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Calcium signaling is a universal signal transduction mechanism in animal and plant cells.
In mammalian T-lymphocytes calcium signaling is essential for activation and re-activation
and thus important for a functional immune response. Since many years it has been known
that both calcium release from intracellular stores and calcium entry via plasma membrane
calcium channels are involved in shaping spatio-temporal calcium signals. Second messen-
gers derived from the adenine dinucleotides NAD and NADP have been implicated inT cell
calcium signaling. Nicotinic acid adenine dinucleotide phosphate (NAADP) acts as a very
early second messenger upon T cell receptor/CD3 engagement, while cyclic ADP-ribose
(cADPR) is mainly involved in sustained partial depletion of the endoplasmic reticulum by
stimulating calcium release via ryanodine receptors. Finally, adenosine diphosphoribose
(ADPR) a breakdown product of both NAD and cADPR activates a plasma membrane
cation channel termed TRPM2 thereby facilitating calcium (and sodium) entry into T cells.
Receptor-mediated formation, metabolism, and mode of action of these novel second
messengers in T-lymphocytes will be reviewed.

Keywords: calcium signaling,T-lymphocyte, calcium release, nicotinic acid adenine dinucleotide phosphate, cyclic
ADP-ribose, adenosine diphosphoribose,TRPM2 cation channels, calcium entry

Adenine derived Ca2+ mobilizing second messengers comprise
nicotinic acid adenine dinucleotide phosphate (NAADP), cyclic
ADP-ribose (cADPR), and adenosine diphosphoribose (ADPR;
Figure 1). They are all metabolites of nicotinamide adenine din-
ucleotide (NAD), a dinucleotide well known as coenzyme of
oxidoreductases. NAD is converted by the multifunctional ectoen-
zyme NAD-glycohydrolase/ADP-ribosyl cyclase CD38 to ADPR
and cADPR (Figure 1). The fact that the active site of CD38 faces
the extracellular space while the targets for its products are located
inside the cell, also known as topological paradox (1), has recently
been investigated in detail. Importantly, in addition to the type II
conformation with the active site facing the extracellular space, it
was demonstrated that a smaller portion of CD38 is expressed in
type III conformation thereby allowing for production of ADPR
and cADPR within the cytosol (2). Another interesting feature of
CD38 is the fact that it not only can make cADPR and ADPR,
but also can synthesize NAADP, at least in vitro (Figure 1). How-
ever, this base-exchange mechanism needs nicotinamide adenine
dinucleotide phosphate (NADP) and an excess of nicotinic acid
as substrates and it works at acidic pH. Thus, it remains unclear

Abbreviations: ADPR, adenosine diphosphoribose; cADPR, cyclic ADP-ribose;
[Ca2+]i, free cytosolic Ca2+ concentration; [Ca2+]lu, free endoplasmic reticular
luminal Ca2+ concentration; CICR, Ca2+-induced Ca2+ release; EAE, experi-
mental autoimmune encephalomyelitis; IP3, d-myo inositol 1,4,5-trisphosphate;
IP3R, d-myo inositol 1,4,5-trisphosphate receptor(s); NAADP, nicotinic acid ade-
nine dinucleotide phosphate; NAD(P), nicotinamide adenine dinucleotide (phos-
phate); pADPr, poly-ADP-ribose; PARG, poly-ADP-ribose glycohydrolase; PARP,
poly-ADP-ribose polymerase; RyR, ryanodine receptor(s); Stim1, stromal interac-
tion molecule-1; TPC, two-pore channel(s); TRPM2, transient receptor potential
channel, subtype melastatin 2.

whether this reaction is of physiological significance for second
messenger formation in the cytosol. The substrate for the base-
exchange reaction, NADP, is produced from NAD by NAD kinase
(3). While mature, naïve T cells express only small amounts of
CD38, it is upregulated as a consequence of mitogenic stimula-
tion (4, 5). This is for instance seen after infection with HIV in
activated antiviral CD8+ T cells (6). CD38 expression in the CD8
compartment is therefore used to monitor antiretroviral therapy
(7). Whether CD38 upregulation in activated T cells affects Ca2+

signaling compared to naïve, mature T cells is not known, but it is
easy to envision the production of Ca2+ mobilizing messengers in
effector cells being facilitated by upregulation of CD38, allowing
for faster Ca2+ responses necessary for secretion of cytokines or
granzymes and perforin in contrast to activation of calcineurin
and NFAT in naïve cells.

Ca2+ signaling is one of the essential intracellular signal-
ing pathways involved in T cell activation. It has long been
known that both Ca2+ release and Ca2+ entry contribute to
global Ca2+ signaling in T cells. In addition to Ca2+ release and
Ca2+ entry evoked by the adenine derived Ca2+ mobilizing sec-
ond messengers introduced above, two “standard” Ca2+ signaling
systems are involved: (i) Ca2+ release by d-myo-inositol 1,4,5-
trisphosphate [IP3; (8)] and store-operated or capacitative Ca2+

entry (9). Since these systems have been thoroughly investigated
and described in detail, they will not be reviewed in this arti-
cle. However, due to their importance for T cell Ca2+ signaling,
their roles will be mentioned and/or depicted, as for example in
Figure 2.

The initial player in our model of T cell Ca2+ signaling is
NAADP (Figure 2) being formed within seconds upon TCR/CD3
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FIGURE 1 | Metabolism of adenine derived second messengers cADPR, NAADP, and ADPR.

ligation (10). However, NAADP is a rather short-lived second
messenger, although after a rapid decrease to control levels, a
second much smaller rise over several minutes was observed in
Jurkat T cells (11). NAADP probably delivers the first local Ca2+

signals which then act as co-agonists at IP3 receptors (IP3R) and
ryanodine receptors (RyR). IP3 is formed soon after the initial
NAADP peak (12) and releases Ca2+ via IP3R (13). Finally, cADPR
starts to increase and acts on RyR (14); likely, Ca2+ released by
NAADP and/or IP3 facilitates the action of cADPR. Continuous
Ca2+ release by these consecutively increased second messengers
results in continuously decreased luminal Ca2+ concentration in
the ER ([Ca2+]lu). Stromal interaction molecule-1 (Stim1) senses
the decreased [Ca2+]lu and activates Ca2+ entry via orai/CRAC
channels (15–17).

In addition to this Ca2+ signaling pathway involved in T
cell activation or re-activation, high input signal strength, e.g.,
obtained by a high concentration of the cross-linking lectin
Concanavalin A, activates another different Ca2+ entry system
operated by ADPR and the transient receptor potential channel,
subtype melastatin 2 (TRPM2; Figure 2).

Following we will review hallmarks of NAADP, cADPR, and
ADPR as second messengers in T cell Ca2+ signaling.

NAADP
Upon activation of the TCR/CD3 complex, formation of NAADP
rapidly increases within 10–20 s in Jurkat T cells. Following a
subsequent decrease within the first minute, a continuously ele-
vated [NAADP] remains for 5–20 min (10). It has been proposed

that NAADP may act as an early triggering messenger, mediating
initial localized Ca2+ events which are subsequently amplified to a
global signal, e.g., by recruitment of further channels, other second
messengers like cADPR, IP3, and/or Ca2+ induced Ca2+ release
(CICR). In T-lymphocytes a bell-shaped concentration-response
curve following NAADP microinjection is observed. Compared to
other second messengers such as IP3, already low concentrations
in the nanomolar range (30–100 nM) induce Ca2+ signaling in
T-lymphocytes (18).

