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The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family

of RNA binding proteins that are implicated in RNA metabolism, such as

alternative splicing, mRNA stabilization and translational regulation.

According to their different cellular localization, hnRNPs display multiple

functions. Most hnRNPs were predominantly located in the nucleus, but

some of them could redistribute to the cytoplasm during virus infection.

HnRNPs consist of different domains and motifs that enable these proteins to

recognize predetermined nucleotide sequences. In the virus-host interactions,

hnRNPs specifically bind to viral RNA or proteins. And some of the viral protein-

hnRNP interactions require the viral RNA or other host factors as the

intermediate. Through various mechanisms, hnRNPs could regulate viral

translation, viral genome replication, the switch of translation to replication

and virion release. This review highlights the common features and the

distinguish roles of hnRNPs in the life cycle of positive single-stranded

RNA viruses.
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Introduction

Positive single-stranded RNA viruses include a broad group of

well-known pathogens in the Picornaviridae, Flaviviridae,

Coronaviridae and other viral families (1). These viruses

generally endanger human health and cause economic burdens

as well as societal costs. For example, severe acute respiratory

syndrome-coronavirus-2 (SARS-CoV-2, belonging to the

Coronaviridae family) has spread worldwide for the past two

years, threatening lives by causing severe symptoms in patients

and resulting in millions of deaths (2). Hepatitis C virus (HCV,

belonging to the Flaviviridae family) was estimated to infect 71

million people worldwide, and the number of infected people has

increased by nearly 2 million a year, causing cirrhosis,

hepatocellular carcinoma, liver failure and even death (3, 4).

And enterovirus (belonging to the Picornaviridae family) threats

human health by its extensive outbreak and causing deaths (5).

Positive single-stranded RNA viruses mostly contain a limited-

sized genome that encodes several or at most dozens of proteins

(6). Viruses require assistance from host factors to replicate

successfully in cells and also develop diverse mechanisms to

exploit host factors to aid the different life cycle stages for

maintaining viral efficient propagation (6–8). Positive single-

stranded RNA viruses can translocate host factors to the

cytoplasm and support their life cycle (9–11). And some

proteins in host cells are closely related to viral proteins or

RNAs to inhibit virus propagation (12). A recent study revealed

that 104 host proteins could interact with SARS-CoV-2 RNA and

participate in viral translational initiation, transcription and

immune response. Additionally, 23 of these proteins could be

targeted with existing drugs (13). To defend themselves from virus

infection, host cells also develop some strategies to drive proteins

or other host factors to confine viral proteins or RNA to restrain

the virus replication (14). Therefore, studying host proteins that

interact with viral genomics or viral proteins is beneficial for

understanding RNA virus pathogenesis and providing

information on developing antiviral therapies and vaccines (15).

HnRNPs constitute a group of RNA-binding proteins that

recognize specific RNA sequences and are reported to be

frequently involved in RNA metabolism processes such as pre-

mRNA splicing, transcription and translation regulation (16).

The hnRNP family mainly comprises 20 proteins, and they are

named in alphabetical order from hnRNP A1 to hnRNP U (and

RALY, which is also known as HNRPCL2 or P542), with

molecular weights ranging from 34 kDa to 120 kDa (16).

HnRNPs can bind to heterogenous nuclear RNAs (hnRNAs)

or pre-mRNAs, which are primary transcripts generated by

polymerase II (17). This binding activity is linked with pre-

mRNA splicing, causing impaired binding capacity of hnRNP A,

B, C and I and leading to splicing inhibition (18). Heterogeneous

ribonucleoproteins (hnRNPs) are proteins identified to associate
Frontiers in Immunology 02
with the virus components during positive-strand RNA virus

infection (19–21).

The structure of hnRNPs usually includes RNA-binding/

RNA recognition motifs and other domains/motifs related to

cytoplasmic redistribution or the binding of nucleotide

sequences (22, 23). Although hnRNPs share some similar

structural features, they can be very different from each other

(see Figure 1). Many members of hnRNPs possess RNA

recognition motifs/RNA binding domains (RRMs/RBDs),

while hnRNP E and hnRNP K possess specific RNA binding

domains called K-homology domains (KH domains) (16). These

structures identify and bind to specific RNA sequences, so

different hnRNPs have distinctive sequence affinities. For

example, the RRM1 of hnRNP A2/B1 recognizes adenine-

guanine–guanine (AGG) motifs, and its RRM2 recognizes

uridine-adenine-guanine (UAG) motifs (24). Most hnRNPs

are confined within the nucleus, while a few others can shuttle

between the cytoplasm and nucleus (18, 25). Several structures

are responsible for their localization rearrangement. Some

hnRNPs contain a nuclear localization sequence (NLS), which

is in charge of nuclear import (26). The other sequence that

mediates the hnRNPs nuclear import/export is the M9 sequence

(27). However, more information on the mechanisms by which

hnRNPs are exported from the nucleus to the cytoplasm remains

to be defined. It is also worth mentioning that the abundance of

hnRNPs is distinctive in different organisms (for example,

hnRNP C was identified to be highly expressed in the neurons

and testicles of mice but not detectable in the lung or pancreas)

(28). In addition to binding RNA, hnRNPs are also associated

with DNA biogenesis as they are involved in DNA replication,

damage repair and telomere functioning (29). For instance, it has

been shown that hnRNP K can modulate neurotransmitter gene

biosynthesis and participate in activation-induced cytidine

deaminase-mediated antibody diversification (30, 31).

HnRNPs are involved in many steps of viral infection

process, including replication, translation, the switch of

translation to replication, as well as virion release (19, 32, 33).

For example, the SARS-CoV-2 N protein can partition into

liquid condensates with hnRNP A2 and hnRNP P to promote

viral replication (19). The negative-stranded RNA of poliovirus

(PV) could interact with hnRNP C to enable positive-stranded

RNA synthesis (32). During enterovirus 71 (EV71) infection,

hnRNP A1 can bind to viral internal ribosome entry site (IRES),

which leads to enhanced IRES-mediated translation, and hnRNP

K interacts with stem-loops I, II, and IV to participate in viral

replication (34, 35). Some viruses could take advantage of

hnRNPs by rearranging these proteins from the nucleus to the

cytoplasm (36, 37). With positive-stranded RNA viruses

replicate in the cytoplasm, distributed hnRNPs are able to

interact with viral proteins or RNA to either assist or hinder

virus multiplication (1, 36, 37). Therefore, discussing the
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interactions between viruses and hnRNPs improves our

understanding of the molecular mechanisms of viral attacks on

host cells and the strategies through which our bodies resist these

invasions (38).
Roles of heterogeneous nuclear
ribonucleoproteins in the positive-
strand virus life cycle

HnRNP A/B

The four paralogues of hnRNP A/B proteins are hnRNP A1,

A2/B1, A3 and A0, and all of them were reported to have several

isoforms except for A0. The structures of hnRNP A/B proteins

are highly conserved among each other and they normally locate

at the nucleus (39). Another study suggested that although

hnRNP A/B colocalized with spliceosomal complexes within
Frontiers in Immunology 03
the nucleus, hnRNP A1 was abundant at the membrane of the

nucleus while A2/B1 and A3 accumulated in perinucleolar areas

(40). HnRNP A/B are responsible for RNA splicing, trafficking

and mRNA translation regulation (both Cap-dependent and

IRES-dependent). Besides, hnRNP A1 and A2/B1 also possess

DNA-binding ability (39).

