
molecules

Review

Ferrocene-Based Compounds with
Antimalaria/Anticancer Activity

Sijongesonke Peter and Blessing Atim Aderibigbe *
Department of Chemistry, University of Fort Hare, Alice campus, Eastern Cape 5700, South Africa;
201414787@ufh.ac.za
* Correspondence: blessingaderibigbe@gmail.com; Tel.: +27-40602-2266

Academic Editors: Carlo Santini and Maura Pellei
Received: 11 July 2019; Accepted: 21 August 2019; Published: 7 October 2019

����������
�������

Abstract: Malaria and cancer are chronic diseases. The challenge with drugs available for the
treatment of these diseases is drug toxicity and resistance. Ferrocene is a potent organometallic
which have been hybridized with other compounds resulting in compounds with enhanced biological
activity such as antimalarial and anticancer. Drugs such as ferroquine were developed from ferrocene
and chloroquine. It was tested in the 1990s as an antimalarial and is still an effective antimalarial.
Many researchers have reported ferrocene compounds as potent compounds useful as anticancer and
antimalarial agents when hybridized with other pharmaceutical scaffolds. This review will be focused
on compounds with ferrocene moieties that exhibit either an anticancer or antimalarial activity.
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1. Introduction

Malaria is a lethal disease and it is caused by a parasitic protozoan of genus Plasmodium. There are
four Plasmodium parasites causing malaria in humans: P. falciparum, P. vivax, P. malariae, and P. ovale.
Among the aforementioned parasites, P. falciparum is the most dangerous and it is responsible for
over 95% malaria infections worldwide [1,2]. According to a WHO report, over 200 million cases and
over 400,000 deaths were reported in 2016 [3]. Young children who are less than five years old and
pregnant women were the major victims of malaria infections [1,2]. The most common symptoms
that are associated with malaria are fever, fatigue, headaches, vomiting. In serious cases of malaria,
symptoms such as yellow skin, seizures, and death have been reported [1–3].

Cancer is also a life-threatening disease involving a rare cell growth which can spread to body
organs. Many cancers are caused by genetic mutation (90–95%) and some are caused by inherited
genetics (5–10%) [4]. Cancer was accountable for more than 9 million deaths in 2018 especially in
Africa and in Asia, according to the World Health Organization [5]. Cancer can affect any body tissue
and it is named according to the body organs it affects e.g., lung, liver, breast, colorectal, and stomach
cancer [6]. Among the aforementioned cancer types, lung cancer is accountable for the highest number
of deaths (1.8 million) because of limited prognosis, followed by colorectal (881,000), stomach (783,000),
and liver (782,000), while breast cancer (627,000) is ranked the fifth since its prognosis is favorable [5].

In the treatment of cancer and malaria, the challenges with the currently used drugs are drug
toxicity, high cost, and drug resistance [7,8]. Ferrocene compounds have been described as potential
compounds with unique antimalarial and anticancer activity [7,8]. In this review, the efficacy of
compounds containing ferrocene moiety in vitro and in vivo are reported.

2. Ferrocene (Biological Activity)

Ferrocene was first discovered accidentally in the early 1950s by two researchers called Kealy and
Pauson at Duquesne University while reacting C5H5BrMg with FeCl3 [9]. Ferrocene is useful in the
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modern organometallic chemistry industry due to its versatile applications in catalysis, material sciences,
medicinal chemistry, and diagnostic applications [10,11]. It has been proven that the combination of
organometallic compounds with known antimalarial drugs can result in potent antimalarials. Ferrocene
is a good pharmacophore that displays physicochemical properties that have favorable effects on living
matter [2,12].

Presently, some researchers have designed hybrid compounds containing ferrocene with several
biological activities [2,12]. Antimalarial, anticancer, antitumor, antifungal, and antileishmanial activities
are some biological activities exhibited by ferrocene derivatives [2,12]. Hybrid compounds in which
ferrocene derivatives are linked to other compounds via selected linkers have been found to increase
the efficacy of the compounds hybridized with ferrocene derivatives, resulting from its properties such
as good stability to water and air, low toxicity, unfamiliar redox activity, similarities in aromaticity, and
chemical versatility [13,14]. The introduction of substituent on the cyclopentadiene ring of ferrocene
contributes to its biological activity [15]. The replacement of an aryl or heteroaryl core with a ferrocene
core in a bioactive compound contributes to significant changes in the properties of the compounds,
such as solubility, hydrophobicity, and lipophilicity [10].

Ferrocene derivatives have been reported to exhibit antiproliferative activity against several cancer
cell lines with low toxic effects when compared to known anticancer agents. Its complex also exhibits
distinct oxidation-reduction behavior whereby it converts readily to its one-electron oxidation product,
the ferricenium ion, a radical cation of eminent stability. The aforementioned reaction is reversible
with the inherent electron transfer useful for biological reactions. Its electron transfer and free radical
reactions are useful in biological processes. Some of the important biological reactions of ferrocene
analogues are ferricenium cation reduction by NADH and metalloproteins; enzymatically oxidation
of ferrocene by hydrogen peroxide; recombination of the ferricenium system with an attack on free
radicals leading to substituted ferrocene upon proton elimination [16].

Ferricenium cation react with biologically important superoxide anion radicals, resulting in the
regeneration of ferrocene and dioxygen. The oxidation of the ferrocene complex to its ferricenium
counterpart is feasible whereby ferrocenylcarboxylates interact with the aggressive hydroxyl radical,
transforming it into harmless hydroxyl anion. In cancer etiology, free-radical chemistry plays a vital
role in the different phases of growth and control of neoplasia [16].

The superoxide and the free radical-scavenging reaction of ferrocene are useful in the inhibition of
cancer growth. Furthermore, the deactivating recombination of ferrocene in its oxidized state with the
free-radical form of ribonucleotide reductase, an important enzymatic link in DNA synthesis, makes
ferrocene a useful scaffold for the development of potent compounds [16]. The aforementioned factors
have prompted research on the development of ferrocene derivatives with enhanced biological activity.
Köpf-Maier et al. reported ferricenium salts with high biological activity influenced by their good
water solubility. The water insoluble ferricenium salts did not exhibit any biological activity [17] Neuse
further reported ferrocene-based anticancer drugs which were highly water soluble with excellent
anticancer activity [17,18].

3. Ferrocene-Based Compounds with Antimalaria Activity

Each antimalarial drug is characterized by a unique mechanism of action [19]. Antimalarial
drugs are classified according to the stages of the malarial life cycle in which they act, or based on
their structures [20]. They are classified according to the stages of malaria life cycle such as tissue
schizontocidal drugs e.g., pyrimethamine (i.e., they act on the erythrocytic stage); hyponozoitocidal
drugs e.g., primaquine (i.e., those that act at the exo-erythrocytic stage); blood schizontocidal
drugs e.g., quinine; and gametocytocides e.g., chloroquine [19]. They are classified based on
their structures such as aryl amino alcohols e.g., halofantrine, quinidine, quinine, mefloquine;
4-aminoquinolines e.g., amodiaquine, chloroquine; folate synthesis inhibitors e.g., sulfonamides,
sulfones, proguanil, chloroproguanil; diaminopyrimidine, pyrimethamine; 8-aminoquinolines e.g.,
primaquine; antimicrobials e.g., fluoroquinolones, doxycycline, clindamycin, tetracycline, azithromycin;
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peroxides e.g., artemisinin derivatives; naphthoquinones e.g., atovaquone; and iron chelating agents
e.g., desferrioxamine [21]. However, the use of a single antimalarial drug for the treatment of malaria
is hampered by drug resistance [22]. Malaria is treated by combination therapy in which two or
more antimalarials are combined together. However, the aforementioned approach also suffers from
challenges such as drug–drug interaction, drug resistance indicating the serious need to develop
effective antimalarials [23]. Some researchers have reported the efficacy of hybridizing ferrocene
derivatives with known antimalarials resulting in potent antimalarials.

