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When both inversion and time-reversal symmetries are broken, the critical current of
a superconductor can be nonreciprocal. In this work, we show that, in certain classes
of two-dimensional superconductors with antisymmetric spin–orbit coupling, Cooper
pairs acquire a finite momentum upon the application of an in-plane magnetic field,
and, as a result, critical currents in the direction parallel and antiparallel to the Cooper
pair momentum become unequal. This supercurrent diode effect is also manifested in
the polarity dependence of in-plane critical fields induced by a supercurrent. These
nonreciprocal effects may be found in polar SrTiO3 film, few-layer MoTe2 in the Td

phase, and twisted bilayer graphene in which the valley degree of freedom plays a role
analogous to spin.

superconductivity | electromagnetic responses | nonreciprocal transport

Shortly after the advent of the Bardeen–Cooper–Schrieffer (BCS) theory of supercon-
ductivity, it was predicted that a superconducting phase with a spatially varying order
parameter exists in a narrow range of magnetic fields above the Pauli limit (1, 2). In
this Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase, pairing of opposite spin states on
Zeeman-split Fermi surfaces gives rise to finite Cooper pair momentum. Extensive efforts
have been devoted to the search for the FFLO phase in clean superconductors. Thermo-
dynamic and NMR measurements have found evidence of a distinctive superconducting
phase at high fields in several materials (3–12). However, the existence of finite Cooper
pair momentum has not been demonstrated directly.

Recently, a new type of finite-momentum superconducting state has been predicted
in two-dimensional (2D) systems with strong spin–orbit coupling (SOC) and broken
inversion symmetry (13–27). Here SOC splits Fermi surfaces and creates (topologically)
nontrivial spin textures in momentum space (27, 28). Upon the application of a parallel
magnetic field, a BCS superconductor with spin-textured Fermi surfaces can smoothly
evolve into a finite-momentum state with the phase of the superconducting order param-
eter being periodically modulated as Δ(r) = Δeiq ·r , where q is induced by and varies
continuously with the magnetic field. This state is formed by pairing within each spin-
nondegenerate Fermi surface. Such helical superconducting phase should be distinguished
from the single-q FFLO (helical FF) state that is separated from the BCS state by a first-
order transition. Possible realization of helical superconductivity has been proposed in
several noncentrosymmetric materials (16, 24, 29). However, it has been unclear how to
detect this state easily and unambiguously.

In this work, we show that helical superconductors exhibit an intrinsic supercurrent
diode effect: The depairing critical currents in the direction along and against the
underlying Cooper pair momentum q0 are different, as shown in Fig. 1. This effect is
also manifested in the polarity-dependent in-plane critical fields in the presence of a
supercurrent. These nonreciprocal phenomena are a direct consequence of the Cooper
pair momentum which breaks time-reversal and inversion symmetry in the equilibrium
state.

Our work is motivated by the recent observation of nonreciprocal critical current in
an artificial metal film under a parallel magnetic field (30). Its origin is not yet fully
understood and likely due to the orbital effect associated with the film thickness (31). We
also note recent works showing that superconducting fluctuations enhance nonreciprocal
resistance above Tc (32, 33) as well as works on nonreciprocal Josephson current across
a weak link (34–42). Unlike these previous works, our focus is thin 2D superconductors
where the orbital effect is suppressed, and our study provides a microscopic theory of
intrinsic supercurrent diode effect in superconductors.