Among these subgroup proteins, hnRNP A1 is one of the

most abundant and ubiquitously expressed proteins (27).

HnRNP A1 contains an unwinding protein 1 (UP1) domain

comprising two RNA-recognition motifs (RRM1 and RRM2) in

the N-terminus followed by specific motifs, an RGG box, a

prion-like domain and a nuclear-shuttling sequence called the

M9 sequence in the C-terminus (26, 41). UP1 and the RGG-box

affect the ability of hnRNP A1 to unfold DNA G-quadruplexes,

and the prion-like domain is closely related to stress granule

assembly (41, 42). HnRNP A1 shuttles rapidly between the

cytosol and the nucleus, and its M9 is vital for its import back

into the nucleus. A study revealed that TMG-induced O-linked

N-acetylglucosaminylation reinforces hnRNP A1 nuclear
FIGURE 1

The structures of heterogeneous ribonucleoproteins from hnRNP A1 to RALY. HnRNPs have different structures using some shared and
distinctive elements. RRM: RNA recognition motif, KH: K-homology domain, RGG-box: motifs containing arginine and glycine repeats, M9: M9
sequence, Gly-rich: glycine-rich domain, bZLM: basic leucine zipper-like motif, Acidic-rich: acidic-rich domain, Q-rich: Glutamine-rich domain,
Exon: The splicing site of enzyme to create various mRNAs, therefore translated into different proteins, NLS: nuclear localization sequence, KI:
K-interaction domain, Pro-rich: Proline-rich domain, KNS: nuclear shuttling domain, MR-repeat: methionine and arginine repeat motif, QGSY-
rich: (glutamine-glycine-serine-tyrosine)-rich region, Q/N-rich: glutamine- and/or asparagine-rich region. RRMs and KH domains are usually
responsible for virus RNA recognition and binding, and M9 and NLS are mainly responsible for hnRNP nuclear retention.
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localization and that sorbitol-induced phosphorylation of

hnRNP A1 results in its cytoplasmic accumulation (43).

Notably, although hnRNP A1 is expressed in most tissues, it

was identified to be most abundant in neurons of the central

nervous system (28) . HnRNP A2/B1 is crucia l to

oligodendrocyte and neural mRNA trafficking (44).

Some coronaviruses were reported to be associated with

hnRNP A1 (45–51). An early study suggested that the

nucleocapsid protein (N protein) of SARS coronavirus had a

high affinity with hnRNP A1, and the protein-protein

interaction requires 161-220 aa of SARS coronavirus N protein

and 203-320 aa of hnRNP A1 (45). It was also suggested that

hnRNP A1 might participate in the switch from viral translation

to replication because N6-methyl adenosine (m6A) marked

SARS-CoV-2 RNA recruit hnRNP A1 and enhance viral

genome transcription while suppressing translation. And this

interaction could be inhibited by 3-Deazaneplanocin A (DZNep)

(46). And During SARS-CoV-2 infection, the cellular location of

hnRNP A2/B1 is rearranged by NSP1, leading to restrained

immune response and enhancing infection by SARS-CoV-2 and

b-coronavirus, but the mechanism by which this occurs remains

to be explained (36). And a recent study pointed out that hnRNP

A2/B1 could associate with SARS-CoV-2 RNA to promote viral

replication, which could be targetable for antiviral drugs (52).
Frontiers in Immunology 04
HnRNP A1 interacts with the porcine epidemic diarrhoea

virus (PEDV) N protein to promote viral replication, and

inhibition of hnRNP A1 could result in reduced virus copy

numbers of different strains of PEDV in CCL81 cells (47) (see

Figure 2A). Despite the lack of evidence, hnRNP A1 was

hypothesized to facilitate PEDV replication through binding to

the 5’ end sequence and intergenic IG sequence, which is

required for coronavirus optical transcription of nested

subgenomic mRNA (47). Interestingly, the hnRNP A1 level

was downregulated during PEDV YN144 strain infectin, a

finding different from that in cells infected with the YN13

strain, where the hnRNP A1 levels were not remarkably

changed. This phenomenon was presumed to be related to the

weaker virulence of YN144 (48). Mouse hepatitis virus (MHV)

infection could result in cytoplasm retention of hnRNP A1 and

binding of hnRNP A1 to transcription regulation areas of MHV

negative-stranded RNA (49). Interestingly, C-terminal deletion

of hnRNP A1 inhibited MHV replication, while full-length

hnRNP A1 reinforced MHV replication (50). hnRNP A1 was

also detected to interact with MHV N proteins in the cytoplasm,

but the effect of this interaction during MHV infection remained

unexplored (51). As mentioned above, the N protein of SARS-

CoV-2, PEDV andMHV could interact with hnRNP A1, and the

interaction favours the virus replication (47).
FIGURE 2

The multiple functions of hnRNP A1 in viral life cycles. (A) Nuclear translocation of SV induces cytoplasmic retention of hnRNP A1, and hnRNP
A1 binds to the 5’ UTR of SV RNA, resulting in enhanced viral translation. (B) HnRNP A1 interacts with the nucleocapsid of PEDV and facilitates
PEDV replication near the nucleus. (C) HnRNP A1 binding to the 5’ UTR and 3’ UTR of HCV RNA and forming a complex with septin 6 and NSb5
induces the cyclization of HCV RNA and reinforces HCV RNA replication. (D) HnRNP A1 could bind to Apaf-1 mRNA to promote Apaf-1
translation and then upregulate the expression of caspase-3, resulting in cell apoptosis and virion release. EV71 3C protease could splice hnRNP
A1 and abolish its capacity to bind to Apaf-1 mRNA and downregulate caspase-3 expression, guaranteeing sufficient virus replication before
virion release.
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HnRNP A1 also affect the replication of viruses from other