3.1. Ferrocene-Quinoline Derivatives

The strategy of hybridizing ferrocene moieties with active antimalarial agents such as chloroquine
was first reported in the early 1990s and there are more studies which are ongoing. Ferroquine was
derived from chloroquine in 1994 by Biot and co-workers at Lille University. It was reported to be
more effective against chloroquine resistance P. falciparum and non-toxic in vivo [18]. Ferroquine was
synthesized by the incorporation of ferrocene moiety into chloroquine whereby the methylene group
of chloroquine was replaced by a ferrocene moiety (Figure 1) [18].
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In vitro evaluation of ferroquine against P. falciparum strains revealed no correlation between
ferroquine and chloroquine responses using standardized initial parasitaemina during the assays.
In vivo evaluation reported by Long et al. on Plasmodium-infected mice revealed that a dose of
ferroquine (10 mg/kg/d for four days) was suitable for effective treatment [18,24]. Ferroquine exhibits
similar properties as its parent drug, chloroquine. However, the basicity and lipophilicity of ferroquine
are different from that of chloroquine. The protonation of chloroquine and ferroquine at food vacuole
pH resulted in lipophilicity of log D = −1.2 and −0.77, respectively which was close. However,
protonation of chloroquine and ferroquine at pH 7.4 resulted in lipophilicity of log D = 0.85 and 2.95,
respectively. Ferroquine exhibited lower pKa values when compared to chloroquine suggesting low
vascular accumulation of ferroquine when compared to chloroquine. However, the electron donating
property of ferrocene and the strong hydrogen bond between the terminal nitrogen atom and the
4-amino group may have contributed to its low pKa values. Although ferroquine has low pKa values,
it exhibits a significant inhibition effect against beta-haematin formation when compared to chloroquine
and it is preferentially localized at the lipid–water interface, making it an effective antimalarial agent
when compared to chloroquine [18,25].

Ferroquine enhanced antimalarial activity in vitro and in vivo against P. falciparum has prompted
several researchers to develop antimalarial drugs containing ferrocene moiety. They have used
several strategies to develop ferroquine derivatives such as hydroxyferroquine, trioxaferroquine, and
chloroquine-bridged ferrocenophane with the hope of increasing the efficacy of ferroquine. Biot et al.
synthesized 3-hydroxyferroquine derivatives (1a–c) which inhibited the growth of P. falciparum in vitro
when compared to chloroquine (Figure 2). However, they were less active when compared to ferroquine.
In vitro evaluation was performed against 3D7 and 2W strains of P. falciparum for compounds 1a–c
as shown in Table 1 [18,26]. Derivatives of trioxaferroquines (2–5) were reported by Bellot et al.
(Figure 3). They were effective against chloroquine-resistant strains (FcB1 and FcM29) with IC50

values between 16–43 nM [18,27]. Compound 2 exhibited significant antimalarial activity with IC50

values 17 and 29 nM against FcB1 and FcM29, respectively. In vivo studies on P. vinkei pentteri
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infected mice at a daily oral dosage of 10 and 25 mg/kg/d over a period of 30 days were evaluated.
The mice administered 10 mg/kg/d exhibited parasitemia below detectable levels with no recurrence.
Mice administered 25 mg/kg/d exhibited parasitemia below detectable level between 1–18 days but
displayed some recurrence between day 17 and 21. Trioxaferroquine was very effective in vivo at low
dosages (10 mg/kg/d) when compared to the high dosage (25 mg/kg/d). No significant curative effect
with the absence of recurrence was not achieved at 25 mg/kg/d dosage [18,27].
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Salas et al. synthesized ferroquine derivatives (chloroquine-bridged ferrocenophane) with two
ferrocene rings bridging the terminal nitrogen atoms of chloroquine (6–10) (Figure 4). Comparison
studies between the chloroquine-bridged ferrocenyl derivatives and monosubstituted ferrocenyl
analogues which indicated that the monosubstituted ferrocenyl analogues capacity to retain their
antimalarial activity against the drug-resistant strains was significant. Their enhanced antimalarial
activity was attributed to the presence of an intramolecular hydrogen bonding. However, the structure
and a balance between the lipophilicity and hydrophilicity of the bridged compounds also contributed
to their unique structural capability to escape the mechanisms of resistance [18,28].
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Biot et al. also reported a ferrocene-triazacyclononane quinolone conjugate (11) (Figure 5) with
potent antiplasmodial activity against chloroquine strain Dd2 of P. falciparum in vitro [20,29]. Dormale
et al. synthesized a ferrocene derivative from ferrocene and 4-aminoquinolines. In vitro, the compound
prepared by modification with tartaric acid was the most potent compound. Its antimalarial activity
was significant at low concentrations when compared to chloroquine against chloroquine-susceptible
strain SGE2 and the chloroquine-resistant strains FCM6 and FCM17. The compound was able to
inhibit the resistance of parasites. The compound’s capability to inhibit the efflux mechanism which is
common with chloroquine may have contributed to its enhanced antimalarial activity when compared
to chloroquine [19,20,30]. A class of quinoline–ferrocene hybrids were reported by N’Da et al. Hybrids
with flexible linkers were effective when compared to compounds with rigid linkers which were
ineffective against D10 and Dd2 strains of P. falciparum. The compound with the 3-aminopropyl
methylamine linker (12) exhibited good antiplasmodial activity (19-fold) in vitro when compared to
chloroquine with IC50 values of 0.008 versus 0.148 µM against the Dd2 strain of P. falciparum [20,31].

Table 1. In vitro activities of compound 1a–c against P. falciparum strains (3D7 and W2).

IC50 Values (nM)

Compound 3D7 W2
1a 15.4 133.2
1b 21.5 30
1c 11.7 20.4

Ferroquine 7.8 9.7
Chloroquine 10.6 138.9

Biot et al. reported chimeras of ferroquine and thiosemicarbazones (13). In vitro studies on strains
of P. falciparum and parasitic cysteine proteas, falciparum-2 revealed that the antimalarial activity of
the compounds was significant because of the presence of aminoquinoline which made the compound
easily conveyed to the digestive vacuole of the parasite [20,32]. David et al. synthesized quinolone
ferrocene ester and evaluated it against chloroquine strains of P. falciparum (Dd2 and D10). The esters
prepared from ferrocenylformic acid exhibited antimalarial activity against Dd2 and D10 strains of the
P. falciparum. However, their antiplasmodial activity against D10 strain was not high when compared
to the chloroquine-sensitive Dd2 strain. The ester with a butyl branch linked to the ferrocene moiety
was very effective against all the strains with an IC50 of 0.13 µM on the resistant strain and 2.5-fold
higher activity when compared to chloroquine with an IC50 of 0.34 µM. The compounds were highly
selective towards P. falciparum [15,33].

Herrmann et al. prepared two derivatives of ferrocene hybrids containing 1,2,3,5-(diisopropylidene)-
α-d-glycofuranose moiety combined with chloroquine derivative (14) with good antimalarial activity when
tested against two strains of P. falciparum (Dd2 and K1) (Figure 5) [20,34]. The second class of Herrmann
et al. hybrids was prepared by conjugation of ferrocene scaffolds with 7-chloroquinoline via an ether
linker followed by the attachment of diisopropylidene protected 6-amino-6-deoxyglucofuranose or
6-amino-deoxygalactopyronose using reductive amination resulting in the isolation of compound 15a
and 15b. Both compounds exhibited good antimalarial activity with an IC50 value of 0.77 µM resulting
from the presence of the carbohydrate moiety. The resistance indices for the compounds were less than
1, indicating a high activity against the Dd2 strain when compared to the D10 strain [20,35].

Chavain et al. conjugated ferroquine analogues with glutathione reductase inhibitor via a cleavable
amide bond for targeting different pathways of the malaria parasite. The analogues antimalarial
activity in vitro against NF54 (sensitive) and K1 (resistant) strains of P. falciparum was not significant,
suggesting that their mode of action differs from ferroquine and chloroquine modes of action. Their poor
antimalarial activity is also attributed to the cleavage of the amide bond and the side chain when
metabolized in the digestive vacuole of the parasite. The aforementioned findings reveal how the
design of molecules can influence their antimalarial activity [20,36].
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= 1,2,3,5-diisopropylidene glucofuranose moiety, 15a-X = diisopropylidene-protected 6-amino-
deoxyglucofuranose, 15b-X = 6-amino-6-deoxygalactopyranose.

