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Abstract

Curated databases of signal transduction have grown to describe several thousand reactions, and efficient use of these data
requires the development of modelling tools to elucidate and explore system properties. We present PATHLOGIC-S,
a Boolean specification for a signalling model, with its associated GPL-licensed implementation using integer programming
techniques. The PATHLOGIC-S specification has been designed to function on current desktop workstations, and is capable
of providing analyses on some of the largest currently available datasets through use of Boolean modelling techniques to
generate predictions of stable and semi-stable network states from data in community file formats. PATHLOGIC-S also
addresses major problems associated with the presence and modelling of inhibition in Boolean systems, and reduces logical
incoherence due to common inhibitory mechanisms in signalling systems. We apply this approach to signal transduction
networks including Reactome and two pathways from the Panther Pathways database, and present the results of
computations on each along with a discussion of execution time. A software implementation of the framework and model is
freely available under a GPL license.
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Introduction

Rapid growth in the size of curated cellular signalling databases

such as Reactome [1–4], Panther Pathways [5] and the NCI-

Nature Pathway Interaction Database [6] have seen them

approach or exceed the size of many common metabolic models.

For example, there are 3,909 entities in the Homo sapiens metabolic

model [7] compared to 6,504 entities in the Homo sapiens Reactome

signalling model [1]. No current models of signalling demonstrate

the ability to handle the kinds of complex, large scale systems that

can now be generated from these and other sources. Instead,

extant models focus on single signalling pathways such as the ATR

pathway [8] or on small uncurated subsets of signalling databases

[9]. Consisting of 322 signalling events acting on 526 chemical

entities, the latter is less than 10% of the number of entities present

in the Reactome database. Even randomly generated networks

used to explore modelling approaches fall well short of genome

scale with typical sizes being on the order of 150 signals with 50

signalling events [10].

The available databases can be used to define a model topology,

i.e., a component list and their possible interactions. Dynamic

models described with systems of ordinary differential equations

[11] also require kinetic parameters to describe the rates of the

identified interactions. While full parameterisation is generally

feasible for smaller signalling models (at the individual pathway

level) [12], parameterisation of signalling systems as they approach

cellular scale is experimentally intractable. Parameterisation is

avoided in constraint-based modelling. Genome-scale modelling of

cellular metabolism is an accepted method of in silico hypothesis

testing and experimental design, and is backed by a rich set of tools

notably exemplified by the COBRA toolbox [13–15]. Such

genome scale models are now routinely used to guide complex

metabolic engineering designs [16], demonstrating that models

relying solely on the topology of systems can produce valid and

valuable information about system behaviour. Constraint-based

modelling, however, is not immediately useful for signalling

networks. The key set of constraints, namely material flux

balances, has no equivalent for information flux through catalytic

signalling cascades; stimulation of a single receptor may generate

any number of activated downstream signals and amplification is

in fact a key feature of signalling networks. Though a work-around

has been developed [9], it produces substantial model overhead.

Moreover, the magnitude of information fluxes in the framework

has no physical meaning and hence the model does not present an

advantage over simpler model formulations, such as Boolean

logical statements.

In Boolean models, signals are activated when the necessary

preconditions are met, and signal flow through the modeled

system is traceable as a sequence of activated variables and

statements. Boolean models can be implemented as logical

hypergraphs [17,18] and explored using graph theoretic tech-

niques. Such approaches require exhaustive enumeration of

possible input states in order to generate predictions for biological

problems pertaining to redundancy. These techniques do not scale

well, and are further hindered by the lack of an analogous concept

to inhibition in graph theory, resulting in loss of tractability [17].

Some implementations of these graph-theoretic techniques are

implicitly time parameterised [19], assuming that all signalling
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events take the same period of time and occur sequentially. These

approaches (and related methods where the time parameterisation

of reactions is explicitly set [8]) are viable in small systems. They

have not been successfully applied to large-scale networks, in part

due to the lack of availability of kinetic data in databases of signal

transduction, and suffer from the same lack of tractability at scale

as unparameterised graph theoretic techniques.

Integer programming implementations do not suffer these issues

to the same extent, and certain formulations of these types of

model are provably scalable and solvable in linear time [10,20].