virus families (20, 53). HnRNP A1 usually affects the viral

translation by associating with the IRES within viral RNA (20,

53, 54). The IRES trans-acting factor (ITAF) activity of hnRNP

A1 could be regulated through posttranslational modifications

(PTMs). HnRNP A1 PTMs are recognized by different viruses to

modulate their IRES-dependent translation (55). HnRNP A1

acts as an ITAF with EV71 IRES to regulate IRES-dependent

translation, and hnRNP A2 shows a similar function during

EV71 infection. Furthermore, EV71 infection stimulates the

phosphorylation of p38 mitogen-activated protein kinase

(MARK), which induces the cytoplasmic relocalization of

hnRNP A1 and induces IRES-mediated viral protein

translation (56). A study indicated that EV71 translation could

be restrained by inhibition of hnRNP A1 shuttling from the

nucleus to the cytoplasm through the use of an inhibitor

(SB203580) that can inhibit p38 MAPK (57). The association

of hnRNP A1 and A2 on EV71 IRES was demonstrated to be

inhibited by a dietary flavonoid called apigenin, and virus

infection was downregulated when cells were given apigenin

(53), which could be that apigenin target the glycine-rich

domain of hnRNP A2, disrupting its multimerization and

splicing activity (58). HnRNP A1 can trigger IRES-mediated

translation of human rhinovirus (HRV) RNA and inhibit IRES

activity of apoptotic peptidase activating factor 1 (apaf-1)

mRNA. The binding of hnRNP A1 to the apaf-1 IRES hinders

apaf-1 from hampering cell apoptosis and guaranteeing that the

virus propagates sufficiently before releasing virions (59). The

EV71 3C protease cleaves hnRNP A1, promoting apaf-1

translation and apoptosis and enables virus spreading (54) (see

Figure 2B). Besides, hnRNP A1 could bind to the 5’-untranslated

region (UTR) and 3’-UTR of the HCV genome, forming a

complex with NS5b and septin 6 to promote viral replication

(20) (see Figure 2C). In addition to IRES-mediated translation of

RNA viruses, hnRNP A1 could also affect non-IRES-initiated

translation, such as that of Sindbis virus (SINV). And during

SINV infection, hnRNP A1 also undergoes retention in the

cytoplasm, binding to the 5’ UTR of SINV RNA and

promoting SINV translation, but the exact mechanism

remains to be explored (60) (see Figure 2D).

HnRNP A2 has been confirmed to interact with Japanese

encephalitis virus (JEV) NS5 by binding to the 5’ UTR of the

negative-stranded RNA to enhance viral replication (61).

Additionally, hnRNP A2 also binds to the 3’ UTR of DENV

(62). And hnRNP A2 has been discovered to show RNA-binding

activity similar to that of hnRNP A1 to MHV, modulating MHV

RNA synthesis (63). During persistent Junıń virus (JUNV)

infection, not only was the location of hnRNP A/B rearranged

to the cytoplasm, but the expression level of hnRNP A/B was

also lowered than that under normal conditions (64). And when

hnRNP A1 and hnRNP A2 were silenced, the replication of

JUNV was significantly reduced, and JUNV infection caused the
Frontiers in Immunology 05
cytoplasmic distribution of hnRNP A1 but not hnRNP A2

(61, 65).
HnRNP C

HnRNP C is a critical RNA-binding protein with functions

in RNA expression, stability, mRNA splicing, nonspecific

sequence exportation and 3’-end processing (66, 67). HnRNP

C is predominantly located in the nucleus, and its expression

level was upregulated in multiple tumours, including lung

cancer, hepatocellular carcinoma, glioblastoma, melanoma and

breast cancer (68–71). HnRNP C1/C2 consists of a RRM, a basic

leucine zipper-like motif (bZLM), a NLS and an acid-rich C-

terminal domain. There are 13 amino acid residues between

RRM and bZLM in hnRNP C2, distinguishing it from hnRNP

C1 (67). HnRNP C proteins can form C13C2 tetramers in native

hnRNP complexes (32, 66, 72).

Although HnRNP C1/C2 is normally located in the nucleus,

its trafficking from the nucleus to the cytoplasm is observed

during PV and RV infection (68). This relocalization may be

attributed to either of the two mechanisms: the degradation of

the nuclear pore complex (NPC) or the interaction with viral

proteins and cellular proteins (66). The NPC forms a channel

that allows macromolecules to shuttle between the cytoplasm

and nucleus (69). Degradation of the NPC components Nup153

and p62 during RV or PV infection may be related to the

inhibition of nuclear import pathways, resulting in

cytoplasmic accumulation of hnRNP C1/C2 (70, 71).

HnRNP C can interact with PV RNA and proteins to

stimulate viral RNA synthesis, as hnRNP C serves as an

important component of RNP during PV infection-induced

complex formation that promotes the initiation of positive-

strand RNA synthesis (72). HnRNP C binds to both termini of

virus negative-stranded RNA, forming a multimer that facilitates

PV RNA synthesis. And C-terminal truncated hnRNP C1/C2

inhibits PV replication, suggesting that hnRNP C1/C2 associates

with PV RNA through its C-terminus (72). During picornavirus

infection, negative-stranded RNA is the template for viral

replication, and the circulation of viral RNA is crucial for

efficient replication, so the hnRNP C stabilizing interaction

between the 5’-UTR and 3’-UTR of negative-stranded RNA

contributes to viral replication (32).

Other members of the Picornaviridae family may show the

same regulatory action due to the highly conserved sequence

within the IRES (73). During Coxsackie B virus (CVB3)

infection, hnRNP C1/C2 could bind to the 5’ UTR of virus

RNA and replace polypyrimidine tract-binding protein (PTBP,

or hnRNP I) and bind to stem-loop V in the CVB3 IRES,

inhibiting the translation of CVB3. And it could mediate the

translation-replication switch without the help of CVB3 3CD

(73, 74). Interestingly, hnRNP C1/C2 exhibits a higher affinity
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for negative-stranded viral RNA than positive-strand viral RNA,

although positive-strand viral RNA outnumbered negative-

stranded viral RNA (74). During CVB3 infection, the positive-

stranded/negative-stranded viral RNA ratio altered under the

control of hnRNP C1/C2 (74).

In addition to interacting with picornavirus RNA, hnRNP

C1/C2 has been discovered to bind to precursors of PV 3CD, P2

and P3 precursors, which likely recruit 3CD to the replication

complex/replication organelle (RC/RO) (68). The RC/RO is a

unique structure that forms in positive RNA virus-infected cells

and contains several viral proteins and host factors required for

efficient replication of viral RNA (75). And how the association

of hnRNP C1/C2 and RC/RO contribute to the viral replication

require further investigation.