Helical Superconductivity

We consider a 2D electron system with SOC under in-plane magnetic field,

Hk = ξk + gk · σ +B · σ, [1]
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Fig. 1. Supercurrent diode effect in a Rashba superconductor under in-
plane magnetic field B and external current source J. (A and C) Device plots
with circles denoting normal state Fermi surfaces, and (B and D) schematic
phase diagrams in the B–J plane. When B ‖ J in A, the phase diagram in B is
symmetric with respect to both B and J axes. And, when B ⊥ J in C, the phase
diagram in D is skewed, indicating nonreciprocal critical current J+c �= J−c and
polarity-dependent critical field B+

c �= B−
c .

where k = (kx , ky) is the 2D momentum, ξk = k2/2m − μ is
the kinetic term, m is effective mass, μ is chemical potential, Pauli
matricesσ = (σx ,σy ,σz ) denote spin, gk is the SOC vector, and
B is the Zeeman energy due to the in-plane magnetic field. Such
2D electron gas has two spin-split energy bands,

ξ±k = ξk ± |gk +B |, [2]

and hence two spin-nondegenerate Fermi surfaces.
The location, shape, and spin configuration of both Fermi

surfaces evolve with the in-plane magnetic field. We will take
Rashba SOC gk = αRẑ × k as an example (27). At zero field,
two concentric Fermi circles are centered at k = 0, with helical
spin textures. These two Fermi surfaces have different density of
states (DOS) N± = 1/2N0(1∓ αR/v) (v =

√
v2

F + α2
R), where

N0 = 4πm is the total DOS including spin degeneracy, and vF =√
2μ/m is the Fermi velocity. A small field B �Δso ≡mαRvF

displaces the centers of inner (+) and outer (−) Fermi pockets to
opposite momenta, ±k0 =±ẑ ×B/vF, respectively, as shown
in Fig. 1 A and C. To the first order in B, the energy dispersion sat-
isfies ξ+k+k0

= ξ+−k+k0
, ξ−k−k0

= ξ−−k−k0
. Therefore, each Fermi

surface remains nearly symmetric with respect to its displaced
center, and the spin configuration remains nearly helical.

At B = 0, short-range attractive interaction leads to a BCS
superconductor with zero momentum pairing, where states at
±k of opposite spins within each Fermi pocket are paired. At
small B, the approximate inversion symmetry of the outer (inner)
Fermi pocket with respect to its displaced center ∓k0 naturally
favors BCS-type intrapocket pairing, which leads to a nonzero
Cooper pair momentum ∓2k0. Since the outer pocket has larger
DOS, the state with Cooper pair momentum q0 ≈−2k0 is
energetically favored. It has an isotropic gap on the outer Fermi
pocket (see Eq. 5 below), whereas the gap on the inner pocket is
anisotropic due to the combined pair-breaking effect of Zeeman
field and Cooper pair momentum. As discussed in SI Appendix,
the competition between ∓2k0 Cooper pairs can also lead to

other phases, and, in the rest of this manuscript, we will focus
on the single-q helical state unless specified otherwise.

Such a helical state induced by Zeeman and SOC effects at
small B is smoothly connected to the q = 0 BCS state in the limit
B = 0. Provided that the SOC strength Δso is much larger than
the BCS pairing gap Δ0 at B = 0, the field-induced helical state
persists in the strong disorder regime Δ0 � τ−1 �Δso (24).
These properties of the helical superconductor clearly contrast
with the helical FF state that is formed by pairing between inner
and outer pockets, is separated from BCS state by a first-order
transition at the Pauli limiting field, and is highly sensitive to
disorder. The plethora of 2D superconductors recently found in
spin–orbit-coupled systems (43) provides an unprecedented op-
portunity to find helical superconductivity. However, it is difficult
to distinguish a helical superconductor having a spatially uniform
full gap from the BCS state. A direct measurement of the Cooper
pair momentum requires sophisticated interference experiments
using a Josephson junction between a helical superconductor and
a reference BCS superconductor (16).

Origin of Supercurrent Diode Effect

In this work, we predict that, as a direct consequence of nonzero
Cooper pair momentum q0 in equilibrium state, helical supercon-
ductors generally exhibit nonreciprocal critical current: The max-
imum current that can flow with zero resistance in the direction
along q0 differs from the one in the opposite direction. Here we
consider the depairing critical current, which is associated with the
reduction and eventual closing of the superconducting gap with
increasing supercurrent.