The mechanism and very early kinetics of receptor-mediated
formation of NAADP in vivo remains unclear and has been dis-
cussed previously [e.g., (19)]. In brief, NAADP is formed in vitro
by a base-exchange of NADP in presence of nicotinic acid and
a pH of 5 [Figure 1; (20)]. Further, at pH 5, but also at pH
7.4, 2′-phospho-cADPR may be converted to NAADP (21). Both
reactions are catalyzed by the membrane bound, multifunctional
enzyme CD38 and require presence of up to millimolar concen-
trations of nicotinic acid in vitro (20, 21). Furthermore, influx of
extracellular NAADP may also induce Ca2+ signals as shown in a
rat basophilic cell line (22). Interestingly, gene silencing of CD38
in Jurkat T-lymphocytes did not result in decreased NAADP levels.
Rather, in thymus and spleen of CD38 knock-out mice increased
NAADP levels were observed, thus indicating that CD38 may par-
ticularly drive degradation of NAADP (23, 24). Accordingly, in
T cells to date CD38 may be primarily understood as degrading
enzyme while its role in NAADP synthesis in vivo remains to be
elucidated. In T-lymphocytes and other CD38+ cells, NAADP is
degraded to 2′-phospho-ADPR at neutral and acidic pH by CD38,
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FIGURE 2 | Model ofT cell Ca2+ signaling. TCR/CD3 ligation by antigenic
peptide presented by MHC molecules on antigen presenting cells results in
consecutive formation of the second messengers NAADP, IP3, and cADPR, all
of which release Ca2+ from the ER. Thus, a continuously decreased
intraluminal free Ca2+ concentration in the ER ([Ca2+]lu) resulting from this
constant Ca2+ release concomitantly activates CRAC/Orai1 channels in the

plasma membrane. The mode of action of both NAADP and cADPR likely
involves specific binding proteins for both second messengers (abbreviated
here as NAADP-BP or cADPR-BP). A strong stimulus, e.g., cross-linking of
receptors by concanavalin A (right side of Figure 2), triggers formation of
ADPR and activation of TRPM2, in addition to the mechanisms described on
the left side of the figure.

but degradation may also occur non-specifically via nucleotide
pyrophosphatases (25).

The targeted receptor(s) and hence target organelle(s) of
NAADP are still under debate (19, 26–29). In general, RyR have
been implicated as NAADP targets in different cell types, e.g., skele-
tal muscle cell (30), or pancreatic acinar cells (31, 32). Nonetheless,
in the majority of mammalian cells as well as in sea urchin eggs
there is evidence that NAADP may primarily target acidic stores
and that the RyR located on the ER may rather play a central role
in the amplification of the Ca2+ signal (33–35).

However focusing particularly on data obtained in T-
lymphocytes, NAADP Ca2+ signaling strongly depends on RyR
activity in the ER (36–40). Following either knock-down or inhi-
bition of RyR by ryanodine in Jurkat T cells, subcellular and
global Ca2+ signals by NAADP microinjection were inhibited
or almost completely abolished (36, 38). In primary effector T-
lymphocytes the NAADP antagonist BZ194 inhibits Ca2+ signal-
ing, e.g., during formation of the immunological synapse. Fur-
thermore, BZ194 has been shown to selectively inhibit NAADP
dependent binding of [3H]ryanodine to RyR1 (39). Interestingly,
in primary effector T cells of an animal model of multiple sclerosis,

experimental autoimmune encephalomyelitis (EAE), BZ194 leads
to a decrease in cell motility and invasive capacity as well as a
decrease in cytokine expression, all of which indicate the cen-
tral role of NAADP-mediated Ca2+ signaling in T cells possibly
via RyR (40). In contrast to these results obtained in CD4+ T
cells, in cytotoxic T cells NAADP appears to target two-pore
channels (TPC) on cytolytic granules (41). In general, overex-
pression or inhibition of the endolysosomal TPC1 and TPC2
suggest that NAADP initiates Ca2+ events via TPC [e.g., (42–
44)]. Recently, the N-terminus of TPC1 has been identified as
functional region for NAADP-mediated Ca2+ signaling (26). In
contrast, it was shown that NAADP-mediated Ca2+ signaling in
TPC1−/−/TPC2−/−mice does not differ from wild-type mice (27).
Thus, whether NAADP primarily targets TPCs is controversial and
particularly the effect of NAADP on TPCs in T-lymphocytes is not
yet clear.

Further, in T-lymphocytes and neutrophils TRPM2 is activated
by micromolar concentrations of NAADP per se, but particu-
larly in synergism with cADPR (45, 46). The effect of cADPR
on TRPM2 however, could not be confirmed in HEK293 cells
overexpressing TRPM2 and contamination of commercial cADPR
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preparations with ADPR have been discussed (47, 48). NAADP
has been shown to target the unspecific Ca2+ channel TRPML1 in
smooth muscle myocytes (49). Whether TRPML1 and TRPM2 are
of functional relevance within NAADP – mediated Ca2+ signaling
in T-lymphocytes, remains to be elucidated.

Despite the questions which organelles are targeted by NAADP
and which specific downstream mechanisms may underlie the
initiated Ca2+ events, also the identity of the NAADP receptor
remains unclear. Photoaffinity labeling in mammalian cells using
a probe specific for NAADP binding proteins was not altered upon
overexpression or knock-out of TPC1 or TPC2, but suggests that
a yet not identified 22/23 kDa protein binds NAADP and may
hence couple NAADP to its respective Ca2+ channels (50, 51), a
mechanism recently introduced as unifying hypothesis of NAADP
action (29).

CYCLIC ADP-RIBOSE
Cyclic adenosine diphosphoribose (cADPR) was the first Ca2+

mobilizing second messenger discovered as derivative of an ade-
nine dinucleotide (52, 53). Though first described in sea urchin
egg homogenates, the Ca2+ mobilizing activity of cADPR was
soon detected in many cells types. In 1995 we published the first
report demonstrating specific Ca2+ release in human Jurkat T
cells (54). Central aspects of the role of cADPR in T cell Ca2+

signaling were subsequently published by our laboratory: (i) for-
mation of cADPR upon TCR/CD3 ligation (14, 55), and (ii) mode
of action of cADPR by activation of Ca2+ release via RyR, as
shown by gene silencing of RyR (56). Further, we demonstrated
tyrosine phosphorylation of RyR upon TCR/CD3 ligation; in per-
meabilized T cells enhancement of cADPR evoked Ca2+ release by
tyrosine kinase p59fyn was observed (57). Importantly, we demon-
strated amplification and propagation of pacemaker Ca2+ signals
by cADPR (58). A connection of cADPR signaling to Ca2+ entry
was also observed: microinjection of cADPR in the absence of
extracellular Ca2+ or in the presence of Ca2+ channel blockers
resulted in much reduced Ca2+ signals (59). Finally, using a spe-
cific cADPR antagonist it was shown that downstream activation
parameters of primary human T cells, such as activation anti-
gen expression or proliferation, were concentration-dependently
inhibited (14) suggesting a pivotal role of cADPR in T cell biology.