Multiplication of a member of Flaviviridae family is also

reported to be regulated by hnRNP C1/C2 (76). Knockdown of

hnRNP C1/C2 using specific siRNA, and the hnRNP C1/C2

knockdown cells were less infected by DENV compared to

normal cells. And the viral RNA level and relative expression

level of viral proteins declined while hnRNP C1/C2 is knocked

down (but not through directly resisting viral translation).

Notably, the supernatant virus titers were also lowered in

hnRNP C1/C2 knockdown cells (77). HnRNP C1/C2 can also

interact with the DENV NS1 protein, but whether it affects

DENV infection remains unknown, and further exploration is

required (76).
HnRNP D

Due to alternative exon splicing, four protein isoforms of

hnRNP D (also known as AU-rich element RNA-binding

protein 1, AUF1) have been identified and named based on

their molecular weight: p37AUF1, p40AUF1, p42AUF1 and p45AUF1.

All these isoforms contain two RRMs and a glutamine-rich (Q-

rich) motif (16). Isoforms p37AUF1 and p40AUF1 have a nuclear

import signal, while p42AUF1 and p45AUF1 have a nuclear export

sequence within exon 7, while the two smaller isoforms lack the

sequence (78). All four isoforms of hnRNP D were reported to be

mainly located in the nucleus, but they could shuttle between the

cytoplasm and nucleus in a transcription-dependent manner. It

was also suggested that the interaction between the smaller two

isoforms and two larger isoforms might contribute to the shuttle

function of hnRNP D. HnRNP D is an extensively studied AU-

rich-binding protein predominantly responsible for rapid

mRNA degradation. In addition, hnRNP D regulates the

stabilization of ARE-mRNAs and the transcription of certain

genes (79).

Among the hnRNPD isoforms, p45AUF1 significantly promotes

the replication of several members of the Flaviviridae family,

including Zika virus (ZIKV), West Nile virus (WNV), DENV
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and HCV (80). It was reported that p45AUF1 could reinforce

WNV RNA synthesis by inducing a structural shift of WNV

RNA and enhancing the WNV RNA 5’- 3’ interaction by binding

the AU-rich region of the WNV RNA 3’UTR and destabilizing the

3’ stem structure of the 3’ CL of WNV RNA (81). The same

research group reported that although hnRNP D is generally

considered an AU-rich binding protein, the AU-rich sequence of

WNV RNA was not required for p45AUF1-mediated WNV

replication reinforcement in vitro but was necessary in cellulo

(81). In addition to acting as an RNA chaperone for WNV RNA,

p45AUF1 was also suggested to have an annealing function over

WNV RNA, and the RNA chaperone activity is regulated by

arginine methylation at the C-terminus of p45AUF1. The

methylation of p45AUF1 mediated by methyltransferase PRMT1

remarkably increases p45AUF1 affinity to WNV RNA, thereby

strengthening the binding ability of p45AUF1 to viral RNA and

supporting efficient WNV RNA synthesis (82).

Similar to the function of hnRNP D during WNV infection, a

later study demonstrated that p45AUF1 also destabilizes DENV and

ZIKV RNA 3’ stem-loops as well as 5’ stem-loops to facilitate

negative-stranded RNA synthesis by aiding in shifting viral

translation to replication. As expected, depletion of p45AUF1

reduced DENV and ZIKV replication in human cells (80). The

interaction of hnRNP D and HCV IRES facilitates viral translation

(p45AUF1 had the strongest effect), and siRNA-mediated

knockdown of hnRNP D remarkably downregulated viral

replication (83). Encouragingly, HCV RNA can move from heavy

polysomes to light polysomes when hnRNP D is reduced (83).

Unlike the roles of hnRNP D in the Flavivirus family, hnRNP

D is predominantly a restriction factor of viral replication for

enteroviruses (37, 84). All four isoforms were reported to bind to

stem-loop IV of both PV and HRV, and the copy numbers of the

viruses were increased in the absence of hnRNP D, suggesting that

hnRNP D somehow limited the virus infection (85). HnRNP D

could restrict PV and CVB3 replication by inhibiting viral RNA

synthesis and IRES-driven translation, and the inhibition of

hnRNP D on viral RNA synthesis is not due to interacting with

the 3’ NCR of viral RNA or inducing viral RNA decay (86).

Interestingly, EV71 translation is affected by hnRNP D but not

EMCV RNA synthesis (86). Although cytoplasmic retention of

hnRNP D was discovered in PV-, CVB3-, HRV-, EV71- and

EMCV-infected cells, EMCV uses a different approach from other

enteroviruses (37). And unlike other enterovirus 2A protein acting

as a protease, the 2A protein of EMCV does not exhibit protease

activity. However, it was indicated that Nup62 and Nup153 were

targeted by both enterovirus 2A protein (through cleavage) and

EMCV L protein (through phosphorylation), and thus, the

nucleocytoplasmic transport feature of them was altered (70,

87). HnRNP D colocalizes with the 2A protein near the

predicted replication complex in the cytoplasm in PV- and

HRV16-infected cells (85).
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In addition to changing the properties of the nuclear pore

complex, the 3C/3CD of several enteroviruses blocks the restriction

activity of hnRNPD by impairing their multiplication (86). HnRNP

D was confirmed to be cleaved by 3C/3CD of PV, HRV and CVB3

(86). This cleavage results in disruption of hnRNP D binding to

stem-loop IV of the viral RNA strand and thus resists restriction of

hnRNP D on virus propagation, possibly caused by cleavage at the

N-terminus to impair the dimerization of hnRNP D (85).

Furthermore, because the CVB3 genome contains AU-rich

sequences within the 3’ UTR, the cleavage of hnRNP D by CVB3

3CD can disrupt the binding of hnRNP D to the 3’ UTR of CVB3;

thus, the stability of viral RNA is reinforced (84) (see Figure 3).

Unlike the situation during enterovirus infection, there were not

observable cleavage of hnRNP D was detected during EMCV

infection (37). According to the studies mentioned above, the

distinct behaviour of hnRNP D during EMCV infection might

attribute to the alternative function of EMCV 2A protein (85–87).