However, the implementation of inhibition needs to be ap-

proached with care in these systems. If approached from the

perspective of Boolean logic, the presence of an inhibitor results in

the inactivation of a signal. Using this approach can result in

widespread model infeasibility, and the current methodology used

to deal with this problem consists of selectively ignoring inhibition

where it would cause logical incoherence [10], a process which is

impractical at cellular scale.

We propose a non-parametric Boolean model framework using

integer programming techniques and which models inhibition in

a manner analogous to its physical mechanism. This framework

uses inhibiting signals to prevent signalling events taking place

rather than as deactivators of active signals, thus reducing model

infeasibility. The intended purpose of the framework is to enable

analysis of complex systems in terms of generation of network

states given specified inputs and internal signal states. It does not

model reaction kinetics and dynamics within the Boolean update

rules, but enables users to model these through use of its curation

subsystems to generate the appropriate Boolean network.

Approaching the problem in this way allows us to rapidly compute

and interrogate large models (such as Reactome or the NCI-

Nature Pathway Interaction Database).

We present here both the specification and an implementation

of this framework, along with analysis of data obtained from major

large public databases using this technique. The implementation

provided is capable of generating hypotheses about and prediction

of biological function using data specified in the BioPAX format.

Such hypotheses include (but are not limited to) those concerning

network states when signals are set to specific states, and

quantification of the number of alternative methods of generating

a given state. Additionally, the software supports visual editing and

curation of network topologies through the use of Cytoscape and

other graph-visualisation tools, and features an automated strongly

connected component detection and visualisation system. The

software has been designed to efficiently run on modern desktop

computers, and requires only the Java virtual machine and its

included libraries (provided under various open-source licenses). It

is freely available under a GPL open-source license.

Results and Discussion

PATHLOGIC-S comprises two distinct parts - a problem

specification that describes the formulation of a system of Boolean

statements logically equivalent to a given signalling system, and the

implementation of such in a desktop application. The PATHLO-

GIC-S application in its current form is primarily intended to

quickly generate viable, testable hypotheses concerning the

behavior of complex signalling systems using a standard desktop

workstation. The implementation provided has been designed to

deal with a number of questions, including determining the

minimum input signals that must be active in order to produce

a given network state (the Minimum Input problem), and counting

how many non-trivial different sets of inputs give rise to a given

network state (the Minimal Input Sets problem). It has been tested

and developed on an Intel Core i7-820 CPU (four cores at

2.93 Ghz) with 8 Gb of RAM with the 64-bit version of the

Windows 7 operating system, which was also used to generate

result data for this work.

The PATHLOGIC-S Specification
A given system of signals consists of a set of n physical entities,

E~fe1, e2, . . . , eng comprised of proteins, complexes, small

organic molecules, and RNAs involved in signal transduction.

These entities are involved in reactions referred to as signalling

events that result in the transduction of information from one set of

‘active’ signalling molecules to another. The sets of physical entities

and the signalling events that they take part in are sourced from

databases of signal transduction.

We assign a set of n logical variables s[S~fs1, s2, . . . , sng
representing signal states in direct bijection with their physical

entity equivalents (ie, the ith physical entity, ei, is represented by si
in the logical formulation).

We then represent each signalling event as a pair of Boolean

expressions written as a sequence of AND (^) operators with

a single IMPLIES ([) operator on a set of m variables

Sr~fs’1, s’2, . . . , s’mg5S containing both input and output

signals, and a reaction variable r. The resultant Boolean

expressions, B, are of the form ^ inputs [ r [ ^ outputs.

We then rewrite B to produce a new set of statements B’, in

which each statement is either of the form ^ inputs [ output or

_ inputs [ output. If the statement is one showing the activation

of a reaction variable (^ inputs [ r), then no change is necessary

and the statement is added to B’ without modification. We then

iterate through the remainder of the statements, creating a set of

statements about which signalling events give rise to each

individual output signal. These statements are of the form

_r’ [ output (where r’ are the reactions giving rise to a specific

output), and are added to B’.