A detailed structure-activity analysis of cADPR in T cells has
been conducted over the past couple of years. The main results
from these studies were recently reviewed (60) and are (i) critical
dependence of agonist vs. antagonist properties on the substituent
at the C-atom 6 of the purine base, (ii) maintenance of biological
activity, albeit at a lower level, when both southern and north-
ern ribose were replaced by carbocyclic moieties or simplified
ether/alkane bridges, and (iii) the possibility of radical simpli-
fication of the purine structure, e.g., the 1,2,3-triazole-4-amide
mimic of adenine within cADPR retains biological activity.

ADPR
A relatively new addition to the realm of adenine based Ca2+

mobilizing second messengers in T-lymphocytes is ADPR. Pres-
ence of ADPR in eukaryotic cells has been known for quite a while
(61), but since ADPR is rather dangerous for the cell – its reac-
tive ribose can non-enzymatically form Schiff-bases with amino

groups of cellular proteins (62, 63) – it was mostly considered a
toxic cellular waste product. This casually explained the presence
of efficient mechanisms for the degradation of ADPR in form
of cytosolic (64, 65) and mitochondrial ADPR pyrophosphatases
(66, 67). These enzymes hydrolyze the pyrophosphate bridge of
ADPR yielding AMP and ribose-5′-phosphate that are fed back
into metabolism.

Two discoveries suggested that there might be more to ADPR:
in 2001 it was reported that TRPM2 (formerly termed TRPC7 or
LTRPC2), a Ca2+-permeable cation channel of the melastatin sub-
family of TRP channels, can be activated by binding of ADPR to
a cytoplasmic domain homologous to the mitochondrial ADPR
pyrophosphatase NUDT9 (68, 69). This channel shows expression
in a variety of tissues with highest levels being found in brain and
cells of the immune system. A year later Bastide et al. showed that
ADPR is also able to activate type I RyR isolated from rat skele-
tal muscle in the presence of micromolar concentrations of Ca2+

(70). Since there has been little news on the action of ADPR on
RyR, we will focus on the role of ADPR for TRPM2 activation in
T-lymphocytes.

Most of the work on ADPR and TRPM2 in T cells so far
has been done in Jurkat cells that express TRPM2 on transcript
and protein level and respond with a typical TRPM2 current to
ADPR infusion (11, 45, 69). Microinjection of ADPR (11) and
uncaging of photoactivatable ADPR (71) in these cells results in
Ca2+ entry-dependent Ca2+ signals. By HPLC analysis the cellu-
lar ADPR concentration of roughly 40 µmol/L in resting Jurkat
cells (72) was shown to nearly double after stimulation with high
concentrations of concanavalin A (11).

There are different conceivable ways how this ADPR might be
generated. CD38 expressed in Jurkat as well as primary T cells
(73) can metabolize β-NAD+ and cADPR to yield ADPR (74).
The topological paradox initially described for cADPR also holds
true for ADPR (1). This paradox might be resolved by specific
uptake mechanisms for ADPR as have been reported for ery-
throcytes (75, 76). Another possibility is the presence of CD38
in a type III orientation (2). While the contribution of CD38
to the increase in ADPR after stimulation is still unclear, the
basal ADPR seems to be independent of CD38 as the murine
T-lymphoma line BW5147 that lacks transcripts for CD38 (77)
has even higher basal ADPR levels [73 µmol/L (72)] than Jurkat
cells.

Another way that has been discussed for the production of
ADPR is the consecutive action of poly-ADPR polymerase (PARP)
and poly-ADPR glycohydrolase (PARG) (78). While PARP activity
and poly-ADPR levels are quite low in non-stimulated cells, there
is a constant turn-over due to the low KM of PARG [reviewed in
(79)] that might contribute to the basal ADPR detected in Jurkat
cells. Under DNA damaging conditions like strong oxidative stress
the activity of PARP increases to such levels that a large part of cel-
lular β-NAD+ can be metabolized as has been shown for DT-40
cells (80). Data for a range of cells suggest activation of TRPM2
by oxidative stress results in cell death by apoptosis (78, 81), most
likely due to mitochondrial calcium overload and downstream
activation of caspases [reviewed in (82)]. While murine CD4+ T
cells also die after exposure to hydrogen peroxide, this apparently
does not involve TRPM2 (83).
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Interestingly there have been reports that in T cells PARP-1
activation can occur after TCR stimulation in a way indepen-
dent of oxidative stress or DNA damage resulting in poly-ADP
ribosylation of NFAT [(84, 85); reviewed in (86)]. It might be
speculated that this increased pADPR turn-over will result in
increased cellular ADPR and TRPM2 activation hinting to a pos-
sible role for ADPR/TRPM2 in TCR signaling. In accordance with
this, naïve CD4+ T cells from the wild-type mice upregulated
TRPM2 after stimulation with α-CD3/α-CD28-beads and CD4+

T-lymphocytes from TRPM2−/− mice showed not only reduced
proliferation, but also reduced production of pro-inflammatory
cytokines upon activation (83).

Most work on the role of TRPM2 in the immune response
has been done using the TRPM2−/− mouse (87). In a model
for ulcerative colitis the inflammation was suppressed, but this
was shown to be due to a reduced production of the chemokine
CXCL2 in monocytes whereas the infiltration of T cells in the
colon was not affected by the knock-out of TRPM2 (87). Recent
work has shown that TRPM2 knock-out does not affect airway
inflammation either induced by oxidative stressors (88) or as
a result of exposure to ovalbumin in a mouse model for acute
asthma (89). On the other hand TRPM2−/− noticeably reduced
inflammation and spinal cord lesions in EAE induced by a peptide
from myelin oligodendrocyte glycoprotein (83). Since the effect
of TRPM2−/− on EAE might also involve reduced neuronal cell
death or microglia activation, it will be interesting to see whether

proliferation and effector functions of T cells from such animals
are affected.

Taken together, adenine derived Ca2+ mobilizing second mes-
sengers play essential roles in T cell Ca2+ signaling, both during
activation/re-activation or apoptosis. While NAADP is impor-
tant as rapid Ca2+ trigger, particularly in effector T cells, cADPR
apparently holds a central role in maintenance of long-lasting
Ca2+ signaling. Interestingly, also apoptosis induction via TRPM2
involves an adenine derived second messenger, the dinucleotide
ADPR. The documented involvement of these adenine derived
Ca2+ mobilizing second messengers in central aspects of immune
regulation make the pathways described in this review suitable tar-
gets for therapeutic intervention. In fact, we have recently shown
that the NAADP antagonist BZ194 ameliorated the clinical course
of transfer EAE, an animal model of multiple sclerosis (40).

ACKNOWLEDGMENTS
Work in the Calcium Signalling Group has been supported over
the past couple of years by the Deutsche Forschungsgemeinschaft,
the Gemeinnützige Hertie-Stiftung, the Wellcome Trust, and the
Deutsche Akademische Austauschdienst. We would like to appreci-
ate our long-standing collaborators in the field of cADPR research,
Professor Potter (University of Bath, UK), Professor Zhang (Peking
University, China), and Professor Shuto (Hokkaido University,
Japan). Last but not least we would like to express sincere thanks
to our hard working colleagues in the Calcium Signalling Group.