Notably, hnRNP D was also reported to be recruited to stress

granules (SGs) during high-dose infection with CVB3 and EV71

(88). Stress granules are complexes without membrane structures

that form under stress pressure, such as viral infection, and can

stall overall translation, including viral translation (89), so figuring

out relationships of hnRNP D and viral RNA/proteins within SGs

might reveal a mechanism that affect viral translation.
HnRNP E

HnRNPs E1 and E2 are also known as poly(C)-binding

protein-1 (PCBP-1) and PCBP-2. The remaining two members

(hnRNP E3 and E4) are divergent from hnRNP E1 and E2 (16,
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90). Unlike hnRNP E1 and E2, which are located in the nucleus,

hnRNP E3 and E4 are identified to be predominantly in the

cytoplasm, and are generally not considered as hnRNPs. And

they all contain 3 KH domains (16). Each KH domain contains

three a-helices and three b-folds and can target specific RNA

and DNA. The sequences in KH domains are highly conserved,

but sequences outside the KH domains vary. Both hnRNP E1

and E2 are highly expressed in the nucleus, exhibiting 89%

similarity in sequence homology. However, the cytoplasmic roles

of hnRNP E1 and E2 have attracted considerable attention

because of their roles in alternative splicing, mRNA stability

and translation. As an RNA chaperone, hnRNP E1 can unfold

the secondary structure of the IRES, facilitating the binding of

hnRNP I and recruitment of ribosomes to initiate translation

(17, 90).

HnRNP E were predominantly reported to be associated

with stem-loops of viral RNA, within cloverleaf or IRES (91–97).

During PV infection, hnRNP E2 was confirmed to bind to stem-

loop V of PV IRES and required for PV translation (91, 92). Both

hnRNP E1 and hnRNP E2 bind to stem-loop IV and cloverleaf,

and they form heterodimers to interact with PV RNA to

reinforce viral translation (93). Another study pointed out that

although hnRNP E1 and E2 both have the capacity to bind to PV

cloverleaf and stem-loop IV, these two isoforms have different

affinities: hnRNP E2 was identified to have a much stronger

capacity to bind to PV stem-loop IV than hnRNP E1, while the

binding ability of PV cloverleaf was similar (97). Furthermore,

hnRNP E binds to stem-loop B of PV RNA cloverleaf to

remarkably strengthen PV 3CD binding to stem-loop D of PV

RNA cloverleaf, and they form a hnRNP E-RNA-3CD ternary

complex (93) (see Figure 4). Together, hnRNP E and PV 3CD
FIGURE 3

Functions of hnRNP D in enterovirus replication. During enterovirus infection, hnRNP D translocates from nucleus to cytoplasm in a 2A protein-
dependent manner. The presence of hnRNP D could restrict enterovirus RNA replication. Enterovirus 3C/3CD could cleave hnRNP D and
disable it from inhibiting virus RNA replication (85, 86).
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can modulate the switch from viral translation to replication

(94). It was assumed that cleavage of hnRNP E by PV 3C/3CD

mediates the viral translation-replication shift because the

cleavage between the KH2 and KH3 domains results in the

truncated hnRNP E that lacks the KH3 domain, with intact

function in replication but impaired function in translation (95).

Interestingly, a study indicated that PV 3CD binds to cloverleaf

stem-loop D of PV RNA to rearrange hnRNP E from binding PV

cloverleaf to stem-loop IV to some degree, while the importance

of this activity remained unspecified (96).

During EV71 infection, hnRNP E1 binds to stem-loops I and

IV within the 5’-UTR after being recruited to the viral

membrane-associated complex to facilitate replication (99).

APOBEC3G (A3G), a broad-spectrum antiviral factor,

competitively binds to the EV71 5’-UTR to restrain the

interaction between the 5’-UTR and hnRNP E1 and inhibiting

viral replication and protein synthesis (100). Whether A3G

could inhibit 5’ UTR-hnRNP E1 interaction of other viruses

awaits future studying.

This KH domain-dependent hnRNP E-viral RNA

interaction could protect PV RNA from 5’ exonuclease and

maintain viral RNA stability of coxsackieviruses, echoviruses,

and rhinoviruses (101). Stabilized viral RNA is essential not only

for viral polysome formation but also for efficient viral

translation and replication (101, 102). The interaction of the

hnRNP E2 KH3 domain and PV cloverleaf could stimulate PV

translation, along with the interaction between PV 2A and poly

(A) tail (103). CVB3, another enterovirus member, was also

reported to interact with hnRNP E (104). HnRNP E2 was

identified to interact with cloverleaf and IRES IV of CVB3
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RNA, with its KH1 domain binding to subdomain C of IRES

IV and the KH3 domain binding to subdomain B of IRES IV

(105). Similar to the findings in PV-infected cells, hnRNP E

binding to the cloverleaf of CVB3 RNA to facilitate the synthesis

of viral subgenomic negative-stranded RNA (106).

Calicivirus IRES was slightly distinct from type I IRES of PV,

it constituted an important GNRA tetraloop in subdomain d10c.

This tetraloop was identified to bind to the KH1 and KH2

domain of hnRNP E2, along with another subdomain d10b

within IRES binding to the KH3 domain of hnRNP E2. And the

KH2 domain of hnRNP E2 is required for efficient calicivirus

replication initiation (107). HnRNP E1 and E2 also interact with

HCV 5’ UTR RNA, but their roles during HCV infection require

more research to specify (108). A later study demonstrated that

hnRNP E2 could bind to HCV IRES to promote viral translation.

hnRNP E2 partially localize to the detergent-resistant membrane

fraction and associate with HCV nonstructural protein NS5 to

facilitate viral replication by circularizing the HCV genome

within the HCV replication complex (109). Porcine

reproductive and respiratory syndrome virus (PRRSV) was

also associated with hnRNP E1 and E2 (110). HnRNPs E1 and

E2 were discovered to interact with the PRRSV RNA 5’UTR and

nonstructural protein 1b (nsp1b) to be involved in PRRSV

genome replication and transcription and colocalize with the

viral replication and transcription complex in the cytoplasm

(110). Another study confirmed that the nsp1b-hnRNP E2

interaction requires the C-terminal extension (CTE) domain

and C-terminal papain-like cysteine protease domain (PCPb)
domain of PRRSV nsp1b and the KH2 domain of hnRNP E2,

and its putative mechanism for modulating viral translation and
FIGURE 4

HnRNPs regulate picornaviral RNA synthesis. During picornavirus infection, viral genome circularizes through the interaction of hnRNP E-
cloverleaf-3CD complex with PABP to initiate the synthesis of minus-strand RNA. The hnRNP E could bind to cloverleaf of positive-strand RNA
with 3CD precursor while hnRNP C could bind to the minus-strand RNA with viral 2C ATPase to stabilize the cloverleaf structure. The processes
of RNA replication rely on the interaction between hnRNPs and viral template RNA (98).
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replication is through controlling the translation-replication

switch (111). Both hnRNP E1 and hnRNP E2 can interact

with the P protein of vesicular stomatitis virus (VSV) and

antagonize vira l infect ion by reducing vira l gene

expression (112).
HnRNP I

HnRNP I, also known as PTBP, regulates splicing by binding

to polypyrimidine stretches at a branch point upstream of exons.