Unique to our formulation is the method of adding information

about inhibition (or repression) of signal to B’. Inhibition is

produced in a Boolean system using the NOT operator (:) and is

total in nature – there is no partial inhibition possible in a standard

Boolean representation. In the PATHLOGIC formulation, in-

hibition is only modeled as being applied to signalling events

rather than to the signals themselves. Thus, if a signalling event

(with corresponding activating Boolean expression ^ inputs [ r)

is inhibited by some set of inhibitors, we add these inhibitors to its

Boolean representation so that it becomes

^ inputs ^ ^ : inhibitors [ r. If an inhibitor is general rather

than reaction specific (ie, it prevents signalling by that entity), we

add the inhibitor to all signalling events resulting in production of

that signal.

Once this has been completed, the system is then rewritten in

a conjunctive normal form and translated into a set of integer

constraints as described in [10] and illustrated in the supplemen-

tary material (Methods S1). An example of this process on example

data is contained in Figure 1.

This representation of inhibition prevents major problems with

the state of signals being undefined and indeterminate in the

logical statements. Such issues have been seen in other logical

models using integer programming [10]. For instance, consider

two signals, S1 and S2. S1 activity results in S2 activity, but this is

inhibited by the inhibitor I. Extant approaches allow this situation

to be formulated as:

S1[S2 ð1Þ

A Scalable Boolean Model for Cellular Signalling
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I[:S2 ð2Þ

These statements are evaluated simultaneously by the integer

programming method. Functionally, this will present the expected

result when S1 is active and I is inactive, in that S2 will be

produced. However, the inactivity of I will result in the activity of

S2 even in the absence of S1 (as by logical transposition,

(I?:S2)?(:I?S2)), and when S1 and I are active, the state

of S2 is indeterminate (it is true by the statement S1[S2, and false

by I[:S2). The PATHLOGIC-S formulation produces the

correct behaviour, where the absence of the inhibitor is not

sufficient to activate the inhibited signal, and the simultaneous

presence of inhibitor and activator does not generate an infeasible

logical state. This reduces overall logical infeasibility resulting from

inhibition, avoiding many of the issues outlined in the introductory

material.

Validation and Hypothesis Generation
In order to show that the PATHLOGIC-S framework is

capable of generating valid and testable hypotheses from data, we

reconstructed a previously analysed, experimentally validated

model of T-cell activation [8]. The model was instantiated

according to the PATHLOGIC-S specification (supplied in

Methods S1). The previous work had predicted the possibility of

activation of Jnk (UniProt:P45983) without activation of Erk

(UniProt:P27361), a hypothesis that contradicted prior experi-

mental results [21–23]. This prediction was validated experimen-

tally, and attributed to signal transduction resulting from

availability of active CD28 (UniProt:P10747) as a signal input

through Vav1 (UniProt:P15498) and Rac1 (UniProt:P63001) [8].

We repeated this experiment in silico by instantiating a minimal

input set problem where the signal states of Jnk and Erk were

specified as active and inactive respectively. Each member of the

resulting minimal input set represents a combination of signal

inputs that will give rise to this network state (Jnk active, Erk

inactive). The results of the computation generated a two member

set. The first solution describes the CD28 and Rac1(Uni-

Prot:P63000) induced activity experimentally demonstrated in

the original experiment. The second solution presents a novel

input combination of a ligand of the T-cell receptor (Inter-

Pro:IPR021663) (either as a peptide-MHC complex or antibody)

and Lck (UniProt:P06239). Our model predicts signal proceeding

through activation of Fyn (UniProt:P06241) to generate phos-

phorylated T-cell receptor and Abl (UniProt:P00519), which result

in Zap70 (UniProt:P43404) mediated activation of the Lat

(UniProt:O43561) signalosome. This solution describes Jnk

activity in the event of T-cell activation (through the T-cell

receptor). It has been experimentally demonstrated that CD28 is

not required for Jnk activation in activated T-cells [24,25], and

CD28 is in fact inactive in our solution. Further, it has been shown

in B cells that CD45- (UniProt:P08575) cells cannot activate Erk

(CD45 is not active in our solution), and that Erk and Jnk

activation is decoupled [26]. We suspect that the T-cell signalling

model described in [8] has a number of default signal input

activities that cause the model to fail to encounter certain network

states. The use of optimisation techniques in our model avoids

problems of initial parameterisation of this type. This lends further

weight to the viability of our second solution as a hypothesis,

presenting an interesting possibility for experimental validation.