REFERENCES
1. De Flora A, Guida L, Franco L,

Zocchi E. The CD38/cyclic ADP-
ribose system: a topological para-
dox. Int J Biochem Cell Biol
(1997) 29:1149–66. doi:10.1016/
S1357-2725(97)00062-9

2. Zhao YJ, Lam CM, Lee HC. The
membrane-bound enzyme CD38
exists in two opposing orientations.
Sci Signal (2012) 5:ra67. doi:10.
1126/scisignal.2002700

3. Pollak N, Niere M, Ziegler M. NAD
kinase levels control the NADPH
concentration in human cells. J Biol
Chem (2007) 282:33562–71. doi:10.
1074/jbc.M704442200

4. Malavasi F, Funaro A, Alessio
M, DeMonte LB, Ausiello CM,
Dianzani U, et al. CD38: a multi-
lineage cell activation molecule with
a split personality. Int J Clin Lab
Res (1992) 22:73–80. doi:10.1007/
BF02591400

5. Deterre P, Berthelier V, Bauvois B,
Dalloul A, Schuber F, Lund F. CD38
in T- and B-cell functions. Chem
Immunol (2000) 75:146–68. doi:10.
1159/000058767

6. Ho HN, Hultin LE, Mitsuyasu RT,
Matud JL, Hausner MA, Bockstoce
D, et al. Circulating HIV-specific
CD8+ cytotoxic T cells express
CD38 and HLA-DR antigens. J
Immunol (1993) 150:3070–9.

7. Coetzee LM, Tay SS, Lawrie D,
Janossy G, Glencross DK. From

research tool to routine test: CD38
monitoring in HIV patients. Cytom-
etry B Clin Cytom (2009) 76:375–84.
doi:10.1002/cyto.b.20478

8. Mikoshiba K. IP3 receptor/Ca2+
channel: from discovery to new
signaling concepts. J Neurochem
(2007) 102:1426–46. doi:10.1111/j.
1471-4159.2007.04825.x

9. Putney JW. Capacitative calcium
entry: from concept to mole-
cules. Immunol Rev (2009) 231:10–
22. doi:10.1111/j.1600-065X.2009.
00810.x

10. Gasser A, Bruhn S, Guse AH. Sec-
ond messenger function of nicotinic
acid adenine dinucleotide phos-
phate revealed by an improved enzy-
matic cycling assay. J Biol Chem
(2006) 281:16906–13. doi:10.1074/
jbc.M601347200

11. Gasser A, Glassmeier G, Fliegert
R, Langhorst MF, Meinke S, Hein
D, et al. Activation of T cell cal-
cium influx by the second mes-
senger ADP-ribose. J Biol Chem
(2006) 281:2489–96. doi:10.1074/
jbc.M506525200

12. Guse AH, Goldwich A, Weber K,
Mayr GW. Non-radioactive, isomer-
specific inositol phosphate mass
determinations: high-performance
liquid chromatography-micro-
metal-dye detection strongly
improves speed and sensitivity of
analyses from cells and micro-
enzyme assays. J Chromatogr B

Biomed Appl (1995) 672:189–98.
doi:10.1016/0378-4347(95)00219-
9

13. Guse AH, Roth E, Emmrich
F. D-myo-inositol 1,3,4,5-
tetrakisphosphate releases Ca2+
from crude microsomes and
enriched vesicular plasma mem-
branes, but not from intracel-
lular stores of permeabilized
T-lymphocytes and monocytes.
Biochem J (1992) 288(Pt 2):489–95.

14. Guse AH, da Silva CP, Berg I,
Skapenko AL, Weber K, Heyer P,
et al. Regulation of calcium sig-
nalling in T lymphocytes by the sec-
ond messenger cyclic ADP-ribose.
Nature (1999) 398:70–3. doi:10.
1038/18024

15. Feske S, Gwack Y, Prakriya M,
Srikanth S, Puppel S-H, Tanasa
B, et al. A mutation in Orai1
causes immune deficiency by abro-
gating CRAC channel function.
Nature (2006) 441:179–85. doi:10.
1038/nature04702

16. Prakriya M, Feske S, Gwack
Y, Srikanth S, Rao A, Hogan
PG. Orai1 is an essential pore
subunit of the CRAC chan-
nel. Nature (2006) 443:230–3.
doi:10.1038/nature05122

17. Vig M, Peinelt C, Beck A, Koomoa
DL, Rabah D, Koblan-Huberson
M, et al. CRACM1 is a plasma
membrane protein essential for
store-operated Ca2+ entry. Science

(2006) 312:1220–3. doi:10.1126/
science.1127883

18. Berg I, Potter BVL, Mayr GW,
Guse AH. Nicotinic acid adenine
dinucleotide phosphate (Naadp+)
is an essential regulator of T-
lymphocyte Ca2+-signaling. J Cell
Biol (2000) 150:581–8. doi:10.1083/
jcb.150.3.581

19. Guse AH, Lee HC. NAADP: a
universal Ca2+ trigger. Sci Sig-
nal (2008) 1:re10. doi:10.1126/
scisignal.144re10

20. Aarhus R, Graeff RM, Dickey DM,
Walseth TF, Lee HC. ADP-ribosyl
cyclase and CD38 catalyze the
synthesis of a calcium-mobilizing
metabolite from NADP. J Biol Chem
(1995) 270:30327–33. doi:10.1074/
jbc.270.51.30327

21. Moreschi I, Bruzzone S, Mel-
one L, De Flora A, Zocchi E.
NAADP+ synthesis from cADPRP
and nicotinic acid by ADP-ribosyl
cyclases. Biochem Biophys Res Com-
mun (2006) 345:573–80. doi:10.
1016/j.bbrc.2006.04.096

22. Billington RA, Bellomo EA, Florid-
dia EM, Erriquez J, Distasi C, Genaz-
zani AA. A transport mechanism for
NAADP in a rat basophilic cell line.
FASEB J (2006) 20:521–3.

23. Schmid F, Bruhn S, Weber K, Mit-
trücker H-W, Guse AH. CD38: a
NAADP degrading enzyme. FEBS
Lett (2011) 585:3544–8. doi:10.
1016/j.febslet.2011.10.017