The origin of nonreciprocal critical current in a helical super-
conductor can be understood heuristically from the gap structure.
Assuming a local attractive interaction, the mean-field Hamilto-
nian of the helical superconductor reads

HMF =
∑
k

c†kHkck +
∑
r

Δ(r)(c†r↑ cr↓ + h.c.)

=
1

2
Ψ†

kHkΨk , [3]

where Δ(r) = Δeiq ·r is the superconducting order parameter,
Δ is the pairing potential, q is Cooper pair momentum, Ψk =(
ck+ 1

2 q↑, ck+ 1
2 q↓, c

†
−k+ 1

2 q↑
, c†−k+ 1

2 q↓

)T
is the Nambu basis,

and the Bogouliubov–de Gennes (BdG) Hamiltonian Hk takes
the form

Hk (q , Δ) =

(
Hk+ 1

2 q
−iσyΔ

iσyΔ −H ∗
−k+ 1

2 q

)
. [4]

By construction, the BdG Hamiltonian satisfies the antiunitary
particle–hole symmetry PH∗

kP−1 =−H−k where P = τx acts
in Nambu space that double counts the degrees of freedom.
The spectrum of Hk consists of pairs of opposite eigenvalues
Eλ(k),−Eλ(−k) (Fig. 2), where λ=± denotes quasiparticle
states associated with the two spin-split energy bands of normal
phase. At B = q = 0, the presence of time-reversal symmetry
leads to T H∗

kT −1 =H−k where T = iσy acts on spin, and the
spectrum of H−k at every k is symmetric with respect to E = 0
(Fig. 2A).

Due to the combined effect of field-induced Fermi surface
displacement and Cooper pair momentum, the gap structure at
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Fig. 2. Energy spectra of superconductors with SOC: (A) conventional superconductor without external field and external current, (B) helical superconductor
with external field without external current, and (C and D) helical superconductor with external field and external current along opposite directions. We use Eqs.
1 and 4 with m = 1, μ = 10, αR = 1, B = Bŷ , J = Jx̂ and pairing potential Δ = 3. In B–D, B = 0.6 � Δso = 2

√
5.

B �= 0 differs from the BCS state at B = 0. To the first order of q
and B,

E±(k) =
√
(ξk ± |gk |)2 +Δ2 +

1

2
vk · q ± ĝ k ·B , [5]

where vk = ∂kξk |ξ=0 = vFk̂ is the electron velocity, and ĝ k =
gk/|gk |.

Note that, in the Rashba case, we have ĝ k ·B =−vk · k0

and q0 =−2k0 so that 1/2vk · q0 − ĝ k ·B = 0. As shown in
Fig. 2, at small B, the outer Fermi surface has a constant supercon-
ducting gap Δ−(k) = Δ unaffected by the Zeeman field, while
the inner Fermi surface is affected by the pair-breaking effect of the
magnetic field and exhibits a strongly direction-dependent gap:
Δ+(k) = Δ + vk · q0. In the case of Rashba superconductors,
q0 ⊥B , and the superconducting gap is most strongly reduced
in the direction perpendicular to the field.

At low temperatures, passing a supercurrent through the system
creates an additional phase gradient in the superconducting order
parameter, so that the current-carrying state has a Cooper pair
momentum q different from the equilibrium one q0. When the
current is along the axis of q0, the change of Cooper pair momen-
tum δq ≡ q − q0 is roughly proportional to the supercurrent
density J and further reduces the superconducting gap. As |J |

increases, the gap eventually closes. This gap-closing condition
provides a rough estimate of the critical current. In the case of
helical superconductors considered here, the gap closes on the
inner pocket when the current is in the same direction as q0
(Fig. 2C ), and closes on the outer pocket when in the opposite
direction (Fig. 2D). Since the two pockets have different gaps, the
critical currents in opposite directions are different, resulting in
supercurrent diode effect.

