLODcross evaluation (DLOD-

cross$3.9), but did not reach significance for cross-specific

interaction in the likelihood ratio test. Suggestive QTLs for

DXA phenotypes are reported in table S1.

Co-allelic effects
The GK allele had an increasing effect on genotypic mean

values for the majority of the QTLs significantly linked to both

biomechanical and DXA traits in males and females (Table 3).

There were however also heterosis-like effects, where the

heterozygous group carrying one GK- and one F344 allele

differed significantly from both homozygous groups and had

higher mean aBMD (marker D2Mgh5) and ultimate force (marker

D15Mit2).

Co-localization of QTLs for bone strength-related
phenotypes

By combining the QTLs identified in this study with QTLs

linked to other bone-related phenotypes, overlapping or co-

localized QTLs for biomechanical properties (3PB), bone density

(DXA) and/or bone quality (pQCT and 3D CT) phenotypes were

detected on chromosomes 1, 3, 4, 6, 8 and 10 (Table 4). In order

to increase understanding of the observed genetic co-localizations,

correlation coefficients between phenotypes mapping to the same

region were evaluated. A large region on chromosome 1 (17–

79 cM) displayed linkage to multiple phenotypes obtained from all

four methods (3PB, DXA, pQCT and 3D CT) in both males and

females. The biomechanical phenotypes ultimate force and

stiffness were strongly correlated (0.64–0.88) with the other

phenotypes linked to this region except for cortical volumetric

BMD (cortvBMD) and metaphyseal volumetric BMD (me-

tavBMD;20.02–0.24). Similar patterns were seen at other loci,

where most co-mapped phenotypes were correlated with each

other, with exceptions mainly attributed to biomechanical

phenotypes. For phenotypes linked to chromosome 3 (3–24 cM),

ultimate force strongly correlated with 3D CT and pQCT

phenotypes (0.71–0.88), while correlations with total bone mineral

content (totBMC) and metaphyseal volumetric bone mineral

density (metavBMD) were low (0.04–0.14). The QTLs that co-

localized to chromosome 4 (36–74 cM) were measured by 3PB,

2D DXA and 3D CT and these phenotypes were strongly

correlated (0.63–0.96) with the exception of work to failure which

demonstrated low correlation with the other phenotypes (0.07–

0.26). The same pattern was observed for chromosome 8 (35–

63 cM) with overlapping QTLs from all four methods, but

moderate correlations between work to failure and the other co-

mapped phenotypes. In contrast, strong correlations (0.79–0.91)

were observed for all phenotypes that co-localized to chromosome

6 (25–60 cM) and to chromosome 10 (73–91 cM) (0.45–0.93),

regions where biomechanical phenotypes did not co-map.

Discussion

In this study, we identified multiple QTLs for biomechanical

and two-dimensional DXA phenotypes in F2 progeny of GK and

F344 rats and confirmed bone QTL interactions with reciprocal

cross. Previously, we reported results from a genome-wide screen

for bone size and trabecular and cortical bone structure of tibia in

the same F2 progeny [23,24]. The biomechanical testing reported

here provides bone phenotypes directly reflecting the ability of

bone to resist fracture. We have thus addressed the majority of

clinically important bone properties related to bone strength and

fracture susceptibility.

By combining QTLs linked to distinct bone phenotypes

measured by separate methods, overlapping chromosomal regions

linked to bone size, structure and strength were identified. Two

large regions on chromosomes 1 (17–79 cM) and 8 (35–63 cM)

displayed linkage to multiple phenotypes obtained from four

different methods (3PB, DXA, pQCT and 3D CT) in both males

and females. The regions with overlapping QTLs influenced

different phenotypes, the majority of which were correlated at a

Table 3. Genotypic mean values for biomechanical- and DXA phenotypes with significant linkage to chromosomes 1, 2, 4, 6, 8, 15,
and X.