Network Statistics
We performed analysis on two broad categories of data - single-

pathway networks (the Apoptosis and T-cell receptor networks of

the Panther Pathways dataset), and a large network (Reactome).

Single-pathway networks differ fundamentally from larger net-

works in that the curators of these pathways have defined the

Figure 1. An example of a PATHLOGIC-S formulation. a) A pair of reactions from the androgen receptor pathway of the NCI-Nature Pathway
Interaction Database [6,35–38]. Inhibiting interactions are presented with a flat-ended arrow. b) Initial logical formulation. Conversion of upstream
signals, catalysts, and activating signals takes place at this point. c) Logical statements with inhibition information added, prior to conversion to
disjunctive form. d) Logical statements in disjunctive form prior to conversion to a system of linear constraints.
doi:10.1371/journal.pone.0041977.g001
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network with a view to limiting the system described to that

controlling a specific biological function. As such, the single

pathway networks lack features such as crosstalk (where a signal

enters one functional pathway and crosses to the output of

another) which increase the connectivity and complexity of

signalling networks.

In contrast, networks generated from larger databases partially

capture these phenomena but are limited by the fact that they are

generally amalgams of functionally defined pathways. The fact

that these networks are both larger and more complex is evident in

the higher maximum indegree and outdegree (the number of

reactions in which a species is an input (output, respectively)) for

the Reactome compared to the Panther Pathways data. A sizable

number of signals in Reactome take part in multiple pathways

(such as EGFR, which participates in 5 pathways, or SOS1 which

participates in 16), representing the points at which signal

transduction crosses pathways and crosstalk occurs.

Interestingly, the majority of system outputs in each data set

analyzed have a unique combination of system inputs (60–76.9%

of system outputs with a minimal input set size of 1) leading to

their activation (Table 1). While the proportion of individual

outputs falling into this category in the Reactome data is similar to

that seen in single pathway data, the Reactome minimal input sets

are larger (30% of multiple element minimal input sets having

more than 10 distinct inputs). This is likely due to the single

pathway data capturing some (but not all) of the redundancy

present for each system output, resulting in the presence of

a minimal input set size for a given output which is greater than 1,

but smaller than that seen in Reactome data.

The process of strongly connected component (SCC) removal

(detailed in Methods) involves removal of redundant biological

data associated with dissociation events and catalysis (Figure 2).

This process can identify otherwise obscured system inputs and

system outputs in the data (such as Bim (UniProt:O43521), which

catalyses dissociation of a Bax-Bak complex (UniProt:Q07812,

UniProt:Q16611) in the Panther Apoptosis data and becomes

a system output post-curation), and also modifies the requirements

for activation of certain signalling events.

As shown in Tables 2 and 3, SCC removal significantly modifies

the topology of the network and as a result causes changes in both

activation prerequisites and in the number of possible ways to

activate given system outputs. This is attributable to the exclusion

of satisfying assignments to the Boolean system that are not

biologically valid (for example, the strongly connected components

illustrated in the Methods) and the creation of new system inputs

and outputs during the SCC removal process. This quantifiable

change in the computed properties of the data clearly illustrates

the importance of SCC removal in application of computational

techniques to biological data.

Performance
The software uses integer programming for network simulation

under various conditions. Integer programming algorithms are

highly efficient methods of addressing the problems presented here

[27] and even for the largest data set (Reactome), a single instance

Table 1. Comparison of Signalling Data.

Average Min Input
(Median) Median Minimal Input Set % Outputs With MIS .1

Reactome 3.35 (2) 1 23.3

Panther Apoptosis 9.2 (9.5) 1 40

Panther T-Cell Activation 7 (5) 1 28.57

Panther Apoptosis (Curated) 6 (4) 1 23.08

Panther T-Cell Activation (Curated) 10.25 (10) 1 25

Comparison of data sets used in study showing the the average minimum input for a single output, and average size of the minimal input set generated for each single
output. A majority of outputs in each dataset assessed had a single activating input combination, with a sizable minority possessing multiple distinct activating inputs in
all data sets analyzed.
doi:10.1371/journal.pone.0041977.t001