3.2. Artemisinin-Ferrocene Derivative

Artemisinin-based derivatives 16a–d (artemisinin, artesunate, artemether, and dihydrortemisinin,
respectively) are characterized by fast action and a short half-life (Figure 6). Artemisinin-based
combination therapies (ACT) are promising therapeutics effective in controlling P. falciparum drug
resistance. Synthesizing hybrid drugs containing artemisinin derivatives and other effective drugs such
as ferroquine and chloroquine is a good approach to develop potent antimalarials that can overcome
drug resistance. Ferroquine combined with artesunate has been reported to be a promising antimalarial
therapeutic which was safe at all doses tested in vivo [37,38].
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Reiter et al. reported an artemisinin derivative containing ferrocene moiety and egonol (17).
In vitro studies indicated that the derivative 17 was the only one exhibiting antimalarial activity
among the seven artemisinin–ferrocenyl derivatives studied while others exhibited anticancer
activity. Its antimalarial activity was enhanced when compared to the parent drug, egonol, with
an inhibition value of 88 nM (Figure 7) [37,39]. Reiter et al. also reported a second generation
of 1,2,4-trioxane-ferrocene derivatives (18–22), and evaluated their antiplasmodial activity against
the 3D7 strain of P. falciparum using chloroquine and dihydroartemisinin as controls (Figure 8).
These trioxane–ferrocene compound antiplasmodial activities were significant with IC50 values in
the range of 7.2–30.2 nM. Compound 20 IC50 value was 7.2 nM and promising when compared to
chloroquine. Compound 18 and 19 IC50 values were 8.6 and 13.4 nM, respectively [37].
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Figure 8. Chemical structures of second generation dihydroartemisinin ferrocene derivatives (18–22).

Amino-artemisinin-ferrocene 23 in which ferrocene was incorporated via a piperazine linker
to dihydroarteminisinin derivatives was tested in vitro against chloroquine-sensitive NF54 and
chloroquine-resistant K1 and W2 strains of Plasmodium falciparum parasites (Figure 9). The compound
exhibited good activity against the asexual parasites with IC50 values of 2.79 and 3.2 nM against K1 and
W2 strains of Plasmodium falciparum parasites, respectively. The resistance indices further indicated
the compound reduced capability for cross resistance [40].
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Novobiocin derivatives containing ferrocene moieties were synthesized and documented by 

Mbaba et al. and they were tested against the 3D7 strain (sensitive) of P. falciparum in vitro (Figure 

11). Compounds 28a and 28b exhibited moderate antimalarial activity when compared to other 

synthesized compounds which exhibited poor antimalarial activity when tested against the 3D7 P. 
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Figure 9. Synthesis of amino–artemisinin–ferrocene compound (23).

Delhaes et al. synthesized ferrocene–artemisinin derivatives (24–27) from ferrocene derivatives
and dihydroartemisinin in good yield in the range of 60–80% (Figure 10). In vitro studies using HB3
and SGE2 strains (sensitive) and Dd2 strain (resistant) of P. falciparum showed that compound 26
was the most effective antimalarial. In vitro evaluation showed that its IC50 were similar to those of
artemisinin (HB3 = 12 nM, SGE2 = 11 nM, and 14 nM against Dd2) [41]. The compound’s capacity
to bind with ferroprotoporphyrin IX was significant. These effect of adducts between artemisinin
derivatives on heme in the generation of artemisinin radicals was significant.
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3.3. Ferrocene–Novobiocin Derivatives

Novobiocin is an antibiotic that is produced by bacteria called Streptomyces, its inhibitor of the
chaperone, heat shock protein 90 (Hsp90) which is responsible for the stabilization of proteins and it is
found to be one of the antibiotics that are biological active with anticancer and antimalarial activity
when it is incorporated together with other active molecules such as ferrocene [42–44].

Novobiocin derivatives containing ferrocene moieties were synthesized and documented by
Mbaba et al. and they were tested against the 3D7 strain (sensitive) of P. falciparum in vitro (Figure 11).
Compounds 28a and 28b exhibited moderate antimalarial activity when compared to other synthesized
compounds which exhibited poor antimalarial activity when tested against the 3D7 P. falciparum
strain with an inhibition value of 9 nM in vitro [43]. The incorporation of ferrocenyl moiety on the
benzamide side of novobiocin resulted in compounds with enhanced biological activity. Furthermore,
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the cell viability studies indicated that the inhibition growth of P. falciparum by the compound did not
exhibit toxic effects, which was significant with HeLa cell viability which was greater than 70%. It also
indicated that the compounds were highly selective towards the parasitic cells when compared to the
human cells [43].

Mbaba et al. reported another series of ferrocene–novobiocin derivatives and evaluated them
for antiplasmodial activity and human cytotoxicity using the 3D7 strain of P. falciparum and HeLa
cells, respectively, in vitro. Compound 29a–c which contain the N-methyl group in the piperidine
ring exhibited better antimalarial activity with IC50 values that were below 10 µM but compound 29c
was the most potent compound with an IC50 value of 0.889 µM [44]. It was reported that these three
compounds were selective towards the P. falciparum parasite and their HeLa cell viability was below
25% with no toxic effects [44]. Novobiocin and other derivatives from this series of compounds were
inactive with HeLa cell viability that was greater than 75%, which means N-methyl substituents play
an important role in the antiplasmodial activity of these compounds and also these compounds were
found to be independent of Hsp90 [44].
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3.4. Ferrocene- Pyrrole Derivatives

Guillon et al. reported the synthesis of ferrocenic pyrrolo[1-2-a]quinoxaline derivatives from
nitroanilines using different strategies (30a–b and 31a–b) (Figure 12). Compounds 30a–b were
synthesized via regio-selective palladium catalyzed monoamination and compound 31a–b was
prepared by reductive amination strategy. These derivatives (30a–b and 31a–b) were tested against
FcB1 and PFB (resistant) and F32 (sensitive) strains of P. falciparum in vitro [45]. The antimalarial activity
of the compounds was dependent on the nature of the substituent on the bis(3-aminopropyl)piperazine
linker. The pyrrolo[1,2-a]quinoxalines with nitro substitutions were the most active compounds against
the CQ-sensible F32 strain (IC50 0.038–0.085 mM). The presence of a 4-methoxy substituent on the
benzyl terminal group also enhanced the antimalarial activity against F32 strain with IC50 0.045 mM.
The compound with a 5-nitro-2-hydroxybenzyl substituent on the bis(3-aminopropyl)piperazine chain
exhibited the most potent antimalarial activity with IC50 of 0.048 and 0.060 mM, respectively, against
CQ-resistant FcB1 and K1 strains. Compounds with NO2 substituents inhibited β-hematin formation
significantly when compared to chloroquine [45].
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3.5. Isatin–Ferrocene Conjugates

Isatin is a heterocyclic scaffold that is isolated from the leaves and roots of Couroupita guianesis and
Calanthe discolour, Isatis tinctoria and it is found to be versatile in organic synthesis because of the many
possibilities of modification at C-3, C-5, and N-1 with various activities such as anticancer, antimalarial,
and antifungal [46–48]. Kumar et al. synthesized several isatin–ferrocene conjugates tethered with
1H-1,2,3-triazole derivatives (32a–h) via copper-promoted azide–alkyne cycloaddition reaction and
tested them against chloroquine-resistant strains (3D7 and W2) of P. falciparum (Figure 13) [47].
The presence of a halogen substituent on the C5 position of the isatin ring and a propyl linker influence
the antimalarial activity of the compounds [47].