Our discussion, so far, of the supercurrent diode effect based
on Bogouliubov band structures is heuristic. To rigorously
demonstrate the supercurrent diode effect, one needs to work
out the stable phase of superconductivity, which involves five
energy scales: the bare pairing potential Δ0 at zero temperature
and zero field, the SOC energy Δso = αRkF, the Zeeman energy
due to the magnetic field B, the temperature T, and Fermi energy
μ. To determine the complete phase diagram in the 5D parameter
space is enormously difficult. Nonetheless, near superconducting-
normal phase transitions, Ginzburg–Landau theory applies,
which may shed light on understanding the whole phase
diagram.

In the following, we will present a theory of supercurrent diode
effect. We first derive the explicit form of Ginzburg–Landau free
energy from symmetry arguments, then calculate the nonrecipro-
cal critical current from such free energy.
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Theory of Supercurrent Diode Effect

We first review the supercurrent in a conventional BCS supercon-
ductor. Close to the superconducting phase transition, the free
energy density f ≡ f̃ N0 as a functional of the superconducting
order parameter Δ(r) reads

f̃ = t |Δ(r)|2 + a0|(−i∂r − 2eA)Δ(r)|2 + 1

2
β|Δ(r)|4,

[6]
and the supercurrent density is then

J =− ∂f

∂A
= 4ea0N0

{
Im[Δ∗(r)∂rΔ(r)]− 2e|Δ(r)|2A

}
,

[7]
where t ≡ (T − Tc)/Tc is reduced temperature, and a0,β > 0.
When restricted to single-q order parameter Δ(r) = Δeiq ·r and
zero vector potentialA= 0, the corresponding free energy density
and supercurrent density take the following forms:

f̃ (q , Δ) = αq |Δ|2 + 1

2
β|Δ|4,

J (q) = 4eN0a0|Δ|2q , [8]

where αq = t + a0q
2. Notice that J = 2e∂q f holds, and

∂qαq = 2a0q represents the superfluid velocity.
For 2D noncentrosymmetric superconductors under a parallel

magnetic field, additional terms involving odd-power derivatives
of Δ(r) are allowed in the free energy expression (27),

f̃ =Δ∗(r)α̂Δ(r) +
1

2
β|Δ(r)|4, [9]

where α̂ is a differential operator involving the spatial derivative
∂r . For example, α̂= t − a0∂

2
r in the conventional BCS case. Its

Fourier transformαq is obtained from pairing susceptibility of the
normal state at wavevector q , as shown in SI Appendix. For spin–
orbit-coupled superconductors considered in this work, β > 0
generally holds. Whenαq < 0, the above free energy is minimized
by single-q order parameter: Δ(r) = Δeiq ·r . The corresponding
free energy density takes the form

f̃ (q , Δ) = αq |Δ|2 + 1

2
β|Δ|4. [10]

The Cooper pair momentum q0 in the equilibrium state is
determined by minimizing αq over q , that is,

∂α

∂q

∣∣∣∣
q0

= 0, and det
∂2α

∂qi∂qj

∣∣∣∣
q0

> 0. [11]

The in-plane critical field Bc(T ) is determined from the condi-
tion

min
q

αq = 0 at B = Bc , [12]

where αq is temperature and field dependent. Equivalently, one
also determines the critical temperature Tc(B) at finite field B in
the same way.

As shown above, the single-q order parameter is the sta-
ble phase near the superconducting phase transition. However,
deep in the superconducting phase, either B � Bc(T ) or T �
Tc(B), the multiple-q order parameter (e.g., LO phase) will
compete with the single-q one, and might be the stable phase in
some cases (22, 44). Nevertheless, throughout this work, we focus
on states close to the critical field line B = Bc(T ) whose stable
phase is described by a single-q order parameter.

For the Rashba superconductor, the in-plane critical field
Bc(T ) and the corresponding Cooper pair momentum q0 at the
superconducting transition is calculated numerically and shown
in Fig. 3 A and B. Note that q0 increases smoothly from zero with
B, leading to a helical superconductor. The critical field is higher
than the case of BCS phase (dashed line in Fig. 3A) in the absence
of SOC.