Figure 2. Logical loop structure, with an example from
Reactome. a) An example of a logical loop structure. There exist
two satisfying assignments to this set of statements when J’ is set to 1 -
one with all variables except I set to 1, and one with all variables set to
1. To exclude the former solution from the solution space, the
statement describing the relationship represented as a dashed line is
removed from the logical formulation. b) In one mechanism of ERK
phosphorylation, MEK and ERK are activated by various upstream
processes (inputs). These active signals then form a complex, with MEK
acting as a catalytic subunit of the complex resulting in ERK
phosphorylation. The complex dissociates post-phosphorylation to
yield phosphorylated ERK and MEK. Conversion to the logical form of
this reaction yields a set of logic statements with associated SCC that
has topology similar to a).
doi:10.1371/journal.pone.0041977.g002
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of the problem can be solved in 60 ms on average. Writing output

for visualization in Cytoscape [28] or Graphviz [29] requires

additional time dependent on speed and type of disk drive – on

a slow (5400 rpm) drive, this tends to be around 1300 ms, for

a total per-problem execution time of approximately 1500 ms.

The time to perform analyses increases when characterizing

networks using the Minimal Inputs and Minimal Input Sets

problem definitions, due to the nature of the problems. Rather

than solving for single instances of problems, these analyses require

multiple instances to be rapidly addressed. In the case of minimal

input sets, a naive, brute force approach to the problem consists of

generating all possible input combinations then testing to de-

termine whether or not the input gave rise to the network state of

interest. Once the set of inputs giving rise to the desired activity

had been elucidated, it could then be refined so that its members

met the distinctness and minimality criteria described in the

problem formulation. However, such an approach is intractable in

networks larger than that of a single or double pathway, even

when they are less than cellular scale in size. In the case of the

Reactome data, which contains 2909 inputs, the naive approach

requires 4:9|10875 integer problems to be solved for each

network state of interest.

Clearly, this naive approach is intractable, and an alternative

enumeration and pruning strategy is required to reduce the

number of instances of integer programming problems that must

be solved. The PATHLOGIC-S implementation is as follows. We

begin by solving the Minimum Input problem for the network

state, in order to generate the minimum set of inputs that must be

active for the state to arise. We then produce a set of descendent

problems that exclude active inputs from their solutions by forcing

previously active signals to be inactive, solve these, and generate

additional descendents recursively retaining prior cuts until no

valid solutions remain. The method in which this is performed is

important. One approach would be to generate the set of all cuts

possible from a solution (ie, the powerset of cuts, less the empty

set). In the case where the solution had 10 active inputs, this would

generate 1024 descendent problems. While this approach consid-

erably improves over the naive method, a more aggressive cut is

still possible.

Table 2. Data Properties and Statistics.

Reactome T-cell Curated Apoptosis Curated

T-cell Apoptosis

Order 9838 150 147 192 188

Size 11139 161 151 234 224

Maximum Indegree 54 5 5 7 5

Maximum Outdegree 22 3 3 7 7

Number of Sinks 1851 13 14 10 13

Number of Sources 2909 45 47 68 68

Number of Strongly Connected Components 150 5 0 2 0

Average Number of Neighbours 2.24 2.12 2.05 2.44 2.38

Characteristic Path Length 24.07 9.69 8.63 6.43 4.81

Network Diameter 86 28 26 16 14

Network Radius 1 1 1 1 1

The nature of the topology is best described by taking measurements of its representative graph (formulated as discussed in the Curation section of the Methods).
Curation and SCC removal (by its nature) reduces connectivity within the graph, leading to the observed differences between the curated/uncurated pairs. Reactome,
by contrast, is a much larger dataset with much greater complexity, as shown in number of connected components and the characteristic path length.
doi:10.1371/journal.pone.0041977.t002

Table 3. Analysis of Panther Pathways data.

Minimum Input Minimal Input Sets

Curated Uncurated Curated Uncurated

Apoptosis

Caspase 9 4 19 1 9

Bim 1 – 1 –

ATF 11 11 6 6

Bcl-2:Bik 2 2 1 1

NFkB 1 1 1 1

Bax:Bak 5 – 1 –

Fos:c-Jun 14 14 1 1

Bid 9 – 9 –

ELF2a 9 8 19 10

Degraded a127 13 13 1 1

endoG 3 18 1 9

IkB:NFkB 2 2 1 1

P53 4 4 1 1

T-cell Activation

IkB 10 11 1 1

NF-kB 10 11 1 1

Pi 3 2 3 3

CRAC 10 – 1 –

jun:fos 23 12 6 6

cdc42:GTP:WASP 7 5 1 1

rac:GTP:Pak 7 5 1 1

NF-AT 12 3 1 1

Output signals from the apoptosis and T-cell activation pathways described in
[5] are shown with the minimum number of input signals required for
activation, and the number of (non-trivial) input combinations that give rise to
the given output. Certain outputs are created in the curation process (eg, Bim)
and thus lack results in the uncurated data.
doi:10.1371/journal.pone.0041977.t003
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Assume that we have some input i in an optimal solution of size