Compound 32a–d with n = 2 (ethyl) as a linker did not exhibit antimalarial activity even at higher
concentrations. With compound 32e–h with n = 3 (propyl) as a linker, antimalarial activity showed
improvement with IC50 values ranging between 3.76 and 16.20 µM indicating that the chain length has
an effect on the activity of these compounds. When compared with ferroquine (2.1–13.4 nM), in vitro
antimalarial activity of compound 32e–h was lower. From the series of isatin–ferrocene derivatives,
only compounds (32f–h) with the electron withdrawing groups and propyl as a chain linker displayed
good antimalarial activity with IC50 values of 3.76 and 4.58 µM against chloroquine-resistant strains
(3D7 and W2) of P. falciparum. Further evaluation of compounds (32f–h) for cytotoxicity against HeLa
mammalian cells revealed their non-cytotoxic effect and their selective inhibition of P. falciparum [47].
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3.6. Ferrocene–Pyrimidine Conjugates

Recently, researchers reported that pyrimidine moiety linked with ferrocene resulted in hybrid
compounds with good antiplasmodial activity against chloroquine strains of P. falciparum. In vitro
antiplasmodial analysis showed that compounds 33a–f were active against the chloroquine-susceptible
NF54 strain (Figure 14). The pyrimidine ring substituition of methyl ester group at C-5 of compound
33a with an ethyl or Iso-propyl group to yield compound 33b and 33c increased the lipophilicity
of the compounds. Increasing the lipophilicity enhanced the antiplasmodial activity of the drug.
For compound 33c–e, the antiplasmodial activity decreased in the order 33c > 33d > 33e due to the
decrease in lipophilicity. Compounds substituted with different functional groups (R1 and P) at
position C-4 and C-5 of pyrimidine exhibited good antimalarial activity with the lipophilicity playing
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a major role, and the reversible oxidation behavior of these hybrid compounds was similar to that of
ferrocene [49].
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3.7. Ferrocenyl Chalcones

Chalcones are prepared from an aromatic ketone group and they exhibit several biological
activities such as antimalarial and antitumor activity. Licochalcone from the licorice root in China has
been reported to be a promising antimalarial agent. Synthesis of ferrocenyl chalcones was obtained
by replacing the aromatic ring with a ferrocenyl moiety [50–53]. Researchers synthesized several
ferrocenyl chalcone derivatives by base-catalyzed Claisen–Schmidt condensation. However, only two
compounds (34 and 35) were reported to be effective antimalarial agents, with low IC50 values of
4.5 µM (A) and 5.1 µM (B) against chloroquine-resistant strains of P. falciparum in vitro (Figure 15) [52].
The position of the substitution of nitro and pyridine rings influenced the biological activity of the
compounds. Compound 35 exhibited higher selective indices when compared to compound 34 when
tested on KB and MDCK cells of P. falciparum (SI = 37 and SI = 14), respectively. For compound 34,
the selective indices were between 5 and 9 [52].
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Kumar et al. reported the synthesis of 1H-1,2,3-triazole tethered 4-aminoquinoline-
ferrocenylchalcone derivatives (compounds 37, 38, and 39 with compound 36 acting as a linker)
(Figure 16) and tested them for antimalarial activity against P. falciparum chloroquine-resistant (W2)
strains in vitro. Different strategies were used in the synthesis of compounds 37, 38, and 39. They were
prepared by Cu-promoted azide–alkyne cycloaddition for both compound 37 and 38. Compound 39
was prepared by Huisgen’s azide–alkyne cycloaddition. These derivatives 37–39 were tested in vitro
for antimalarial activity against the W2 (resistant) strain of P. falciparum and they exhibited good
antiplasmodial activity with inhibition values ranging between 0.37–5.08 µM. The alkyl chain length
influenced the antimalarial activity of the compounds [52]. In compounds 37a–f with a piperazine
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ring, the length of the chain had no effect on compounds’ antimalarial activity. The IC50 values of
compounds 37a–f ranged between 2.55–5.08 µM. In compound 38, the piperazine ring was replaced
by 4-aminophenol and the length of the chain played no vital role in the biological activity of
the compounds. However, (38e–38f) exhibited improved antimalarial activity when compared to
compounds 37a–f with inhibition values of 38e (n = 6, IC50 = 2.40 µM) and 38f (n = 8, IC50 = 1.16 µM).
In compound 39, the chain length displayed different trends for derivatives 39a–i and the introduction of
amino alcohols (amino-ethanol and amino-propanol) substituents showed improvement on the activity
of compounds. Increasing the alkyl chain length (C-2 to C-5) in compounds 39a–f with amino-ethanol
as a substituent decreased the activity of the compound. However, increasing the alkyl chain length
(C-6 to C-7) improved their activity in which compound 39a (n = 2, IC50 = 0.95 µM), compound
39d (n = 5, IC50 = 2.92 µM), compound 39e (n = 6, IC50 = 0.66 µM) and 39f (n = 8, IC50 = 0.69 µM),
respectively. Compounds 39g–j with amino-propanol substituents exhibited good antiplasmodial
activity and the chain length linker did not increase nor decrease their antimalaria activity. All of these
derivatives 37–39 exhibited antimalarial activity but 39g–j were the most active compounds with IC50

values ranging between 0.37–1.78 µM against W2 (resistant) strains of P. falciparum, in vitro [52].
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4. Ferrocene-Based Compounds with Anticancer Activity

Cancer is a disease characterized by uncontrolled cell division [54,55]. It is a chronic and
complicated disease and it is the cause of the high death rate globally [54,55]. The most fatal and
common cancers are lung, breast, colorectal, stomach, and liver cancer which are responsible for
almost 92% of death cases [5]. More than 200 anticancer drugs are available but less than 5% has
reached the market and the drawbacks are caused by lack of clinical trials on these synthesized
drugs. Some anticancer drugs enter phase I and phase II but fail to advance through phase III of
a clinical trial [55]. Drug resistance is common with most anticancer drugs and this has contributed to
a high death rate among cancer patients. Anticancer drugs are grouped according to their mode of
actions [56–58].
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4.1. Ferrocene–Indole Hybrids

Indoles are cheap and have unique properties with anticancer activity. Ferrocene, on the other
hand, has unique chemical and pharmacological properties. Combining ferrocene and indoles
derivatives into hybrid compounds is a potential route suitable for the development of effective
anticancer drugs [55–57]. Quirante et al. synthesized ferrocenyl–indole derivatives with ferrocene
moiety attached on C-3 of the 2-phenylindole skeleton (40–46) and tested for anticancer activity using
a A549 human lung carcinoma cell line [59]. The synthesized ferrocenyl–indole derivatives are (47–53)
(Figure 17). Compounds 50–52 exhibited potent cytotoxic effect against the cancer cell lines with IC50

values of 5, 7, and 10 µM, respectively. Compound 50 displayed potent cytotoxic activity with an IC50

value of 5 µM. All the ferrocenyl–indole derivatives (47–53) were more active when compared to
their parent drugs (40–46). The nature of the substituents (R1) on C-5 of the indole ring and halogen
substituents on the para-position (R2) of aryl ring played a significant role on the cytotoxic effect of the
hybrid molecules [59].

The order of potency for R1 on position 5 was: Un-substituted compounds (R1 = H) > 5-OMe (50)
> 5-NO2 (51) > 5-Cl (52) and for halogen substituents for R2, the potency was: p-H (47) > p-Cl (48) >

p-F (49), respectively. Compound 47 was two-fold more active than compound 49, compounds 48, 49,
and 51 were 2-fold more active than their comparable derivatives (41, 48, and 44), derivative 47 and
53 were 3-fold and 4-fold more active than comparable derivatives 40 and 46, respectively. The most
active ferrocenyl–indole compound was compound 51 and it was 25-fold more active when compared
to the indole compound 43 [59].
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Radulovic’ et al. prepared 2-(3-ferrocenylphenyl)-1H-indole (54) and 2-(4-ferrocenylphenyl)-
1H-indole (55) by substituting ferrocenyl moiety into a indole derivative at position 3 and 4, respectively.
In vivo studies of the compounds (54 and 55) on rat peritoneal macrophages for cell viability evaluation
revealed that the macrophage viability was reduced by more than 50% using low concentrations of
these compounds. The cytotoxic effect of the compounds was dose-dependent and a high concentration
of the compounds reduced the viability of peritoneal macrophages [60].