By introducing vector potential A, the uniform supercurrent
density J can be calculated from the free energy density f as
follows:

J =− ∂f (q − 2eA,Δ)

∂A

∣∣∣∣
A=0

= 2e∂q f , [13]

with electron charge e < 0. The equilibrium state minimizes
free energy density ∂q f = 0 and hence carries zero current. By

A B

C D

E F

Fig. 3. (A) In-plane critical field Bc(T) as a function of temperature, for
superconductors without SOC (dashed black line) and with Rashba SOC (blue
line), where Tc is the zero-field critical temperature, and BP = 1.25Tc is the
Pauli limit. In the BCS case, the red star denotes the tricritical point of FFLO
transition. In the Rashba superconductor, αR = 0.2vF, Δso = 2Δ0, and Δ0 =
1.76Tc is the zero-temperature order parameter at zero field. (B) Along the
curve Bc(T) in A, field dependence of Cooper pair momentum magnitude
q0, where ξ0 = vF/Δ0 is the zero-temperature coherence length. Dashed
blue line denotes Eq. 18 at weak fields. Dashed black line denotes the BCS
case, whose maximum Cooper pair momentum is q0 = ξ−1

0 when B =
√

2BP.
(C) Supercurrent J = J‖q̂0 as a function of q = q‖q̂0 at T = 0.90Tc , B = 0.31BP.
Under external current, red solid line denotes stable states, and blue dots
denote unstable states. (D) Along the curve Bc(T) in A, field dependence of δm
defined in Eq. 23. Dashed blue line denotes Eq. 19 at weak fields. (E) J versus q
in a superconductor without SOC in the FF state (q > 0). (F) Along the dashed
black curve Bc(T) in A, δm as a function of B in a superconductor without SOC.
When B < B∗, δ = 0, and, near B = BP, there is a sign change of δ. Blue and
red colors denote two types of FF states (q > 0 and q < 0).
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connecting the system to an external source, one can pass a
nonzero supercurrent J through the system. Such a current-
carrying state has a Cooper pair momentum q �= q0 that is
determined by J according to Eq. 13. Minimizing the free energy
with respect to the gap magnitude Δ yields |Δ|2 =−αq/β when
αq < 0. Then, Eq. 13 becomes

J =
eN0

β
|αq |∂qαq . [14]

Clearly, the supercurrent is the product of the superfluid stiffness
|αq | and the superfluid velocity ∂qαq , both of which depend on
the Cooper pair momentum q .

We first consider the BCS case without SOC and obtain the
superconducting phase diagram in the B–J plane for temperatures
close to the zero-field and zero-current critical temperature Tc .
At B = 0, αq = t + a0q

2 = t(1− ξ2q2) with coherence length
ξ ≡

√
a0/|t | ∝ (Tc − T )−1/2, so that J ∝ (1− ξ2q2)ξ2q . At

q = 0, the superfluid stiffness is maximal, but the superfluid
velocity vanishes. At q = ξ−1, the velocity is high, but the stiffness
vanishes. The maximal supercurrent or the critical current Jc
is achieved at an intermediate momentum qc = ξ−1/

√
3 with

Jc ∝ (Tc − T )3/2 (45). At B �= 0 without external current, the
Zeeman effect of in-plane magnetic field decreases the critical
temperature of a BCS superconductor, leading to Tc − Tc(B)∝
B2 or, equivalently, Bc(T )∝ (Tc − T )1/2.

When both B and J are nonzero, the boundary between
superconducting phase and normal phase in the B–J plane is
defined by (

B

Bc

)2

+

(
J

Jc

)2/3

= 1, [15]

where exponents 2 and 2/3 follow from the temperature scaling of
the zero-current critical field Bc and the zero-field critical current
Jc . The phase boundary is, in general, smooth except for the
nonanalytical region near J = 0, due to the fractional exponent
2/3. This phase boundary is symmetric in J due to inversion
symmetry of a conventional superconductor B →B ,J →−J ,
and is also symmetric with respect to the origin J = B = 0, due
to time-reversal symmetry B →−B ,J →−J .