n that is absolutely necessary for the activation of an output. There

are then 2n{2n{1 descendants that are guaranteed not to have

solutions, as they contain a cut that results in the removal of i from

the possible solutions. As such, instead of generating the powerset

of cuts, we generate n single variable cuts from the solution that

give rise to our descendent problems. The amount of computation

that this saves is difficult to quantify precisely. In the case of

Reactome, .75% of outputs have a minimal input set of size 1,

and an average minimal input size of 3, which indicates that the

use of individual cuts over powersets in generating descendents

reduces the number of integer problems that must be formulated

and solved by more than 11,000 instances.

Further, we perform a check to determine whether there are

redundant outputs, where the set of incident edges on each output

is identical. When such redundancy is encountered, we simply

copy the output results for whichever output node is analyzed first,

reducing the total number of computations with minimal initial

precomputation.

In practical terms, we compute the minimal input sets for each

individual output in Reactome. Using a brute force implementa-

tion as discussed earlier would require 4:9|10875 integer

problems to be solved for each output to guarantee complete

enumeration, disregarding the minimality and distinctness re-

quirements. The implementation of the method described (single

cut descendent generation with redundancy checks) on all 1851

outputs in the Reactome data requires the solution of only 662,099

integer problems, a feasible number for computation on standard

desktop computers.

Concluding Remarks
The PATHLOGIC-S specification handles inhibition of activity

in a different way to other existing Boolean models of signalling

[8,10]. By representing inhibition as preventing processes that

activate signals rather than as deactivating signals themselves, the

model gains additional specificity and tractability. Practically, this

lowers the amount of infeasibility due to model specification

without the reduced solution space and resultant loss of in-

formation about biological function associated with other solutions

to this problem.

PATHLOGIC-S does not time-parameterise individual signal-

ling events. In trying to find logically satisfying assignments of

Boolean variables, all events are effectively represented as taking

place instantaneously. This results in PATHLOGIC-S generating

a flat representation of oscillation that shows all possible signal

activities across the states that comprise the cycle – an oscillation

between two network states will be represented with all signals

active in A and B being active in the PATHLOGIC-S solution.

Additionally, there are some systems (such as that of Wnt/Erk

[19]) that contain kinetic competition between signalling events.

PATHLOGIC-S is not able to infer such behaviours automati-

cally, but is capable of modelling them where explicitly stated

either in the database as inhibition activities, or by a user in the

curation process.

PATHLOGIC-S provides a rapid hypothesis generation func-

tion for model biological data in a common community exchange

format (BioPAX), which runs on most modern desktops across

a variety of operating systems. It has been deliberately designed to

run on most modern computers using reasonable amounts of

resources and time even on large datasets, thus avoiding the need

for high performance computing to interrogate multiple pathways

even when large amounts of crosstalk occur. Combined with the

GUI and with the use of visualization tools for its output, we

expect that PATHLOGIC-S will prove useful as a tool for

studying the process of signal transduction even in large, complex

signalling systems. PATHLOGIC-S is released as open-source

under the GNU GPL license, and with the exception of JavaMail

(released under the Sun JavaMail License as free software), all

dependent libraries are licensed under the GNU GPL or Lesser

GPL or Apache Software License, allowing for free use of

PATHLOGIC-S outside of commercial software packages.

Methods

Optimization Problems for the PATHLOGIC-S System
We use and implement three key standard problems on the

system – those of input minimization (or maximization), minimal

input sets, and output maximization. These allow characterization

of redundancy and elucidation of possible behaviors of the

signalling system. We define system inputs to be any signals in the

signalling network which are involved as inputs into an event but

are not themselves outputs of any signalling event (including its

activated events). Similarly, we define system outputs as any signals

involved as outputs of signalling events but not used as input

signals to any event (including its activating event). Internal nodes are

defined as signals in the signalling network involved as an input to

at least one signalling event, and as an output of at least one event.