4.2. 1,2,4-Trioxane–Ferrocene Hybrids

1,2,4-trioxane ferrocene derivatives were reported by Reiter et al. as potential drugs for various
biological activities such as antimalarial, anticancer. A 1,2,4-trioxane-ferrocene hybrid, 23, was reported
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to be the most active compound from this class against leukemia cells with IC50 values of 0.25 µM
against CCRF-CEM cells and 0.57 µM against CEM/ADR5000 cell lines, respectively. Since compound
23 exhibited good anticancer activity, the second generation of these compounds from this class
(1,2,4-trioxane-ferrocene) were synthesized (24–27). In vitro studies against leukemia cells revealed
significant cytotoxic effect with an IC50 value of 0.13 µM when compared to dihydroartemisinin with
an IC50 value of 0.48 µM [39,61]. The compounds with two trioxane moieties such as compound
23, 24, 25, and 27 exhibited cytotoxic effects with IC50 of 0.25, 0.13, 0.07, and 0.08 µM, respectively,
against CCRF-CEM cells. The most potent compound against CCRF-CEM cells was compound 26
with an IC50 value of 0.01 µM. The hybrids, 24–27, were more active when compared to their parent
drugs (artemisinin and dihydroartemisinin) with 3- to 50-fold more cytotoxic effects towards multidrug
resistant cell lines. The molecular weight and number of 1.2,4-trioxane moieties present in these
compounds played an important role in their cytotoxic effects against CEM/ADR5000 cell in vitro.
Compound 25 and 27 with two moieties and a molecular weight of 800 g/mol exhibited enhanced
cytotoxic effects when compared to compound 23 and 24 with one moiety and a molecular weight of
500 g/mol [39,61].

4.3. Ferrociphenols

Ferrociphenols are reported as the most active antiproliferative agents when compared to cisplatin
and tamoxifen cancer drugs [56]. They have rich diverse modes of action which are caused by their
capability to produce a redox pattern (ferrocenyl-ene-phenol) in the cancer cell [56]. Their target
is the mitochondrial system or redox proteins in the cancer cells [62–65]. Pigeon et al. prepared
ferrociphenol derivatives 56a and 56b (Figure 18). Increasing the length of the non-polar carbon chain
on the north-west side of the molecule affected the steric hindrance and lipophilicity, thereby decreasing
the anticancer activity of the compounds significantly. The presence of succinimido or phthalimido
substituents in some of the derivatives enhanced their antitumoral activity against ovarian cancer cell
lines with low IC50 values which were below 0.08 µM [64].
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Zanellato et al. evaluated the anticancer activity of compounds 57a and 57b against malignant
pleural mesothelioma (MPM) cell lines (Figure 19). Both compounds were effective in the inhibition
of cell proliferation [66]. Vassieries et al. reported the synthesis of compound 57a and 57c [67].
The antiproliferative effects of both compounds were evaluated at a concentration of 1 µM on
hormone-dependent (MCF7) and hormone-independent (MDA-MB231) breast cancer cell lines.
Compound 57c’s antiproliferative effect was not significant when compared to 57a which exhibited
significant antiproliferative activity with IC50 = 0.7 µM. The result suggests that the cytotoxic activity of
the ferrocenyl group is higher than the estrogenic proliferative effect of the diphenol moiety. The poor
proliferative effect of 57c on MCF7 (ER positive) cells indicate that the presence of a ferrocene group is
not sufficient for the generation of antiproliferative effects and the position of the oxidizable ferrocenyl
group plays a vital role in the antiproliferative activity of the compounds [67].
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Wang et al. reported a series of ferrociphenol derivatives with hydroxypropyl (58–60) and
tested them on the triple negative breast cancer line MDA-MB-231 with IC50 values ranging between
0.26–13.31 Mm (Figure 20). The introduction of a bulky aromatic group at the terminal hydroxyl
position resulted in compounds with poor cytotoxic activity. The replacement of terminal hydroxyl
with a chlorine or propan-2-one oxime resulted in compounds that exhibited moderate cytotoxic
activity against the MDA-MB-231 cells. The introduction of benzylated substituents at the terminal
hydroxyl position of compound 60 resulted in significant cytotoxic effects against the MDA-MB-231
cells, resulting in a high lipophilic nature of the compound. Compound 59 and 60 exhibited significant
cytotoxic effect against the cancer cell lines suggesting that the presence of an ester linker makes the
compounds prone to hydrolysis, resulting in the generation of the parent drug, 58 [63].

Molecules 2019, 24, x 15 of 27 

 

Fe

OH

57a-b

X

Fc

OH

HO

57c

57a: X = OH ; 57b: X = O(CH2)3N(CH3)2  

Figure 19. Chemical structures of ferrociphenol compound (57a–c). 

Wang et al. reported a series of ferrociphenol derivatives with hydroxypropyl (58–60) and tested 

them on the triple negative breast cancer line MDA-MB-231 with IC50 values ranging between 0.26–

13.31 Μm (Figure 20). The introduction of a bulky aromatic group at the terminal hydroxyl position 

resulted in compounds with poor cytotoxic activity. The replacement of terminal hydroxyl with a 

chlorine or propan-2-one oxime resulted in compounds that exhibited moderate cytotoxic activity 

against the MDA-MB-231 cells. The introduction of benzylated substituents at the terminal hydroxyl 

position of compound 60 resulted in significant cytotoxic effects against the MDA-MB-231 cells, 

resulting in a high lipophilic nature of the compound. Compound 59 and 60 exhibited significant 

cytotoxic effect against the cancer cell lines suggesting that the presence of an ester linker makes the 

compounds prone to hydrolysis, resulting in the generation of the parent drug, 58 [63]. 

X

OH

Fc
OH

58-60

58: X = OH 59: X = O-C(=O)- 60: X = O-C(=O)Ph
 

Figure 20. Chemical structures of hydroxypropyl-ferrocephenol derivatives (58–60). 

Plazuk et al. reported the synthesis of ferrocenyl compounds 61–64 with ferrociphenols and a 

1H-1,2,3-triazolyl moiety acting as a linker and their cytotoxic activities against human breast cancer 

cells (HCC38 and MCF-7) in vitro (Figure 21). Some of the compounds exhibited good cytotoxic 

activity against the hormone-independent HCC38 breast cancer cell line. The most active compound 

was 61 with IC50 = 15.3 μM and it contained a para-hydroxyphenyl group. The introduction of two 

para-hydroxyphenyl moiety in compound 63 resulted in a decrease in the anticancer activity of the 

compound with an IC50 value of 30.6 μM. The introduction of a 3,5-dihydroxyphenyl in compound 

64 led to a significant decrease in the anticancer activity. Compound 62 exhibited cytotoxic activity 

against the hormone-dependent MCF-7 cancer cell lines at high concentrations of IC50 = 48.9 [68]. 

Pigeon et al. synthesized ferrociphenol derivatives (65–67) with enhanced cytotoxic activity by 

replacing the phenol group with an aniline or acetanilide group and these derivatives were tested 

against MCF-7 and MDA-MB-231 breast cancer cell lines (Figure 22). The effects of compound 65–67 

against hormone-dependent breast cancer cells MDA-MB-231 was significant at IC50 values 0.8, 0.65, 

and 1.13 μM, respectively. Compound 65’s proliferative effect was significant when compared to 

compound 66 and 67. The effect of 65 and 66 on MCF-7 cells revealed a low cytotoxic effect at a low 

Figure 20. Chemical structures of hydroxypropyl-ferrocephenol derivatives (58–60).

Plazuk et al. reported the synthesis of ferrocenyl compounds 61–64 with ferrociphenols and
a 1H-1,2,3-triazolyl moiety acting as a linker and their cytotoxic activities against human breast cancer
cells (HCC38 and MCF-7) in vitro (Figure 21). Some of the compounds exhibited good cytotoxic
activity against the hormone-independent HCC38 breast cancer cell line. The most active compound
was 61 with IC50 = 15.3 µM and it contained a para-hydroxyphenyl group. The introduction of two
para-hydroxyphenyl moiety in compound 63 resulted in a decrease in the anticancer activity of the
compound with an IC50 value of 30.6 µM. The introduction of a 3,5-dihydroxyphenyl in compound
64 led to a significant decrease in the anticancer activity. Compound 62 exhibited cytotoxic activity
against the hormone-dependent MCF-7 cancer cell lines at high concentrations of IC50 = 48.9 [68].