www.frontiersin.org August 2013 | Volume 4 | Article 259 | 5

http://dx.doi.org/10.1016/S1357-2725(97)00062-9
http://dx.doi.org/10.1016/S1357-2725(97)00062-9
http://dx.doi.org/10.1126/scisignal.2002700
http://dx.doi.org/10.1126/scisignal.2002700
http://dx.doi.org/10.1074/jbc.M704442200
http://dx.doi.org/10.1074/jbc.M704442200
http://dx.doi.org/10.1007/BF02591400
http://dx.doi.org/10.1007/BF02591400
http://dx.doi.org/10.1159/000058767
http://dx.doi.org/10.1159/000058767
http://dx.doi.org/10.1002/cyto.b.20478
http://dx.doi.org/10.1111/j.1471-4159.2007.04825.x
http://dx.doi.org/10.1111/j.1471-4159.2007.04825.x
http://dx.doi.org/10.1111/j.1600-065X.2009.00810.x
http://dx.doi.org/10.1111/j.1600-065X.2009.00810.x
http://dx.doi.org/10.1074/jbc.M601347200
http://dx.doi.org/10.1074/jbc.M601347200
http://dx.doi.org/10.1074/jbc.M506525200
http://dx.doi.org/10.1074/jbc.M506525200
http://dx.doi.org/10.1016/0378-4347(95)00219-9
http://dx.doi.org/10.1016/0378-4347(95)00219-9
http://dx.doi.org/10.1038/18024
http://dx.doi.org/10.1038/18024
http://dx.doi.org/10.1038/nature04702
http://dx.doi.org/10.1038/nature04702
http://dx.doi.org/10.1038/nature05122
http://dx.doi.org/10.1126/science.1127883
http://dx.doi.org/10.1126/science.1127883
http://dx.doi.org/10.1083/jcb.150.3.581
http://dx.doi.org/10.1083/jcb.150.3.581
http://dx.doi.org/10.1126/scisignal.144re10
http://dx.doi.org/10.1126/scisignal.144re10
http://dx.doi.org/10.1074/jbc.270.51.30327
http://dx.doi.org/10.1074/jbc.270.51.30327
http://dx.doi.org/10.1016/j.bbrc.2006.04.096
http://dx.doi.org/10.1016/j.bbrc.2006.04.096
http://dx.doi.org/10.1016/j.febslet.2011.10.017
http://dx.doi.org/10.1016/j.febslet.2011.10.017
http://www.frontiersin.org
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ernst et al. Adenine dinucleotide messengers in T-lymphocytes

24. Soares S, Thompson M, White T,
Isbell A, Yamasaki M, Prakash Y, et
al. NAADP as a second messenger:
neither CD38 nor base-exchange
reaction are necessary for in vivo
generation of NAADP in myome-
trial cells. Am J Physiol Cell Physiol
(2007) 292:C227–39. doi:10.1152/
ajpcell.00638.2005

25. Graeff R. Acidic residues at the
active sites of CD38 and ADP-
ribosyl cyclase determine nico-
tinic acid adenine dinucleotide
phosphate (NAADP) synthesis and
hydrolysis activities. J Biol Chem
(2006) 281:28951–7. doi:10.1074/
jbc.M604370200

26. Churamani D, Hooper R, Rahman
T, Brailoiu E, Patel S. The N-
terminal region of two-pore chan-
nel 1 regulates trafficking and
activation by NAADP. Biochem J
(2013) 453(1):147–51. doi:10.1042/
BJ20130474

27. Wang X, Zhang X, Dong X-P, Samie
M, Li X, Cheng X, et al. TPC
proteins are phosphoinositide- acti-
vated sodium-selective ion channels
in endosomes and lysosomes. Cell
(2012) 151:372–83. doi:10.1016/j.
cell.2012.08.036

28. Cang C, Zhou Y, Navarro B,
Seo Y-J, Aranda K, Shi L, et al.
mTOR regulates lysosomal ATP-
sensitive two-pore Na(+) channels
to adapt to metabolic state. Cell
(2013) 152:778–90. doi:10.1016/j.
cell.2013.01.023

29. Guse AH. Linking NAADP to ion
channel activity: a unifying hypoth-
esis. Sci Signal (2012) 5:e18. doi:10.
1126/scisignal.2002890

30. Hohenegger M, Suko J, Gschei-
dlinger R, Drobny H, Zidar A.
Nicotinic acid-adenine dinucleotide
phosphate activates the skeletal
muscle ryanodine receptor. Biochem
J (2002) 367:423–31. doi:10.1042/
BJ20020584

31. Gerasimenko JV, Maruyama Y, Yano
K, Dolman NJ, Tepikin AV, Petersen
OH, et al. NAADP mobilizes Ca2+
from a thapsigargin-sensitive store
in the nuclear envelope by activat-
ing ryanodine receptors. J Cell Biol
(2003) 163:271–82. doi:10.1083/jcb.
200306134

32. Gerasimenko JV, Sherwood M,
Tepikin AV, Petersen OH, Gerasi-
menko OV. NAADP, cADPR and
IP3 all release Ca2+ from the endo-
plasmic reticulum and an acidic
store in the secretory granule area.
J Cell Sci (2006) 119:226–38. doi:10.
1242/jcs.02721

33. Lee HC, Aarhus R. Functional visu-
alization of the separate but inter-
acting calcium stores sensitive to

NAADP and cyclic ADP-ribose.
J Cell Sci (2000) 113(Pt 24):
4413–20.

34. Kinnear NP, Boittin F-X, Thomas
JM, Galione A, Evans AM.
Lysosome-sarcoplasmic reticu-
lum junctions. A trigger zone
for calcium signaling by nico-
tinic acid adenine dinucleotide
phosphate and endothelin-1. J
Biol Chem (2004) 279:54319–26.
doi:10.1074/jbc.M406132200

35. Cancela JM, Churchill GC, Galione
A. Coordination of agonist-
induced Ca2+-signalling patterns
by NAADP in pancreatic acinar
cells. Nature (1999) 398:74–6.
doi:10.1038/18032

36. Dammermann W, Guse AH. Func-
tional ryanodine receptor expres-
sion is required for NAADP-
mediated local Ca2+ signaling
in T-lymphocytes. J Biol Chem
(2005) 280:21394–9. doi:10.1074/
jbc.M413085200

37. Steen M, Kirchberger T, Guse AH.
NAADP mobilizes calcium from
the endoplasmic reticular Ca(2+)
store in T-lymphocytes. J Biol Chem
(2007) 282:18864–71. doi:10.1074/
jbc.M610925200

38. Langhorst MF, Schwarzmann
N, Guse AH. Ca2+ release
via ryanodine receptors and
Ca2+ entry: major mecha-
nisms in NAADP-mediated
Ca2+ signaling in T-lymphocytes.
Cell Signal (2004) 16:1283–9.
doi:10.1016/j.cellsig.2004.03.013

39. Dammermann W, Zhang B, Nebel
M, Cordiglieri C, Odoardi F, Kirch-
berger T, et al. NAADP-mediated
Ca2+ signaling via type 1 ryanodine
receptor in T cells revealed by a
synthetic NAADP antagonist. Proc
Natl Acad Sci U S A (2009) 106:
10678–83. doi:10.1073/pnas.
0809997106

40. Cordiglieri C, Odoardi F, Zhang
B, Nebel M, Kawakami N, Klink-
ert WEF, et al. Nicotinic acid
adenine dinucleotide phosphate-
mediated calcium signalling in
effector T cells regulates autoimmu-
nity of the central nervous system.
Brain J Neurol (2010) 133:1930–43.
doi:10.1093/brain/awq135

41. Davis LC, Morgan AJ, Chen JL,
Snead CM, Bloor-Young D, Shen-
derov E, et al. NAADP activates two-
pore channels on T cell cytolytic
granules to stimulate exocytosis and
killing. Curr Biol (2012) 22:2331–7.
doi:10.1016/j.cub.2012.10.035