In superconductors without inversion symmetry, the phase
boundary in B–J phase space can become skewed, as sketched in
Fig. 1D, in which case two closely related nonreciprocal effects
appear. At a given magnetic field B �= 0, the critical currents
are nonreciprocal, and, in a given current-carrying state J �= 0,
the critical fields are polarity dependent. Both phenomena are
manifestations of the supercurrent diode effect (30, 46).

As a concrete example, we consider Rashba superconductors
in the following and derive, explicitly, the nonreciprocal critical
current at weak field and temperatures near Tc . First, at small B,
we can expand αq as a power series in q and keep terms up to
linear order in B (27),

αq = t − (b0 − b1q
2)q · (B × ẑ ) + a0q

2, [16]

with the parameters a0, b0, b1 derived from Fermi surface inte-
grals as detailed in SI Appendix,

b0 = C0
αR

(πTc)2
, b1 = C1

v2
F αR

(πTc)4
, a0 =

1

4
C0

v2
F

(πTc)2
,

where C0 = 1.04 and C1 = 0.38 are numerical constants. In
deriving the expressions of a0, b0, b1, we have assumed SOC
strength Δso is larger than the superconducting gap Δ0. In Eq.
16, the B-linear terms arise from the field-induced shift (b0) and
deformation (b1) of Fermi surfaces. By minimizing αq over q , we
find the Cooper pair momentum in the equilibrium state

q0 = 2αR(B × ẑ )/v2
F , [17]

to the leading order in B.
Substituting Eqs. 16 and 17 into Eq. 14, we obtain the

supercurrent along the axis parallel to the q0 direction J‖ as a
function of q‖, shown in Fig. 3C. Due to the third-order term,
αq is skewed with respect to its minimum at q0. This skewness
leads to different critical currents in the direction parallel and
antiparallel to q0. More specifically, upon the application of a
weak in-plane magnetic field, critical current increases along one
direction while it decreases along the opposite direction,

J±
c

Jc
= 1± γ

B

Bc
, [18]

with

γ(T ) = 0.64
αR

vF

Bc

BP

√
1− T

Tc
, [19]

where BP = 1.25Tc is the Pauli limit. The dimensionless quan-
tity γ measures the strength of the field-induced supercurrent
diode effect at temperature T. γ(T ) is proportional to Rashba
SOC and decreases to zero as Tc − T near the critical tempera-
ture. Since Jc ∝ (Tc − T )3/2 and Bc ∝ (Tc − T )1/2, we have
J+
c − J−

c ∝ (Tc − T )2.
More generally, at higher fields, the Cooper pair momentum

q0 is no longer small and reaches the order of ξ−1
0 at B ≈

BP (Fig. 3B), where ξ0 is the zero-temperature, zero-field, and
zero-current coherence length. Nonetheless, the critical current
is always small near the superconducting transition temperature
Tc(B) at the corresponding field. Under this condition, we can
expand αq around its minimum q0,

αq = A[T − Tc(B)] + aδq2‖ − bδq3‖ , [20]

where A, a > 0, and δq‖ = (q − q0) · q̂0. From this expression,
we find different critical currents J±

c in the direction along and
against q0. The nonreciprocity of critical current can be charac-
terized by a “supercurrent diode coefficient” which we define as

δ ≡ J+
c − J−

c

J+
c + J−

c
. [21]

At temperatures close to the superconducting phase transition, we
find

δ = δm

√
1− T

Tc(B)
, with δm = b

√
ATc(B)

3a3
. [22]

Our theory based on Eq. 20 applies to the regime T ≈ Tc at
weak fields and also T ≈ 0 at high fields, since Tc(B)→ 0 when
B is large (Fig. 3A). The coefficients a, b can be computed by
derivatives ∂2

qα, ∂
3
qα at q = q0. One can numerically compute

a and b from αq as shown in SI Appendix, and δ can be obtained
as shown in Fig. 3 C and D.