Similar to the structure of hnRNP L, hnRNP I composed of four

RRMs. Both hnRNP L and hnRNP I participate in RNA-related

biological processes, including mRNA stabilization, pre-mRNA

and translation. Both PTBP1 and PTBP2 can interact with CU

repeats to repress nonconserved cryptic exons (113).

During positive single-stranded RNA virus infection,

hnRNP I can regulate viral IRES-dependent translation and

viral replication (114–117). As for picornaviruses, the IRES-

mediated translation of EMCV and FMDV can be enhanced by

hnRNP I (114, 115). More specifically, it has been shown that

hnRNP I can bind to the FMDV IRES, forming an initiation

complex with 48S and 80S (115). HnRNP I has also been shown

to bind to the 3’ terminus of HCV RNA and support viral

replication (116, 117). However, the role of hnRNP I during

HCV infection is controversial; some articles suggest that

hnRNP I promotes HCV translation and replication, while

several articles have opposite opinions (118–122). A small-

molecule compound, 6-methoxyethylamino-numonafide

(MEAN), can inhibit HCV replication by hampering the

expression level and redistribution of hnRNP I (123).

Interestingly, during PV (sabin strain)-infection, an isoform of

hnRNP I that is specifically expressed in neurons was identified

to have a different function. Although neuron-specific hnRNP I

shares 70% of the amino acids, it failed to rescue viral translation

in hnRNP I-knockdown cells (124).
HnRNP K

HnRNP K is a versatile RNA-/DNA-binding protein that is

involved in multiple fundamental processes of gene expression

and signalling, including chromatin remodelling, RNA splicing,

mRNA stability, transcription and translation (125).

Furthermore, hnRNP K is critical for cellular DNA damage

repair and tumorigenesis (126). Similar to hnRNP E, hnRNP K

contains three KH domains (KH1, KH2 and KH3), a K-

interaction (KI) domain, a NLS, a nuclear shuttling domain

(KNS), a proline-rich domain and an interactive region with a C-

terminal kinase (cKBR) (125).

During HCV infection, hnRNP K was identified to interact

with the HCV core protein and 5’ UTR of HCV RNA (127, 128).

It was confirmed that amino acids 1-155 of the HCV core
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protein and amino acids 250-392 of hnRNP K (consist of 3

proline-rich domains) were responsible for the binding (127).

Although how the modulation occurs remained unclarified,

binding of hnRNP K to stem-loop I within the 5’ UTR of

HCV RNA could aid HCV replication. Notably, hnRNP K was

partially rearranged from the nucleus to the cytoplasm to

colocalize with NS5A, a viral protein that is related to HCV

replication complex formation (128). Interestingly, miR-122, as

a highly expressed microRNA in livers, was also confirmed to

bind to hnRNP K. And the interaction between miR-122 and

hnRNP K would increase the stability of miR-122 and may

possess the capacity to modulate HCV replication (129).

Another study pointed out that hnRNP K binds to positive-

stranded RNA of HCV and is recruited to lipid droplets to

suppress HCV particle production, possibly by restraining the

genome from packaging into virions without impairing viral

replication, but viral RNA-hnRNP K interaction or

downregulation of viral particles producing was not found

during DENV infection (130). However, a study indicated that

hnRNP K could affect viral multiplication and release by

associating with vimentin and DENV NS1 because disruption

of vimentin reduced nuclear expression of hnRNP K and

downregulated virus titers of cell-associated DENV and

culture supernatant (33). A similar phenomenon was observed

during JEV infection, and JEV NS1 also interacted with vimentin

and hnRNP K to support viral propagation (131).

HnRNP K was suggested to bind to the IRES of both EV71

and FMDV RNA, although the binding sites of hnRNP K on the

IRES were slightly different (34, 132). Stem-loop I, II and IV of

FMDV RNA were determined to interact with hnRNP K, and

this interaction may result in enhanced viral RNA synthesis (34).

During FMDV infection, hnRNP K binds to domains II, III and

IV of FMDV IRES and thus inhibits FMDV translation by

replacing PTB, which functions as an ITAF to promote FMDV

translation (132). Notably, FMDV 3CD protease could cleave

hnRNP K at Glu-364, producing two cleavage products, hnRNP

K (aa 1-364), remining a minor restriction on FMDV IRES-

mediated translation, and hnRNP K (aa 364-465), which was

confirmed to promote FMDV propagation (132). HnRNP K

could also be cleaved by PV and CVB3 3C protease, although

hnRNP K could benefit the virus infection (133).

For JUNV, hnRNP K was confirmed to be recruited from the

nucleus to the cytoplasm during infection to favour virus

propagation (65). SINV nsP1, nsP2 and nsP3 were found to be

coimmunoprecipitated with hnRNP K, and nsP2 could

colocalize with hnRNP K in infected cells (134). HnRNP K

could also interact with Chikungunya virus (CHIKV) nsP2 and

capsid, and knockdown of hnRNP K induces lower virus copies,

suggesting that it may play an essential role in CHIKV

multiplication (135). HnRNP K is also required for VSV

infection by several mechanisms (136). First, hnRNP K

suppresses the apoptosis of VSV-infected cells, promoting cell

survival for efficient viral propagation (136). Notably, hnRNP K
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restricts the expression of T-cell-restricted intracellular antigen

isoforms 1a and 1b (TIA1a and TIA1a), both of which can

suppress VSV replication. Additionally, hnRNP K maintains the

level of cellular proteins that are required for VSV infection,

such as the alanine deaminase-like (ADAL) proteins GBF1 and

ARF1 (136).
HnRNP L

Similar to other members of hnRNPs, hnRNP L is involved

in mRNA stabilization, mRNA transportation, pre-mRNA

splicing and IRES-mediated translation. HnRNP L was first

identified as a member of the hnRNP family. In particular, it

has been reported that hnRNP L-directed RNA switches regulate

the stress-dependent translation of vascular endothelial growth

factor A (VEGFA) and promote cell apoptosis (137).

Furthermore, hnRNP L mediates cryptic exon repression by

acting as a splicing factor and utilizing CA-rich elements (138).

HnRNP L can also interact with other hnRNP family members,

including hnRNP K, hnRNP I and hnRNP E2 (139, 140).

HnRNP L has four consensus RRM domains, and although it

is primarily distributed in the nucleus, it can be localized to the

cytoplasm under hypoxic conditions (137).

HCV could recruit cellular eukaryotic initiation factors

(eIFs) and ITAFs to the IRES elements, initiating and

modulating translation through a complicated network of

RNA–protein and protein–protein interactions and the contact

between the 5’- and 3’-ends of the viral genome (21). HnRNP L

specifically binds to the HCV IRES, promoting viral translation.