Pigeon et al. synthesized ferrociphenol derivatives (65–67) with enhanced cytotoxic activity by
replacing the phenol group with an aniline or acetanilide group and these derivatives were tested
against MCF-7 and MDA-MB-231 breast cancer cell lines (Figure 22). The effects of compound 65–67
against hormone-dependent breast cancer cells MDA-MB-231 was significant at IC50 values 0.8, 0.65,



Molecules 2019, 24, 3604 16 of 27

and 1.13 µM, respectively. Compound 65’s proliferative effect was significant when compared to
compound 66 and 67. The effect of 65 and 66 on MCF-7 cells revealed a low cytotoxic effect at a low
concentration of 0.1 µM. However, 65 exhibited enhanced proliferative effects when compared to
compound 66. At a high concentration of 10 µM, compound 65 exhibited no significant cytotoxic effect
but compound 66 exhibited a moderate antiproliferative effect [69].
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4.4. Ferrocenyl Derivatives of Clotrimazole Drug

Pedotti et al. reported the synthesis of two ferrocenyl–clotrimazole derivatives 68 and 69 by
replacing one of the phenyl rings in the clotrimazole structure with a ferrocene moiety and studied their
biological activity against two human cancer cell lines (HT29 and MCF-7) (Figure 23). In compound
68, the chlorine was on the ortho-position whereas for compound 69 it was on the para-position.
Compound 68 and 69 growth inhibition effects were studied on colorectal cancer cells (HT29) and breast
cancer cells (MCF-7) and ferrocenyl–clotrimazole derivatives were more active against breast cancer
cell MCF-7 when compared to the colorectal cancer cell line HT29 with GI50 values of HT29 = 27.51 µM,
MCF-7 = 23.84 µM (68) and HT29 = 28.13 µM, MCF-7 = 20.44 µM (69), respectively. These two
compounds (68 and 69) were more active than their parent drug (clotrimazole, GI50 HT29 = 64.19 µM
and MCF-7 = 21.44 µM) but less active when compared to 5-fluorouracil (GI50, HT29 = 5.71 µM and
MCF-7 = 2.98 µM). The modification of the structure with ferrocene enhanced the cytotoxic activity
of the compounds when compared to the parent drug in HT29 cells. The aforementioned enhanced
effect is attributed to the redox properties of iron in the ferrocene moiety and also its ability to generate
cytotoxic reactive oxygen species [14].
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4.5. Ferrocenyl Chalcogeno Triazole Conjugates

Panaka et al. documented the synthesis of ferrocenyl–chalcogeno derivatives (70 and 71a–c) and
tested their cytotoxic activity against five different cancer cell lines (A549, MDA-MB-231, MCF-7, HeLa,
and HEK-239T) with IC50 values ranging between 2.9 and 20 µM for the first four cancer cells, and none
of the compounds being effective against HEK-239T (Figure 24). Compound 70a–c contained sulfur
and compound 71a–c contained selenium. The derivatives with selenium exhibited higher cytotoxicity
with IC50 values ranging between 2.9 and 18.3 µM compared to the sulfur derivatives with inhibition
values between 4.46–18.9 µM, respectively [70]. Compound 70a exhibited good cytotoxic activity
against two cancer cells (A549 and HeLa) with IC50 values of 11.6 µM (A549) and 14.8 µM (HeLa), 70c
and 70b exhibited good cytotoxic activity against MDA-MB-231 cancer cells only with inhibition values
of 9.7 and 18.9 µM, respectively. Compound 71a displayed cytotoxic activity against three cancer cells
with IC50 values of 4.56 µM (MDA-MB-231), 4.46 µM (MCF-7), and 10.9 µM (HeLa); compound 71b
which was the most cytotoxic active compound against four cancer cells with IC50 values of 2.9 µM
(A549), 3.35 µM (MDA-MB-231), 5.58 µM (MCF-7), and 11.6 µM (HeLa). Compound 71c exhibited
high cytotoxic activity on two cancer cells with IC50 values of 3.71 µM (A549) and 18.3 µM (HeLa),
respectively [70]. The selenium compounds ability to prevent cancer is attributed to its capability to
inhibit tumor cell growth, its antioxidant property, and its ability to modulate carcinogen metabolism.
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4.6. Ferrocenyl–Olefin Derivatives

Oliveira et al. documented the antiproliferative effect of tetrasubstituted olefins–ferrocenyl
compounds. In vitro studies were performed on different human cancer cells such as MDA-MB-435
(human melanoma), SF-295 (human glioblastoma), HCT-8 (human colon cancer), and HL-60 (human
promyelocytic leukemia). Compound 72a and 72b displayed IC50 values of 16 µM and 14.2 µM,
respectively, and they were found to exhibit moderate antiproliferative activity when compared
to other compounds with similar geometry when tested against human breast cancer cell lines
MDA-MB-231 (Figure 24) [71]. MDA-MB-435 cell lines was found to be highly sensitive to the
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compounds with amine side chains at low micromolar activity. The amine side chains contributed to
estrogen–receptor interactions.

The introduction of an aromatic substituent did not play an important role in the cytotoxicity
activity of the compounds against MDA-MB-231 cells. The presence of the less bulky substituent such
as acetyl when compared to a pivaloyl substituent resulted in the enhanced cytotoxic effect of the
compounds against the selected cancer cell lines. Compounds 73a–i exhibited good antiproliferative
activity with IC50 values that are not greater than 2 µM, compound 73a, 73d, 73g, 73h, 73i were the
most active compounds with inhibition values between 1–2.9 µM for SF-295, 0.82–1.4 µM for HCT-8,
0.83–16 µM for MDA-MB-435, and 0.52–1.9 µM for HL-60, respectively (Figure 25). Compound 73h
exhibited IC50 values ranging between 0.52 and 1.9 µM for all human cancer cell lines. Compound 73c,
73e, 73f were slightly active against all human cancer cell lines except MDA-MB-435 with IC50 values
ranging between 1 and 2.6 µM for SF-295, 1.0–3.0 µM for HCT-8, and 0.90–1.6 µM for HL-60 cancer
cell lines. Compound 74 was one of the most antiproliferative compounds against all cancer cell lines
except MDA-MB-435 with inhibition values between 0.12–1.0 µM, respectively [71].

Jadhav et al. synthesized a series of ferrocenyl chalcone and amidines compounds (75a–j) via
catalyzed cyclocondensation and these compounds were tested in vitro for anticancer activity against
human breast cancer cell line MDA-MB-435 using the sulforhodamine B assay method (Figure 26).
Compounds (75a–g) exhibited good anticancer activity when compared to doxorubicin (GI50= 18.4 µM)
against MDA-MB-435 cancer cell lines with GI50 values between 16.85–63.2 µM with compound 75b,
75c, and 75f exhibiting low GI50 values of 18, 17.4, and 16.85 µM, respectively. Compounds (75h–j)
exhibited poor anticancer activity when compared to doxorubicin with GI50 values ranging between
125.5 and 152.9 µM [72]. Compound 75b and 75c exhibited high anticancer activity and the presence of
a nitro functional group contributed to their anticancer activity.
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Figure 25. Chemical structures of ferrocenyl–olefins (72–74). Figure 25. Chemical structures of ferrocenyl–olefins (72–74).



Molecules 2019, 24, 3604 19 of 27
Molecules 2019, 24, x 19 of 27 

 

N N
R

Fc

a

N N
R

Fc

b

N N

Cl

R

Fc

c

NO2
NO2

R

N N

Fc

d

Cl

N N
R

Fc

e

Cl

N N

Fc

R

Fc

f

R

N N

Fc Fc

g h

N N

Fc

Cl

R

Fc

i

N N

Fc

R

Fc

Cl

N N
R

Fc

j

R =
N*

 

Figure 26. Chemical structures of ferrocene with 1,4-dihydropyrimidine derivatives (75a–j). 