42. Calcraft PJ, Ruas M, Pan Z, Cheng
X, Arredouani A, Hao X, et al.
NAADP mobilizes calcium from
acidic organelles through two-pore

channels. Nature (2009) 459:596–
600. doi:10.1038/nature08030

43. Brailoiu E, Churamani D, Cai X,
Schrlau MG, Brailoiu GC, Gao X,
et al. Essential requirement for
two-pore channel 1 in NAADP-
mediated calcium signaling. J Cell
Biol (2009) 186:201–9. doi:10.1083/
jcb.200904073

44. Zong X, Schieder M, Cuny H, Fenske
S, Gruner C, Rötzer K, et al. The
two-pore channel TPCN2 mediates
NAADP-dependent Ca(2+)-release
from lysosomal stores. Pflügers
Arch (2009) 458:891–9. doi:10.
1007/s00424-009-0690-y

45. Beck A, Kolisek M, Bagley LA, Fleig
A, Penner R. Nicotinic acid adenine
dinucleotide phosphate and cyclic
ADP-ribose regulate TRPM2 chan-
nels in T lymphocytes. FASEB J
(2006) 20:962–4. doi:10.1096/fj.05-
5538fje

46. Lange I, Penner R, Fleig A, Beck
A. Synergistic regulation of endoge-
nous TRPM2 channels by adenine
dinucleotides in primary human
neutrophils. Cell Calcium (2008)
44:604–15. doi:10.1016/j.ceca.2008.
05.001

47. Kirchberger T, Moreau C, Wag-
ner GK, Fliegert R, Siebrands CC,
Nebel M, et al. 8-Bromo-cyclic ino-
sine diphosphoribose: towards a
selective cyclic ADP-ribose agonist.
Biochem J (2009) 422:139–49. doi:
10.1042/BJ20082308

48. Tóth B, Csanády L. Identification of
direct and indirect effectors of the
transient receptor potential melas-
tatin 2 (TRPM2) cation channel. J
Biol Chem (2010) 285:30091–102.
doi:10.1074/jbc.M109.066464

49. Zhang F, Jin S,Yi F, Li P-L. TRP-ML1
functions as a lysosomal NAADP-
sensitive Ca2+ release channel in
coronary arterial myocytes. J Cell
Mol Med (2009) 13:3174–85. doi:10.
1111/j.1582-4934.2008.00486.x

50. Walseth TF, Lin-Moshier Y, Jain
P, Ruas M, Parrington J, Galione
A, et al. Photoaffinity labeling of
high affinity nicotinic acid adenine
dinucleotide phosphate (NAADP)-
binding proteins in sea urchin egg.
J Biol Chem (2012) 287:2308–15.
doi:10.1074/jbc.M111.306563

51. Lin-Moshier Y, Walseth TF, Chura-
mani D, Davidson SM, Slama JT,
Hooper R, et al. Photoaffinity label-
ing of nicotinic acid adenine din-
ucleotide phosphate (NAADP) tar-
gets in mammalian cells. J Biol Chem
(2012) 287:2296–307. doi:10.1074/
jbc.M111.305813

52. Clapper DL, Walseth TF, Dargie
PJ, Lee HC. Pyridine nucleotide
metabolites stimulate calcium

release from sea urchin egg micro-
somes desensitized to inositol
trisphosphate. J Biol Chem (1987)
262:9561–8.

53. Lee HC, Walseth TF, Bratt GT,
Hayes RN, Clapper DL. Structural
determination of a cyclic metabolite
of NAD+ with intracellular Ca2+-
mobilizing activity. J Biol Chem
(1989) 264:1608–15.

54. Guse AH, da Silva CP, Emmrich F,
Ashamu GA, Potter BV, Mayr GW.
Characterization of cyclic adeno-
sine diphosphate-ribose-induced
Ca2+ release in T lymphocyte cell
lines. J Immunol (1995) 1950(155):
3353–9.

55. da Silva CP, Potter BV, Mayr GW,
Guse AH. Quantification of intra-
cellular levels of cyclic ADP-ribose
by high-performance liquid chro-
matography. J Chromatogr B Biomed
Sci Appl (1998) 707:43–50. doi:10.
1016/S0378-4347(97)00622-1

56. Schwarzmann N, Kunerth S, Weber
K, Mayr GW, Guse AH. Knock-
down of the type 3 ryanodine
receptor impairs sustained Ca2+
signaling via the T cell receptor/CD3
complex. J Biol Chem (2002) 277:
50636–42. doi:10.1074/jbc.
M209061200

57. Guse AH, Tsygankov AY, Weber K,
Mayr GW. Transient tyrosine phos-
phorylation of human ryanodine
receptor upon T cell stimulation.
J Biol Chem (2001) 276:34722–7.
doi:10.1074/jbc.M100715200

58. Kunerth S, Langhorst MF, Schwarz-
mann N, Gu X, Huang L, Yang Z,
et al. Amplification and propagation
of pacemaker Ca2+ signals by cyclic
ADP-ribose and the type 3 ryan-
odine receptor in T cells. J Cell Sci
(2004) 117:2141–9. doi:10.1242/jcs.
01063

59. Guse AH, Berg I, da Silva CP,
Potter BV, Mayr GW. Ca2+ entry
induced by cyclic ADP-ribose in
intact T-lymphocytes. J Biol Chem
(1997) 272:8546–50. doi:10.1074/
jbc.272.13.8546

60. Guse AH. Structure-activity rela-
tionship of cyclic ADP-ribose, an
update. J Chin Pharm Sci (2013)
22:127–36. doi:10.5246/jcps.2013.
02.017

61. Zocchi E, Guida L, Franco L, Sil-
vestro L, Guerrini M, Benatti U,
et al. Free ADP-ribose in human
erythrocytes: pathways of intra-
erythrocytic conversion and non-
enzymic binding to membrane pro-
teins. Biochem J (1993) 295(Pt
1):121–30.

62. Kun E, Chang AC, Sharma ML,
Ferro AM, Nitecki D. Cova-
lent modification of proteins by

Frontiers in Immunology | T Cell Biology August 2013 | Volume 4 | Article 259 | 6