And HCV IRES-mediated translation enhanced by hnRNP L

could be blocked by an RNA aptamer specific for hnRNP L (21).

In addition, HCV infection mediates the coprecipitation of

hnRNP L with NS5A and increases the amount of hnRNP L

associated with viral replication complexes (141). Depleting

hnRNP L impairs viral replication and attenuates viral yield

but does not affect HCV IRES-driven translation (141). FMDV

IRES can specifically bind hnRNP L, negatively regulating viral

replication in a manner that differs from IRES-dependent

translation. Because hnRNP L could interact with FMDV

3Dpol in the presence of FMDV RNA, it was speculated that

hnRNP L inhibits viral RNA synthesis in the replication complex

(142). And for the limited amounts of studies on how hnRNP L

affect positive singe-stranded RNA viruses life cycle (21, 141,

142), more investigations are needed to explain its function

during virus infection.
HnRNP M

As a component of the spliceosome complex, hnRNP M (or

CEAR) is abundant in the nucleus and comprises four different

isoforms generated by alternative splicing. The four isoforms
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constitute three RRMs with shifting locations (29, 143). HnRNP

M is a critical splicing regulatory protein for some receptors with

divergent physiological functions, such as fibroblast growth

factor receptor 2 (FGFR2) and dopamine D2 receptor (D2R)

(144, 145). Recent studies have revealed well-documented roles

for hnRNP M in cancer metastasis, muscle differentiation and

innate immune gene expression (146–148).

HnRNP M silencing can increase the replication of SINV,

CHIKV and Semliki Forest virus (SFV), indicating hnRNP M

could impede virus infection. And it is worth mentioning that

hnRNP M, hnRNP C and hnRNP E1 colocalize with viral

replicases in the cytoplasm (149). In contrast, knockdown of

hnRNP M and hnRNP F significantly decreased DENV

production, indicating the proteins are required for efficient

viral production (150).

A subsequent study reported that loss of hnRNPM results in

hyperinduction of a cohort of inflammatory and antimicrobial

genes in VSV-infected macrophages, enhancing macrophage

antiviral defences and controlling virus infection. This finding

reveals that hnRNP M could restrain macrophage antiviral

functions and positively regulate virus replication (151).

During picornavirus infection, hnRNP M is cleaved by 3C/

3CD of CVB3 and PV at position Q389/G390 between RRM2

and RRM3. Although the four isoforms of hnRNP M differ in

length, all isoforms have this cleavage site (152). In addition,

hnRNP M and/or its cleavage products were identified to

facilitate protein synthesis and replication of PV, but they

were not required for PV IRES-mediated translation or viral

RNA stability maintenance (152).

HnRNP M also associate with innate immune pathways to

regulate virus infection (148, 153). When retinoic acid-inducible

gene-I (RIG-I)-like receptors (RLRs) recognize the viral genome,

and the innate immune response is triggered against invading

pathogens (153). During virus infection, hnRNP M can interact

with RIG-I and MDA5 in a viral infection-dependent manner

and negatively regulate the induction of antiviral genes triggered

by Sendai virus (SeV) or EMCV (153). Moreover, hnRNP M

could bind to viral RNA and weaken its binding affinity to RIG-I

and MDA5, suggesting that hnRNP M could inhibit the innate

antiviral response by antagonizing the sensing of viral RNA by

RLRs (148).
Other hnRNPs

Unlike other hnRNP proteins, hnRNP F and H appear to

bind poly(G)-rich tracts, whose RRMs are not conserved and

described as quasi-RRMs (qRRMs). In addition to regulating the

maturation and posttranscriptional processing of pre-mRNA,

hnRNP H/F protein was recently found to localize to stress

granules in response to cellular stress. Although recognizing

similar sequences, hnRNP F was upregulated, while hnRNP H

and H2 were significantly down-regulated during Nipah virus
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infection (154). With 2D-gel electrophoresis and MALDI-TOF

analysis, hnRNP H was identified to regulate DENV

multiplication by affecting TNF-a production (155). HnRNP

H was also reported to interact with the NS1 protein of DENV,

aiding viral propagation, although the exact mechanism still

remained unclear (156). The hnRNP U (also known as scaffold

attachment factor-A, SAF-A), a key RNA-binding protein in

processing newly transcribed RNA and chromatin organisation

in interphase, was identified to interfere induction of some

antiviral immune genes during VSV infection, and it may

result from VSV-induced cleavage of hnRNP U which

depleted C-terminal RGG domain, the RNA binding

domain (157).

Other than interacting with positive single-stranded RNA

viruses, hnRNPs could also affect life cycle of retrovirus (158).

For example, hnRNP A1, AB, H and F were identified as HIV

splicing factors that regulate HIV-1 splicing (158, 159). The

splicing of HIV RNA increases the coding potential of the viral

genome and controls viral gene expression. HnRNP A1, Q, K, R

and U can bind to Rev protein specifically, which is a significant

regulator in the HIV replication cycle. The knockdown of

hnRNP A1, Q, K and R has a negative impact on HIV

replication, while knockdown of hnRNP U can increase viral

production (160). It is worth noting that the N-terminal 86

amino acids of hnRNP U could downregulate HIV mRNA

transcription in the cytoplasm (139). HnRNP associated with

lethal yellow (RALY), which shares a high sequence similarity

with hnRNP C, regulates the expression of the HIV coreceptor

CCR5 by binding to its 3’UTR (161). Thus, hnRNP proteins

modulate HIV-1 gene expression by a series of multiple

mechanisms. Using a proteomic strategy to define polysome

specialization during RNA virus infection, hnRNP R has been

identified as a novel ITAF recruited by PV for translation (162).
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HnRNP P (also known as FUS/TLS) directly inhibits the

transcription and translation of CVB3 by inducing the

formation of SGs, the production of IFN-I and inflammatory

cytokines (163). Because of their key roles in the regulation of

gene expression, it is not surprising that hnRNP proteins are

involved in viral infection. These hnRNP proteins directly or

indirectly influence viral translation and replication.
Conclusion

Despite their diversity in structure (from hnRNP A1 to U),

hnRNPs are involved in multiple cellular processes, including

pre-mRNA processing, mRNA transport, regulation of

translation, and controlling miRNAs (164, 165). To date, it has

become clear that hnRNPs are crucial players in the cancer and

neurodegenerative disease, and they are also established as

playing either antiviral or pro-viral roles (44, 166).