4.7. Ferrocene–Carboxylate Derivatives 

Perez et al. reported the synthesis of ferrocene derivatives (76–77) containing carboxylate and 

acetylate with anticancer activity and their antiproliferative activity in vitro against MCF-7, MCF-

10A, and HT-29 cancer cell lines using an MTT assay was also evaluated (Figure 27). Compound 76a 

and 76b exhibited moderate antiproliferative activity with IC50 values of 45.5 and 57 µM. Compound 

77 exhibited low antiproliferative activity with an IC50 value of 103 µM against MCF-7 breast cancer 

cell lines. The compounds did not exhibit any significant antiproliferative activity against HT-29 and 

MCF-10A with inhibition values between 121–298 µM [73]. 

Fe

O
R

O
R

O

O

76a

Fe

O
R

O

76b

Fe

77

OH

O

O
R

O
R =

N

*

 

Figure 26. Chemical structures of ferrocene with 1,4-dihydropyrimidine derivatives (75a–j).

4.7. Ferrocene–Carboxylate Derivatives

Perez et al. reported the synthesis of ferrocene derivatives (76–77) containing carboxylate and
acetylate with anticancer activity and their antiproliferative activity in vitro against MCF-7, MCF-10A,
and HT-29 cancer cell lines using an MTT assay was also evaluated (Figure 27). Compound 76a and
76b exhibited moderate antiproliferative activity with IC50 values of 45.5 and 57 µM. Compound 77
exhibited low antiproliferative activity with an IC50 value of 103 µM against MCF-7 breast cancer
cell lines. The compounds did not exhibit any significant antiproliferative activity against HT-29 and
MCF-10A with inhibition values between 121–298 µM [73].Molecules 2019, 24, x 20 of 28 

 

Fe

O
R

O
R

O

O
76a

Fe

O
R

O

76b

Fe

77

OH

O

O
R

O
R =

N

*

 

80: R = CH3, 78a: X = Br, 78b: X = I

X

Fc

O

78a-b

Fc N

79

R OH

Fc
O

HO

80

 
Figure 27. Chemical structures of ferrocene–carboxylate derivatives (76–80). 

Vera et al. reported ferrocene–carboxylate compounds with phenyl and halogen (F, I, Cl, and 
Br). Compound 78a exhibited good antiproliferative activity against MCF-7 cancer cells with an IC50 
value of 9.2 µM and compound 78b exhibited high antiproliferative activity against MCF-10A cancer 
cells with an IC50 value of 7 µM [74,75] (Figure 27). Compound 79 anticancer activity was significant 
against both MCF-7 and MCF-10A cancer cells with IC50 values 1.4 and 1.6 µM respectively [73,74]. 
Compound 78a and 80 showed moderate antiproliferative activity against HT-29 cancer cells with 
IC50 values of 24.4 and 24.0 µM, respectively [73,74] (Figure 28). 

The in vitro anti-proliferative studies indicated that the presence of 4-fluorophenyl substituent 
in the compounds resulted in compounds with no cytotoxic effect against the cancer cell lines. 
However, the presence of a phenyl group enhanced the proliferative effects of the compound against 
MCF-7 but nullified the proliferative effect of the compound against the MCF-10A cell line. 

4.8. Ferrocene Incorporated Selenourea Derivatives 

Hussain et al. reported ferrocene incorporated with selenourea derivatives (81a–q) (Figure 28) 
and tested them for their anticancer activity against liver cancer (Hepa 1c1c7), breast cancer (MCF-7), 
and neuroblastoma (MYCN2 and SK-N-SH), in vitro. Only four compounds (81c, 81h, 81j, and 81m) 
exhibited moderate anticancer activity against the aforementioned cells, compound 81c displayed 
moderate cytotoxicity activity against MYCN-2 and MCF-7 with inhibition values of 26.5 and 27 µM, 
compound 81h exhibited better anticancer activity against MYCN-2 with an inhibition value of 12.2 
µM, compound 81j was slightly cytotoxic with an IC50 value of 18.9 µM against MYCN-2 and 
compound 81m showed low anticancer activity against MYCN-2 with inhibition value of 38.9 µM 
[75]. The ortho substitution on the phenyl ring attached with the carbonyl carbon influenced the 
cytotoxic effect of the compounds significantly. The aromatase inhibition and quinone reductase 
induction activities of the compounds further revealed their capability to inhibit the cancer initiation 
and propagation. 

Figure 27. Cont.



Molecules 2019, 24, 3604 20 of 27

Molecules 2019, 24, x 20 of 28 

 

Fe

O
R

O
R

O

O
76a

Fe

O
R

O

76b

Fe

77

OH

O

O
R

O
R =

N

*

 

80: R = CH3, 78a: X = Br, 78b: X = I

X

Fc

O

78a-b

Fc N

79

R OH

Fc
O

HO

80

 
Figure 27. Chemical structures of ferrocene–carboxylate derivatives (76–80). 

Vera et al. reported ferrocene–carboxylate compounds with phenyl and halogen (F, I, Cl, and 
Br). Compound 78a exhibited good antiproliferative activity against MCF-7 cancer cells with an IC50 
value of 9.2 µM and compound 78b exhibited high antiproliferative activity against MCF-10A cancer 
cells with an IC50 value of 7 µM [74,75] (Figure 27). Compound 79 anticancer activity was significant 
against both MCF-7 and MCF-10A cancer cells with IC50 values 1.4 and 1.6 µM respectively [73,74]. 
Compound 78a and 80 showed moderate antiproliferative activity against HT-29 cancer cells with 
IC50 values of 24.4 and 24.0 µM, respectively [73,74] (Figure 28). 

The in vitro anti-proliferative studies indicated that the presence of 4-fluorophenyl substituent 
in the compounds resulted in compounds with no cytotoxic effect against the cancer cell lines. 
However, the presence of a phenyl group enhanced the proliferative effects of the compound against 
MCF-7 but nullified the proliferative effect of the compound against the MCF-10A cell line. 

4.8. Ferrocene Incorporated Selenourea Derivatives 

Hussain et al. reported ferrocene incorporated with selenourea derivatives (81a–q) (Figure 28) 
and tested them for their anticancer activity against liver cancer (Hepa 1c1c7), breast cancer (MCF-7), 
and neuroblastoma (MYCN2 and SK-N-SH), in vitro. Only four compounds (81c, 81h, 81j, and 81m) 
exhibited moderate anticancer activity against the aforementioned cells, compound 81c displayed 
moderate cytotoxicity activity against MYCN-2 and MCF-7 with inhibition values of 26.5 and 27 µM, 
compound 81h exhibited better anticancer activity against MYCN-2 with an inhibition value of 12.2 
µM, compound 81j was slightly cytotoxic with an IC50 value of 18.9 µM against MYCN-2 and 
compound 81m showed low anticancer activity against MYCN-2 with inhibition value of 38.9 µM 
[75]. The ortho substitution on the phenyl ring attached with the carbonyl carbon influenced the 
cytotoxic effect of the compounds significantly. The aromatase inhibition and quinone reductase 
induction activities of the compounds further revealed their capability to inhibit the cancer initiation 
and propagation. 

Figure 27. Chemical structures of ferrocene–carboxylate derivatives (76–80).

Vera et al. reported ferrocene–carboxylate compounds with phenyl and halogen (F, I, Cl, and
Br). Compound 78a exhibited good antiproliferative activity against MCF-7 cancer cells with an IC50

value of 9.2 µM and compound 78b exhibited high antiproliferative activity against MCF-10A cancer
cells with an IC50 value of 7 µM [74,75] (Figure 27). Compound 79 anticancer activity was significant
against both MCF-7 and MCF-10A cancer cells with IC50 values 1.4 and 1.6 µM respectively [73,74].
Compound 78a and 80 showed moderate antiproliferative activity against HT-29 cancer cells with IC50

values of 24.4 and 24.0 µM, respectively [73,74] (Figure 28).
The in vitro anti-proliferative studies indicated that the presence of 4-fluorophenyl substituent in

the compounds resulted in compounds with no cytotoxic effect against the cancer cell lines. However,
the presence of a phenyl group enhanced the proliferative effects of the compound against MCF-7 but
nullified the proliferative effect of the compound against the MCF-10A cell line.