The input minimization problem may be defined then as – for

any set of system outputs/internal nodes assigned particular states,

what is the minimal set of system inputs that give rise to a satisfying

network state? This problem is instantiated by setting the bounds

of the system outputs and internal nodes appropriately. If a signal

is to be active, its corresponding logical variable is set to 1, and if it

is to be inactive, it is set to 0. The objective function is then set to

f (x)~
P

system inputs, and the integer programming solver

instructed to minimize (or maximize, if desired) f (x).

A similar process is used in the output maximization problem.

This is defined analogously to the input minimization, but in terms

of assignments to system inputs, ie, ‘for any set of system inputs

assigned particular states, what are all possible system outputs that

can be generated?’. In the event that all inputs are specified, there

is a single possible output set, which will be maximal. This

problem is useful when partial knowledge of the input states is

available, resulting in some inputs being left free for determination

by the solver. Again, the problem is instantiated by setting bounds

on variables (in this case system inputs), an objective function

(f (x)~
P

system outputs) and maximizing f (x).

Finally, we use the concept of a minimal inputs set to assess

network redundancy. A minimal inputs set is defined as the set of

sets of distinct minimal system inputs that give rise to the given

output state. We define two minimal inputs (A and B) to be distinct

if and only if there are some signals in A that are not in B and there

are signals in B not present in A (ie, the relative complement of A to

B is non-empty and vice versa). The minimal input set is

enumerated using an iterative, sequential application of integer

cuts.

Firstly, an integer programming problem is instantiated as per

the input minimization problem, and solved to produce a minimal

input set of size j. If this set is empty (ie, the output is constitutively

expressed), the algorithm terminates. If j§1 then j derivative

problems are generated by copying the formulation of the prior

integer programming instance but setting a system input that was

active in the solution to be inactive. This process repeats until all

minimal input sets are enumerated (ie, all derivative problems

become infeasible and unsolvable), and the size of the minimal

inputs set provides a quantitative metric for network redundancy.
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Model Curation and Strongly Connected Component
Removal
A common feature of models of biological systems is the need

for curation - the modification of the model in order to increase

accuracy of predictions and allow internal consistency. These

modifications are necessary due to the model formulations and are

artefacts of the representation. For example, in flux-based models

of cellular signalling, one aspect of curation covers the degradation

of active signal once transduction takes place in order to maintain

overall mass balance [9]. In logical models, the presence of

strongly connected components (SCCs) or loops can cause

erroneous predictions of input requirements. Consider the

following toy example where I and J are inputs required for

activation of J’, and the : character is used to show complexation

of signal entities.

I[X ð3Þ

J ^ X[J : X ð4Þ

J : X[J ’ : X ð5Þ

J ’ : X[J ’ ^ X ð6Þ

If the minimum input problem is instantiated for output J’ in

the prior set of logical statements, the result of 1 input required

(namely, J) is returned by the algorithm. The reason for this is that

when J’ is set to active, there are two satisfying assignments to the

statements. The first of these has all variables except I active, and

the second (which is of interest) has all variables active. In order to

fix this issue, we modify a single part of the network, as shown:

I[X ð7Þ

J ^ X[J : X ð8Þ

J : X[J ’ : X ð9Þ

J ’ : X[J ’ ð10Þ

This removes the case where only J is required for activation of

J’, and the desired behaviour is shown. To detect cases where this

logical inconsistency might occur in the biological data, we take

a set of statements derived from that data and reduce the problem

to that of finding strongly connected components in a graph. We

instantiate a graph, G, with vertices (V) and edges (E) such that

each variable is assigned a unique node representation, and edges

connect nodes (u,v) iff there is a logical statement where u is on the

left side of an implies operator, and v on the right. We then execute

Tarjan’s algorithm [30] on G to obtain the set of SCCs.