Given their diverse and important functionalities, it is not at

all surprising that many hnRNPs have been linked either directly

or indirectly to viral replication and pathogenesis. Normally,

hnRNP I involves in pre-mRNA splicing, IRES-dependent

translation initiation, RNA polyadenylation, transportation

and stability, and cell differentiation (164). During infection,

hnRNP I could act as an ITAF for HRV and FMDV IRES, which

stimulates and controls viral translation (114, 115). Similar to

hnRNP I, many hnRNPs could be manipulated by single-

stranded RNA viruses via interacting with viral RNA or

proteins to aid their life cycle proceeding (46, 74, 81, 91, 114).

And a few hnRNPs display distinctive effects when host cells are

infected with different positive-stranded RNA viruses. Here, we

summarize the functions of hnRNPs that participate in different

stages of positive single-stranded RNA viruses (see Figure 5).
FIGURE 5

HnRNPs in the positive single-stranded RNA virus life cycle. HnRNPs play important roles in the life cycle of single-stranded RNA viruses,
including viral translation, replication, the switch of translation to replication and the release of mature virions. The hnRNPs in yellow boxes were
discovered to participate in these processes.
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Notably, most hnRNPs shuttle continuously between the

nucleus and the cytoplasm, which means the localization of

hnRNPs is also vital for virus infection (65, 85, 110, 111).

Positive-stranded RNA viruses replicate in the cytoplasm,

which is associated with virus-induced membrane structures

(99). Many nuclear resident hnRNPs underwent cytoplasmic

relocalization during viral infection, including hnRNP A1,

hnRNP C, hnRNP D, hnRNP E, hnRNP K and hnRNP M (49,

70, 85, 110, 128, 149). In term of hnRNP A1, the best-known

member of hnRNP family, can interact with multiple viral

proteins or RNA and regulate their life cycles, including SARS,
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HCV, DENV, MHV, PEDV, EV71, JUNV and SINV (35, 46, 47,

50, 54, 64). Like hnRNP A1, the common effects of hnRNPs on

positive single-stranded RNA viruses reported were promotion

of viral replication or translation (55, 81, 98).

The positive single-stranded RNA viruses take advantage of

hnRNP family for their sufficient proliferation. In the case of

Picornaviridae, PV infection requires hnRNP C, hnRNP D,

hnRNP E, hnRNP R, hnRNP K, hnRNP M and hnRNP I (72,

85, 95, 103, 124, 152, 162). Meanwhile, PV applies strategy to

cleave hnRNP E, hnRNP K, hnRNP M and hnRNP I by viral 3C

protease and abolish their binding capacity (96, 133, 152). And
TABLE 1 A brief summary of the functions of hnRNPs in the positive single-stranded RNA virus life cycle.

HnRNP Virus Functions during positive single-
stranded virus life cycle

Viral RNA/protein that harm interplay with References

A/B Flaviviridae
Picornaviridae
Coronaviridae
Arenaviridae
Togaviridae

HCV,
DENV
EV71, HRV
SARS-CoV-
2, PEDV,
MHV
JUNV
SINV

Enhance virus RNA replication, enhance viral
translation, modulate virions release

SARS-CoV-2 N protein, PEDV N protein, EV71 3C
protein, IRES of EV71 RNA, 5’ UTR and 3’ UTR of HCV
RNA, SARS-CoV-2 RNA

(45–52, 55–
60)

C1/C2 Flaviviridae
Picornaviridae

HCV,
DENV
PV, CVB3

Enhance virus RNA replication, enhance/inhibit
viral translation, mediate switch of viral
translation to replication

DENV NS1 protein, negative-strand RNA of PV, IRES of
CVB3 RNA

(32, 72–74,
76, 77)

D Flaviviridae
Picornaviridae

HCV,
WNV,
ZIKV,
DENV
PV, CVB3.
HRV,
EMCV

Enhance viral translation, enhance virus RNA
replication
Inhibit virus RNA replication

IRES of HCV RNA, 3’ end and 5’ end of DENV RNA,
WNV and ZIKV RNA, PV and HRV 3C protein, PV and
CVB3 2A protein

(80–86)

E Flaviviridae
Picornaviridae
Rhabdoviridae
Togaviridae

DENV
EV71, PV
VSV
SFV

Enhance viral translation
Inhibit viral gene expressing

5’ CL of PV RNA, 5’ UTR of EV71 RNA, PV 3C/3CD
protein, DENV core protein, VSV P protein

(91–97, 99–
106)

I Flaviviridae
Picornaviridae
Hepeviridae

HCV
ECMV,
FMDV, PV
HEV

Enhance viral translation, enhance virus
replication

IRES of EMCV RNA, 5’ UTR (IRES) of PV RNA, 3’
terminal of HCV RNA, PV 3C protein

(114–124)

K Flaviviridae
Picornaviridae
Arenaviridae
Rhabdoviridae
Togaviridae

DENV,
HCV
EV71,
FMDV
JUNV
VSV
CHIKV,
SINV

Enhance viral translation, enhance virus
replication, virion assembly and release
Inhibit viral protein synthesis

IRES of HCV and EV71 RNA, HCV core protein, DENV
core protein, HCV NS3 and core protein

(33, 34, 127–
134)

L Flaviviridae
Picornaviridae

HCV
FMDV,
EMCV,
CVB3

Enhance viral translation, inhibit viral RNA
replication
Inhibit viral translation

RCs of FMDV and HCV, FMDV 3CD protein, CVB3 2A
protein and 3C protein

(21, 137–142)

M Flaviviridae
Picornaviridae
Togaviridae
Rhabdoviridae

DENV
PV, CVB3,
EMCV
SINV, SFV,
CHIKV
VSV

Enhance viral translation, enhance viral RNA
replication, evade immune response
inhibit virus replication

PV and CVB3 3C/3CD protein (148–153)
fr
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many other positive single-stranded RNA viruses and hnRNPs

share this similar pattern (54, 133). Furthermore, some hnRNPs

have been reported to interact with other host proteins to

modulate viral propagation (20). HnRNP A1 could interact

with HCV NSb5 and septin 6 to enhance viral RNA

circulation and eventually reinforce viral replication (20).

This review focuses on the interactions between hnRNPs and

positive single-stranded RNA viruses. Here, we compared and

discussed the function of hnRNPs in regulating the activity of

viral translation (see Table 1) via protein-RNA interaction

during different viral infection. And it seems that hnRNPs

particularly bind to IRES of virus RNA to achieve this (21, 53,

107). Although the importance of hnRNPS during single-

stranded RNA virus infection are explored in some extent (45,

74, 83), the exact mechanisms by which these interactions affect

viral life cycle are not fully understood. Investigations into the

precise function of these hnRNPs in viral infection are likely to

provide great mechanistic insights and potential therapeutic

targets for these infectious diseases.
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