http://dx.doi.org/10.1152/ajpcell.00638.2005
http://dx.doi.org/10.1152/ajpcell.00638.2005
http://dx.doi.org/10.1074/jbc.M604370200
http://dx.doi.org/10.1074/jbc.M604370200
http://dx.doi.org/10.1042/BJ20130474
http://dx.doi.org/10.1042/BJ20130474
http://dx.doi.org/10.1016/j.cell.2012.08.036
http://dx.doi.org/10.1016/j.cell.2012.08.036
http://dx.doi.org/10.1016/j.cell.2013.01.023
http://dx.doi.org/10.1016/j.cell.2013.01.023
http://dx.doi.org/10.1126/scisignal.2002890
http://dx.doi.org/10.1126/scisignal.2002890
http://dx.doi.org/10.1042/BJ20020584
http://dx.doi.org/10.1042/BJ20020584
http://dx.doi.org/10.1083/jcb.200306134
http://dx.doi.org/10.1083/jcb.200306134
http://dx.doi.org/10.1242/jcs.02721
http://dx.doi.org/10.1242/jcs.02721
http://dx.doi.org/10.1074/jbc.M406132200
http://dx.doi.org/10.1038/18032
http://dx.doi.org/10.1074/jbc.M413085200
http://dx.doi.org/10.1074/jbc.M413085200
http://dx.doi.org/10.1074/jbc.M610925200
http://dx.doi.org/10.1074/jbc.M610925200
http://dx.doi.org/10.1016/j.cellsig.2004.03.013
http://dx.doi.org/10.1073/pnas.0809997106
http://dx.doi.org/10.1073/pnas.0809997106
http://dx.doi.org/10.1093/brain/awq135
http://dx.doi.org/10.1016/j.cub.2012.10.035
http://dx.doi.org/10.1038/nature08030
http://dx.doi.org/10.1083/jcb.200904073
http://dx.doi.org/10.1083/jcb.200904073
http://dx.doi.org/10.1007/s00424-009-0690-y
http://dx.doi.org/10.1007/s00424-009-0690-y
http://dx.doi.org/10.1096/fj.05-5538fje
http://dx.doi.org/10.1096/fj.05-5538fje
http://dx.doi.org/10.1016/j.ceca.2008.05.001
http://dx.doi.org/10.1016/j.ceca.2008.05.001
http://dx.doi.org/10.1042/BJ20082308
http://dx.doi.org/10.1074/jbc.M109.066464
http://dx.doi.org/10.1111/j.1582-4934.2008.00486.x
http://dx.doi.org/10.1111/j.1582-4934.2008.00486.x
http://dx.doi.org/10.1074/jbc.M111.306563
http://dx.doi.org/10.1074/jbc.M111.305813
http://dx.doi.org/10.1074/jbc.M111.305813
http://dx.doi.org/10.1016/S0378-4347(97)00622-1
http://dx.doi.org/10.1016/S0378-4347(97)00622-1
http://dx.doi.org/10.1074/jbc.M209061200
http://dx.doi.org/10.1074/jbc.M209061200
http://dx.doi.org/10.1074/jbc.M100715200
http://dx.doi.org/10.1242/jcs.01063
http://dx.doi.org/10.1242/jcs.01063
http://dx.doi.org/10.1074/jbc.272.13.8546
http://dx.doi.org/10.1074/jbc.272.13.8546
http://dx.doi.org/10.5246/jcps.2013.02.017
http://dx.doi.org/10.5246/jcps.2013.02.017
http://www.frontiersin.org/T_Cell_Biology
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ernst et al. Adenine dinucleotide messengers in T-lymphocytes

metabolites of NAD+. Proc Natl
Acad Sci U S A (1976) 73:3131–5.
doi:10.1073/pnas.73.9.3131

63. Jacobson EL, Cervantes-Laurean D,
Jacobson MK. ADP-ribose in gly-
cation and glycoxidation reactions.
Adv Exp Med Biol (1997) 419:371–
9. doi:10.1007/978-1-4419-8632-
0_49

64. Canales J, Pinto RM, Costas MJ,
Hernández MT, Miró A, Bernet D,
et al. Rat liver nucleoside diphos-
phosugar or diphosphoalcohol
pyrophosphatases different from
nucleotide pyrophosphatase or
phosphodiesterase I: substrate
specificities of Mg(2+)-and/or
Mn(2+)-dependent hydrolases
acting on ADP-ribose. Biochim
Biophys Acta (1995) 1246:
167–77. doi:10.1016/0167-
4838(94)00191-I

65. Yang H, Slupska MM,Wei YF, Tai JH,
Luther WM, Xia YR, et al. Cloning
and characterization of a new mem-
ber of the Nudix hydrolases from
human and mouse. J Biol Chem
(2000) 275:8844–53. doi:10.1074/
jbc.275.12.8844

66. Bernet D, Pinto RM, Costas MJ,
Canales J, Cameselle JC. Rat
liver mitochondrial ADP-ribose
pyrophosphatase in the matrix
space with low Km for free ADP-
ribose. Biochem J (1994) 299(Pt
3):679–82.

67. Perraud A-L, Shen B, Dunn CA,
Rippe K, Smith MK, Bessman MJ,
et al. NUDT9, a member of the
Nudix hydrolase family, is an evolu-
tionarily conserved mitochondrial
ADP-ribose pyrophosphatase. J Biol
Chem (2003) 278:1794–801. doi:10.
1074/jbc.M205601200

68. Perraud AL, Fleig A, Dunn CA,
Bagley LA, Launay P, Schmitz C,
et al. ADP-ribose gating of the
calcium-permeable LTRPC2 chan-
nel revealed by Nudix motif homol-
ogy. Nature (2001) 411:595–9. doi:
10.1038/35079100

69. Sano Y, Inamura K, Miyake A,
Mochizuki S, Yokoi H, Matsushime
H, et al. Immunocyte Ca2+ influx
system mediated by LTRPC2. Sci-
ence (2001) 293:1327–30. doi:10.
1126/science.1062473

70. Bastide B, Snoeckx K, Mounier
Y. ADP-ribose stimulates the
calcium release channel RyR1 in
skeletal muscle of rat. Biochem
Biophys Res Commun (2002) 296:
1267–71. doi:10.1016/S0006-
291X(02)02073-9

71. Yu P, Wang Q, Zhang L-H,
Lee H-C, Zhang L, Yue J. A
cell permeable NPE caged ADP-
ribose for studying TRPM2. PLoS
ONE (2012) 7:e51028. doi:10.1371/
journal.pone.0051028

72. Gasser A, Guse AH. Determina-
tion of intracellular concentrations
of the TRPM2 agonist ADP-ribose
by reversed-phase HPLC. J Chro-
matogr B Analyt Technol Biomed Life
Sci (2005) 821:181–7. doi:10.1016/j.
jchromb.2005.05.002

73. Gelman L, Deterre P, Gouy H,
Boumsell L, Debré P, Bismuth G.
The lymphocyte surface antigen
CD38 acts as a nicotinamide ade-
nine dinucleotide glycohydrolase
in human T lymphocytes. Eur J
Immunol (1993) 23:3361–4. doi:10.
1002/eji.1830231245

74. Howard M, Grimaldi JC, Bazan
JF, Lund FE, Santos-Argumedo L,
Parkhouse RM, et al. Formation
and hydrolysis of cyclic ADP-ribose
catalyzed by lymphocyte antigen
CD38. Science (1993) 262:1056–9.
doi:10.1126/science.8235624

75. Kim UH, Han MK, Park BH,
Kim HR, An NH. Function of
NAD glycohydrolase in ADP-ribose
uptake from NAD by human ery-
throcytes. Biochim Biophys Acta
(1993) 1178:121–6. doi:10.1016/
0167-4889(93)90001-6

76. Albeniz I, Demir O, Nurten R,
Bermek E. NAD glycohydrolase
activities and ADP-ribose uptake
in erythrocytes from normal sub-
jects and cancer patients. Biosci
Rep (2004) 24:41–53. doi:10.1023/
B:BIRE.0000037755.42767.a4

77. Ferrero E, Saccucci F, Malavasi F.
The making of a leukocyte recep-
tor: origin, genes and regulation
of human CD38 and related mole-
cules. Chem Immunol (2000) 75:1–
19. doi:10.1159/000058763

78. Fonfria E, Marshall ICB, Ben-
ham CD, Boyfield I, Brown JD,

Hill K, et al. TRPM2 channel
opening in response to oxidative
stress is dependent on activation of
poly(ADP-ribose) polymerase. Br J
Pharmacol (2004) 143:186–92. doi:
10.1038/sj.bjp.0705914