There are two common cases where these strongly connected

components appear within the Reactome data, each associated

with a biological process. The first arises when a SCC of order 2 is

detected, and represents a case where catalysis is occurring. Such

logical statements appear in the form AzC[r[A’zC. In order

to obtain the desired behaviour in this case, the catalyst C is

removed from the outputs, yielding the statement AzC[r[A’.
The second of these cases occurs when a set of proteins form

a complex, one member of the complex is modified in some way,

and the complex then dissociates. This requires a somewhat more

complex fix, outlined in Figure 2.

Curation and SCC removal in PATHLOGIC-S is semi-

automatic due to issues with fully automatic methods. For

example, in Dasika et al [9], curation is automated by taking an

input, performing loop detection using depth-first searching,

disconnecting the edge that causes a loop to be formed and

repeating until no further loops are encountered before moving to

the next input. An example of how this strategy can fail is easy to

see in the example presented in Figure 2. Application of this

automated curation technique can result in the logical statement

equivalent to one of two edges in the graph representation being

deleted - X : J ’?X , or X?X : J (if the search starts at node I or

node J, respectively). If the X?X : J edge is deleted, the network

allows formation of an X:J complex without the presence of X,

which is undesirable. As such manual curation must be performed,

and either be verified experimentally [10] or to be performed in

such a way that it is consistent with the biological processes

modelled (as discussed above). In PATHLOGIC, a graphical

representation is generated for modification in Cytoscape [28],

and then read back in after SCCs are removed, removing the

logical statements from the system accordingly.

Implementation Details
PATHLOGIC-S is implemented as a Sun Java [31] application

written in the NetBeans IDE, and has been compiled and tested on

Unix (AMD64 Debian Squeeze) and Windows 7 (64-bit and 32-

bit). It uses the BioPAX Consortium’s paxtools library [32] for the

input of BioPAX data and lpsolve [33] for integer programming

capabilities. The software has a GUI implemented using Java

Swing and AWT which allows users to set signal states (both

input/output and internal nodes) and objective functions

(Figure 3), and has the capability to notify users of job status via

either email or through the Twitter microblogging service through

use of the JavaMail and JTwitter libraries. By design, PATHLO-

GIC-S uses slightly less than 4 Gb of RAM (on large networks

stuch as that generated from the Reactome data), allowing it to be

run on most modern desktops once Java has been installed.

Implementation of the minimal input problem is relatively

straightforward. A master problem consisting of the constraints

formulated from the logical system and the objective function is

generated. Individual problems are then instantiated using copies

of this master problem, setting bounds for variables as required to

perform computations. These individual problems are executed in

parallel using the Java concurrency model and API for solving and

output generation.

The implementation of the minimal input sets problem,

however, is somewhat more complex due to the memory

restrictions present in desktop computers. An initial optimization

is necessary to generate the minimum possible set of inputs with

some size ni. This minimal input set in turn allows the instantiation

of ni descendant problems as described above, and each of these

descendant problems generate descendants in turn. At any given

point, the PATHLOGIC-S application allows a user-defined

number of threads to solve these problems. During the course of

execution, the number of generated problems can (and likely will)

exceed this limit. In the event that this occurs, the string

representing the minimal input set that is generated as a result is
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stored for later expansion once execution of the currently live

threads has completed.

Results output as plain text or GML files [34] for interpretation

in Cytoscape or Graphviz. In these visualizations, the system of

logical constraints is converted into a hypergraph representation

(as it is depicted in biochemical diagrams), with information from

the original database associated with each node. Nodes are then

colored based on their logical variables 20, or false, represents the

absence of the specified species, and a 1, or true, represents its

presence.

The source code and pre-compiled binaries are available for

download at the PATHLOGIC-S Sourceforge page and re-

pository, at http://sourceforge.net/projects/pathlogic/.

Biological Models
This study uses five key representations of biological models.

1. Reactome signalling data [1], defined as the complete

Reactome dataset with the exclusion of certain pathways and

entities listed in the supplementary material (Methods S2).

2. Apoptosis signalling data from Panther Pathways [5].

3. T-cell receptor signalling data from Panther Pathways [5].

4. Curated versions of the Apoptosis and T-cell signalling data

from Panther Pathways [5].

5. A curated version of the T-cell receptor model [8].

Due to the changing nature of such data, archive files

containing the specific files used in this study are enclosed as

supplementary material (Methods S2).

Supporting Information

Methods S1

(PDF)

Methods S2

(RAR)
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