Chr Peak Marker Phenotype GK/GK GK/F344 F344/F344 (p-value) ANOVA

1 D1Mgh2 StiffnessF 243.5631.5 199.6634.1 184.2625.8 7.2 E-07

1 D1Mit9 StiffnessF,Cr1 249.7636.1 199.6630.2 190.3630.9 0.00076

2 D2Mgh5 aBMDM,Cr2 0.1760.01 0.1860.008 0.1760.007 0.024

4 D4Mit9 BMCF,Cr1 0.3060.04 0.3260.04 0.3160.04 NS

6 D3Mit19 BMCM,Cr2 0.4660.05 0.4460.04 0.4060.05 NS

8 D8Mit2 BMCM 0.4460.04 0.4560.04 0.4360.05 NS

8 D8Mit2 AreaM 2.4560.13 2.5060.16 2.4060.19 NS

15 D15Mit2 Ult forceM,Cr1 110.867.94 126.8614.3 116.3615.6 0.0026

X DXRat20 AreaF 1.8960.10 1.9060.13 1.9460.19 NS

Values are means 6 SD. M = males; F = females; Cr1 = Cross 1; Cr2 = Cross 2.
doi:10.1371/journal.pone.0022462.t003
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population level. Exceptions mostly represented biomechanical

phenotypes. As an example, overlapping QTLs on chromosome 3

included the biomechanical phenotype ultimate force which was

strongly correlated with the dimensional phenotypes 3D CT- and

pQCT but only weakly correlated with totBMC and metavBMD.

The co-mapping of these phenotypes was thus not due to

phenotype correlation, but represents different aspects of the

QTLs. Co-localization of QTLs for uncorrelated phenotypes

could reflect the existence of distinct sub-loci. Conversely, highly

correlated co-mapped bone phenotypes could reflect pleiotropic

gene effects with dependence between phenotypes. Thus, the

observed co-localizations of QTLs are unlikely to be explained by

phenotypic correlation alone and the regions could each contain

either a single QTL with pleiotropic effects, or several QTLs that

influence the correlated phenotypes independently. Combining

QTLs from different methods allows greater characterization of

the gene regions, indicating whether they are likely to contain one

or several candidate genes and if these are likely to participate in

the same biological processes. Since the biomechanical properties

of bone are the sum of many different characteristics, the lower

correlation of these traits to specific quantitative and qualitative

traits was expected.

The notion that QTLs for bone phenotypes interact specifically

with sex have been reported previously [8] but the observed

interactions between nuclear QTLs for several bone phenotypes

and reciprocal crosses, that differ with regard to mitochondrial

DNA sequence, demonstrates a new and important aspect to be

considered when interpreting the genetics of phenotypes related to

bone strength.

In this study, the reciprocal cross-separated QTL analysis in

males allowed identification of cross-specific interactions for three

QTLs on chromosomes 2 (aBMD), 6 (BMC) and 15 (ultimate

force). The QTLs on chromosomes 2 and 6 were identified in all

males at a suggestive level but showed genome-wide significant

linkage only in the cross with F344 grand maternal origin, while

the QTL on chromosome 15 was only detected in the cross with

GK grand maternal origin and would not have been detected in

the combined sample including both reciprocal crosses. This

illustrates the importance of sub-group analysis and of considering

reciprocal cross effects in order to improve the detection of

candidate genes for fracture susceptibility.

The respective reciprocal cross did not affect the phenotypes at

a population level, as no significant differences were seen between

the phenotypic mean values between cross 1 and cross 2 in either

males or females (Table 1). Instead, the reciprocal effects were seen

as interactions with specific QTLs and thus provide support for

nuclear-mitochondrial interactions to be involved in the genetic

regulation of bone phenotypes. Notwithstanding the mounting

evidence for mitochondrial interactions involved in complex

diseases such as osteoporosis and type-2 diabetes, other factors

such as genomic imprinting, the presence of QTLs on sex

chromosomes and maternal environment, are theoretical expla-

nations for reciprocal cross specific inheritance and may

contribute to the observed effects as previously discussed [23].

Additionally, since all cross-specific QTLs in this study were

identified in males, we cannot exclude the possibility that

interactions with a Y chromosome linked locus could explain the

observed reciprocal cross effect. However, the more than 100

variant positions in both coding and non-coding regions that have

been identified in GK mitochondrial DNA compared to F344

[25,26], support mitochondrial genotype as a possible factor

behind the observed reciprocal cross effect in this study. The

reciprocal cross interactions could thus reflect functional interac-

tion between nuclear- and mitochondrial encoded proteins.