79. Bonicalzi M-E, Haince J-F, Droit
A, Poirier GG. Regulation of
poly(ADP-ribose) metabolism by
poly(ADP-ribose) glycohydrolase:
where and when? Cell Mol Life
Sci (2005) 62:739–50. doi:10.1007/
s00018-004-4505-1

80. Buelow B, Song Y, Scharenberg AM.
The Poly(ADP-ribose) polymerase
PARP-1 is required for oxida-
tive stress-induced TRPM2 activa-
tion in lymphocytes. J Biol Chem
(2008) 283:24571–83. doi:10.1074/
jbc.M802673200

81. Hara Y, Wakamori M, Ishii M,
Maeno E, Nishida M, Yoshida T,
et al. LTRPC2 Ca2+-permeable
channel activated by changes in
redox status confers susceptibility
to cell death. Mol Cell (2002) 9:163–
73. doi:10.1016/S1097-2765(01)
00438-5

82. Miller BA. The role of TRP chan-
nels in oxidative stress-induced cell
death. J Membr Biol (2006) 209:
31–41. doi:10.1007/s00232-005-
0839-3

83. Melzer N, Hicking G, Göbel K,
Wiendl H. TRPM2 cation chan-
nels modulate T cell effector func-
tions and contribute to autoim-
mune CNS inflammation. PLoS
ONE (2012) 7:e47617. doi:10.1371/
journal.pone.0047617

84. Olabisi OA, Soto-Nieves N, Nieves
E, Yang TTC, Yang X, Yu RYL,
et al. Regulation of transcription
factor NFAT by ADP-ribosylation.
Mol Cell Biol (2008) 28:
2860–71. doi:10.1128/MCB.01746-
07

85. Valdor R, Schreiber V, Saenz
L, Martínez T, Muñoz-Suano
A, Dominguez-Villar M, et al.
Regulation of NFAT by poly(ADP-
ribose) polymerase activity in T
cells. Mol Immunol (2008) 45:
1863–71. doi:10.1016/j.molimm.
2007.10.044

86. Wang R, Green DR. Metabolic
checkpoints in activated T cells. Nat

Immunol (2012) 13:907–15. doi:10.
1038/ni.2386

87. Yamamoto S, Shimizu S, Kiyonaka
S, Takahashi N, Wajima T, Hara Y,
et al. TRPM2-mediated Ca2+influx
induces chemokine production in
monocytes that aggravates inflam-
matory neutrophil infiltration. Nat
Med (2008) 14:738–47. doi:10.
1038/nm1758

88. Hardaker L, Bahra P, de Billy BC,
Freeman M, Kupfer N, Wyss D, et
al. The ion channel transient recep-
tor potential melastatin-2 does not
play a role in inflammatory mouse
models of chronic obstructive pul-
monary diseases. Respir Res (2012)
13:30. doi:10.1186/1465-9921-13-
30

89. Sumoza-Toledo A, Fleig A, Pen-
ner R. TRPM2 channels are not
required for acute airway inflamma-
tion in OVA-induced severe aller-
gic asthma in mice. J Inflamm
(Lond) (2013) 10:19. doi:10.1186/
1476-9255-10-19

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 06 June 2013; accepted: 15
August 2013; published online: 29 August
2013.
Citation: Ernst IMA, Fliegert R and Guse
AH (2013) Adenine dinucleotide second
messengers and T-lymphocyte calcium
signaling. Front. Immunol. 4:259. doi:
10.3389/fimmu.2013.00259
This article was submitted to T Cell Biol-
ogy, a section of the journal Frontiers in
Immunology.
Copyright © 2013 Ernst , Fliegert and
Guse. This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) or licensor are cred-
ited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use, dis-
tribution or reproduction is permitted
which does not comply with these terms.

www.frontiersin.org August 2013 | Volume 4 | Article 259 | 7

http://dx.doi.org/10.1073/pnas.73.9.3131
http://dx.doi.org/10.1007/978-1-4419-8632-0_49
http://dx.doi.org/10.1007/978-1-4419-8632-0_49
http://dx.doi.org/10.1016/0167-4838(94)00191-I
http://dx.doi.org/10.1016/0167-4838(94)00191-I
http://dx.doi.org/10.1074/jbc.275.12.8844
http://dx.doi.org/10.1074/jbc.275.12.8844
http://dx.doi.org/10.1074/jbc.M205601200
http://dx.doi.org/10.1074/jbc.M205601200
http://dx.doi.org/10.1038/35079100
http://dx.doi.org/10.1126/science.1062473
http://dx.doi.org/10.1126/science.1062473
http://dx.doi.org/10.1016/S0006-291X(02)02073-9
http://dx.doi.org/10.1016/S0006-291X(02)02073-9
http://dx.doi.org/10.1371/journal.pone.0051028
http://dx.doi.org/10.1371/journal.pone.0051028
http://dx.doi.org/10.1016/j.jchromb.2005.05.002
http://dx.doi.org/10.1016/j.jchromb.2005.05.002
http://dx.doi.org/10.1002/eji.1830231245
http://dx.doi.org/10.1002/eji.1830231245
http://dx.doi.org/10.1126/science.8235624
http://dx.doi.org/10.1016/0167-4889(93)90001-6
http://dx.doi.org/10.1016/0167-4889(93)90001-6
http://dx.doi.org/10.1023/B:BIRE.0000037755.42767.a4
http://dx.doi.org/10.1023/B:BIRE.0000037755.42767.a4
http://dx.doi.org/10.1159/000058763
http://dx.doi.org/10.1038/sj.bjp.0705914
http://dx.doi.org/10.1007/s00018-004-4505-1
http://dx.doi.org/10.1007/s00018-004-4505-1
http://dx.doi.org/10.1074/jbc.M802673200
http://dx.doi.org/10.1074/jbc.M802673200
http://dx.doi.org/10.1016/S1097-2765(01)00438-5
http://dx.doi.org/10.1016/S1097-2765(01)00438-5
http://dx.doi.org/10.1007/s00232-005-0839-3
http://dx.doi.org/10.1007/s00232-005-0839-3
http://dx.doi.org/10.1371/journal.pone.0047617
http://dx.doi.org/10.1371/journal.pone.0047617
http://dx.doi.org/10.1128/MCB.01746-07
http://dx.doi.org/10.1128/MCB.01746-07
http://dx.doi.org/10.1016/j.molimm.2007.10.044
http://dx.doi.org/10.1016/j.molimm.2007.10.044
http://dx.doi.org/10.1038/ni.2386
http://dx.doi.org/10.1038/ni.2386
http://dx.doi.org/10.1038/nm1758
http://dx.doi.org/10.1038/nm1758
http://dx.doi.org/10.1186/1465-9921-13-30
http://dx.doi.org/10.1186/1465-9921-13-30
http://dx.doi.org/10.1186/1476-9255-10-19
http://dx.doi.org/10.1186/1476-9255-10-19
http://dx.doi.org/10.3389/fimmu.2013.00259
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/T_Cell_Biology/archive

	Adenine dinucleotide second messengers and T-lymphocyte calcium signaling
	NAADP
	Cyclic ADP-Ribose
	ADPR
	Acknowledgments
	References