4.8. Ferrocene Incorporated Selenourea Derivatives

Hussain et al. reported ferrocene incorporated with selenourea derivatives (81a–q) (Figure 28)
and tested them for their anticancer activity against liver cancer (Hepa 1c1c7), breast cancer (MCF-7),
and neuroblastoma (MYCN2 and SK-N-SH), in vitro. Only four compounds (81c, 81h, 81j, and 81m)
exhibited moderate anticancer activity against the aforementioned cells, compound 81c displayed
moderate cytotoxicity activity against MYCN-2 and MCF-7 with inhibition values of 26.5 and 27 µM,
compound 81h exhibited better anticancer activity against MYCN-2 with an inhibition value of 12.2 µM,
compound 81j was slightly cytotoxic with an IC50 value of 18.9 µM against MYCN-2 and compound
81m showed low anticancer activity against MYCN-2 with inhibition value of 38.9 µM [75]. The ortho
substitution on the phenyl ring attached with the carbonyl carbon influenced the cytotoxic effect of the
compounds significantly. The aromatase inhibition and quinone reductase induction activities of the
compounds further revealed their capability to inhibit the cancer initiation and propagation.
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4.9. Ferrocene–Steroid Conjugates

Pita et al. reported the synthesis of ferrocene–steroid conjugates (82a–c) (Figure 29) and
evaluated their anticancer activity against colon cancer HT-29 and breast cancer MCF-7 cell lines.
Compounds (82a–c) exhibited good antiproliferative activity with IC50 values less than 30 µM against
the MCF-7 breast cancer cell line when compared to tamoxifen with an IC50 of 47 µM and 3-estradiol
ferrocenecarboxylate with an IC50 of 9 µM at low concentration. Compound 82a showed high
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antiproliferative activity exceeding that of cisplatin against the HT-29 colon cancer cell line with
an inhibition value of 1.2 µM [11]. The presence of ferrocene moiety in the compounds enhanced the
anti-proliferative activity of the compound against the HT-29 colon cancer cell line. Estrogen receptor
beta play a vital role in the anti-proliferative activity on the HT-29 cell line.
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Figure 29. Hybrid compounds 82a–c.

Jaouen and co-workers synthesized ferrocenyl compounds (83a–c) (Figure 30) and tested them for
their anticancer activity in vitro against two human breast cancer cell lines MCF-7 and MDA-MB-231.
Compounds 83a–c had no effect on MDA-MB-231 and were estrogenic on the MCF-7 cancer cell line
at 0.1–1 µM concentration, compound 83a and 83c exhibited cytotoxic activity on MDA-MB-231 at
high concentrations with IC50 values of 13.4 and 18.8 µM, respectively, while compound 83b remain
inactive [62].
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Figure 30. Hybrid compounds 83a–c.

Jaouen et al. also reported the synthesis of steroid vectorized ferrocene derivatives (84a–c)
(Figure 31) and evaluated their antiproliferative effect against prostate cancer cells LNCaP and PC-3
with IC50 values ranging between 4.7 and 8.3 µM. At high concentrations (10 µM) compound 84a–c
exhibited good antiproliferative activity but poor activity at low concentrations (1 µM) against PC-3
cancer cells. Compound 84a and 84b displayed high antiproliferative activity at high concentrations
(10 µM), with no activity at low concentrations against LNCaP cancer cells [62].
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Figure 31. Hybrid compounds 84a–c.

Manosroi and co-partners synthesized ferrocenic–steroid derivatives (85a–e) (Figure 32). Firstly,
in vitro cytotoxicity evaluation of the parent drug (doxorubicin) against cell line HeLa revealed
(GI50 value= 0.250 µg/mL) for comparison use. Compound 85a and 85b exhibited antiproliferative
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activity that was comparable with doxorubicin with GI50 values of 0.223 and 0.271 µg/mL. Compound
85d and 85e displayed moderate antiproliferative activity with GI50 values of 0.405 and 0.505 µg/mL
while their parent drugs exhibited low antiproliferative activity on HeLa cancer cells [76].
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4.10. Aminoferrocene-Based Derivatives

Schikora et al. reported anticancer activity of aminoferrocene-based compounds (86a–b) (Figure 33)
against LNCaP and DU-145 prostate cancer cell lines. At high concentrations, compound 86b was
found to be non-toxic against DU-145 and LNCaP cancer cells while compound 86a exhibited moderate
cytotoxic activity against both DU-145 and LNCaP cancer cells in vitro with inhibition values that were
between 18–27 µM and 11–17 µM, respectively. In vivo studies further revealed that compound 86a
was non-toxic against human prostate adenocarcinoma xenografts in a CBA mice model and exhibited
restricted antitumor activity [77]. N-benzyl-substituted aminoferrocene-based prodrug 86a exhibited
significant anticancer activity against androgen-sensitive human prostate adenocarcinoma cell line
LNCaP which is attributed to the increased amount of intracellular reactive oxygen species during the
treatment of the cells with the drug and its enhanced cell-membrane permeability when compared
to 86b.
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4.11. Ferrocene–Lawsone Mannich Derivatives

Ferrocenyl compounds (87a–d) (Figure 34) modified by Lawsone Mannich bases were reported
by Ahmad et al. Their antiproliferative studies against prostate (BxPC-3), breast (MDA-MB-231), and
pancreatic (PC-3) cancer cells indicated that compound 87a was the most antiproliferative compound
in three cancer cells (87c < 87d < 87b < 87a), exhibiting high activity when compared to the well-known
Lawsone Mannich bases in PC-3 cancer cells. In vitro studies of compound 87a on three cancer
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cells (518A2 melanoma, HT-29 colon carcinoma, HCT-116 colon carcinoma, and vinblastine-resistant
KB-V1/Vb1 cervix carcinoma) revealed good activity with inhibition values of 2.60, 3.58, 4.29, and
0.19 µM, respectively [78]. The combination of Lawsone with a 2-pyridyl moiety and a ferrocene-1-yl
methylamine scaffold in compound 87a contributed to its anticancer activity. The effect of the ferrocene
in compound 87a was significant.
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5. Conclusion 

Researchers are currently employing different strategies to develop effective drugs for the 
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5. Conclusions

Researchers are currently employing different strategies to develop effective drugs for the treatment
of malaria and cancer, two chronic conditions. The aim of the development of new antimalarial or
anticancer drugs is to overcome drug resistance, toxicity etc. Most of the drugs are developed as hybrid
molecules which is a promising approach to develop compounds to overcome drug resistance.

Antimalarial-based hybrid compounds of ferrocene have been extensively studied. Ferroquine,
a hybrid molecule prepared from chloroquine and ferrocene exhibit enhanced inhibition effect against
beta-haematin formation which makes it more effective than chloroquine. Other quinoline–ferrocene
hybrid molecules were prepared and some of the molecules inhibited the efflux mechanism which is
common with chloroquine. However, factors such as rigid linkers and the length of the linkers between
the parent drugs influenced the antimalarial activity of some of the hybrid molecules significantly.
The quinoline moiety was found to influence the transportation of the hybrid molecules to the digestive
vacuole of the parasite. However, ferroquine analogues with the presence of a cleavable amide bond
did not exhibit significant antimalarial activity. Ferrocene hybrid molecules containing artemisinin
were very active with the capability to improve the bioavailability of molecules when compared
with artemisinin which is hampered by its poor bioavailability. Other ferrocene hybrid molecules
containing either novobiocin, pyrrole, isatin, pyrimidine, and chalcones derivatives also exhibited
good antimalarial activity. Factors such as the chain length, nature, and position of the substituent
influenced the biological activity of the compounds in vitro.

In vitro and in vivo evaluation of the ferrocene hybrids against several cancer cell lines further
revealed the efficacy of ferrrocene hybrid molecules. The length of the non-polar carbon chain,
the position of the ferrocenyl group, the nature and position of the substituents in the hybrid molecules,
and the dose of the compounds used in the cytotoxicity evaluation were factors that influenced the
cytotoxic effect of the compounds.

Several research reports indicate the efficacy of ferrocene-based hybrids. However, there is
a pressing need for these molecules obtained so far to be investigated in vivo in order to confirm the
results obtained in vitro. However, it is important to develop hybrid compounds that are structurally
simpler, synthetically accessible, and less toxic, with enhanced efficacy and progress through all phases
of clinical practice, to become available and affordable.
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