Although the candidate regions are large and contain many

genes, it is interesting to note that the QTL regions on

chromosome 4 and 6 that demonstrated significant reciprocal

cross interaction contain genes encoding mitochondrial proteins.

These include mitochondrial ribosomal protein S33 [Mrps33], the

NADH dehydrogenase (ubiquinone) 1 beta subcomplex 2

[Ndufb2] and glutathione S-transferase kappa 1 [Gstk1] on

chromosome 4 and ATP synthase subunit s [Atp5s] and Acyl-

coenzyme A thiosterase 2 [Acot2] on chromosome 6. In addition,

the region on chromosome 4 overlaps a previously identified QTL

strongly linked to femoral neck structure phenotypes in female

(F3446LEW) F2 rats [14].

Several QTLs identified in this study co-localized with our

previously reported QTLs linked to tibial bone phenotypes obtained

from pQCT and 3D CT [23,24] and were in many cases influenced by

sex- and reciprocal cross (Table 4). The region on chromosome 1 (17–

79 cM) linked to multiple phenotypes obtained from all four methods

(pQCT, 3D CT, 3PB and DXA) in both males and females showed

predominantly higher significance in the reciprocal cross 1 carrying

GK mtDNA. Several QTLs linked to cortical bone traits in other

combinations of rat strains have been mapped to this region [14,16],

emphasizing the importance of this large chromosome region for

variation in bone traits between individuals. The osteoporosis

candidate genes transforming growth beta 1 (TGFB1) [36] and

estrogen receptor alpha (ESR1) [37] are both localized within this

locus. Interestingly, QTLs for fasting glucose also map to this region

[38] making it a strong candidate for focused investigation of possible

shared or linked polymorphisms regulating diabetes- and osteoporosis-

related phenotypes. To clarify shared mechanisms between diabetes

and osteoporosis, such analyses could include congenic strains and/or

advanced intercross lines. It is recognized, as a possible limitations, that

this chromosomal region is large and likely to harbor several sub-loci.

Several established osteoporosis candidate genes are also found

within the human regions syntenic to the chromosome 4 QTL linked

to multiple rat bone strength phenotypes. These include the

calcitonin receptor (7q21.3), collagen 1 alpha 2 (7q21.3) and WNT

2 and WNT 12 from the WNT signalling pathway. The cytokine

macrophage migration inhibitory factor (MIF) gene, recently shown

to be associated with bone loss in elderly women [39] is also located

within this region. The human regions syntenic to the rat

chromosome 6 QTL contains around 140 genes. This region is too

large to pinpoint candidate genes, but interestingly contains genes

which contribute to skeletal development e.g. the transcriptional

regulator TWIST1 (7p21) and GDF7 (2p24), a member of the TGFB

superfamily. Further delineation of the complex genetic architecture

of bone phenotypes for fracture susceptibility would ideally involve a

genome screen for epistatic interactions between the identified loci.

However, such analysis requires a larger sample size than was

available in this study. Congenic strains or advanced intercross lines

are possible tools for future fine mapping of the identified QTLs, and

would allow for positional cloning of candidate genes and epistatic

interaction analyses, respectively.

In summary, we have identified QTLs for biomechanical and two-

dimensional DXA phenotypes influencing bone strength with

interaction from reciprocal cross in an F2 intercross between GK

and F344 rats. The observed interaction between nuclear QTLs and

reciprocal cross for numerous bone associated phenotypes supports

the potential for mitochondrial effects on bone. By combining data

from this and our previous studies, we were able to identify specific

but also overlapping chromosomal regions for bone size, structure

and strength. These findings illustrate the importance of analysing

different determinants contributing to bone strength in order to detect

candidate genes or pathways for bone regulation, from the macro- to

the micro-structural level. Of particular interest is the identified QTL

Co-Localization of Osteoporosis-Related QTLs
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region on chromosome 1 linked to many bone phenotypes and also

reported to affect fasting glucose. This region is thus a strong

candidate for the identification of genes contributing to bone

regulation and potentially type-2 diabetes.
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