We numerically calculate and plot δm along the critical field
line B = Bc(T ), as shown in Fig. 3D. Detailed derivation of Eqs.
18–20 and 22 can be found in SI Appendix.

It can be seen that δm is linear in B at weak fields as expected
in Eq. 18 where δ = γB/Bc . As the field increases, δm reaches its
maximum nearB = BP , and then decreases again. To understand
the behavior of δm under a magnetic field, note that αq =
1/V − χq (V is the attractive interaction) is determined by
pairing susceptibility χq = χ+

q + χ−
q , where χ±

q are the contri-
butions from inner (+) and outer (−) Fermi surfaces, respectively.
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χ±
q are nearly symmetric with respect to their respective maximum

at q ≈±2k0, due to the Fermi surface shift, with k0 on the order
of B/vF. The peak width is on the order of T/vF. Due to the
DOS asymmetry, the peak value of χ−

q is higher than that of
χ+
q . The differences in the peak position and height of χ+ and

χ− give rise to the skewness of χq , the sum of the two. At high
temperature, T � Tc , and low field, B � BP , the peaks of χ±

q
are relatively broad and close to each other, so that the asymmetry
in αq is small. In the opposite limit of low temperature, T � Tc ,
and high field, B ≈ Bc(T )� BP , the two peaks are narrow and
well separated and differ greatly in the height. χq is dominated
by the main peak χ−

q and therefore is nearly symmetric. Since
the nonreciprocity in critical current becomes small at both low
and high fields, the supercurrent diode coefficient δm —a measure
of nonreciprocity near Tc(B) —reaches its maximum around
the Pauli limit B = BP . We also discuss, in SI Appendix, the
possibility of nonreciprocal critical current in the single-q FF
(helical) phase without SOC.

Next, we derive the polarity-dependent critical field at small
current for temperatures near Tc . This requires including the
correction to αq at second order in B as in the usual BCS
superconductors without SOC. As shown in SI Appendix, we
obtain the skewed phase boundary for Rashba superconductors
in the B − J plane,

(
B

Bc

)2

+

∣∣∣∣∣ JJc − γ
B × ẑ

Bc

(
1− B2

B2
c

)2
∣∣∣∣∣
2/3

= 1, [23]

where γ is defined in Eq. 19. To the leading order in B, we recover
Eq. 18 for nonreciprocal critical currents, and, to the leading order
in J, we find the polarity-dependent critical field

B+
c − B−

c

2Bc
=

γ

3

J

Jc
, [24]

where the factor 1/3 is from exponents 2 and 2/3. Since Jc ∝
(Tc − T )3/2, Bc ∝ (Tc − T )1/2, and γ ∝ (Tc − T ), we find
B+

c − B−
c is temperature independent near Tc . Eq. 23 is our key

finding about the supercurrent diode effect: It is exact (in the sense
of temperature scaling) at temperatures near the zero-field, zero-
current Tc .

At low temperatures, the entire phase boundary in the B–J
plane can be determined numerically. From Eq. 23, we find the
supercurrent diode effect in Rashba superconductors is maximized
when B ⊥ J , and vanishes when B ‖ J , as shown in Fig. 1 B
and D. The latter property is guaranteed when mirror symmetry
B →B ,J →−J is present.

Besides Rashba systems, the helical phase exists in noncen-
trosymmetric superconductors with the following point groups:
Dn ,Cnv,Cn ,D2d, S4,C1(n = 2, 3, 4, 6). In these systems, crys-
tal symmetry allows a linear coupling between the Cooper pair
momentum q and Zeeman field B enabled by SOC. As a
result, the field-induced Cooper pair momentum q0 is linearly
proportional to B at weak fields (27),

q0 ∝∇k (ĝ k ·B)|k=0. [25]

The form of spin–orbit vector gk and therefore the direction
of Cooper pair momentum depend on crystal symmetry. While
q0 ∝ ẑ ×B is perpendicular to the in-plane magnetic field in
Rashba superconductors, q0 ∝B is parallel to B in crystals with
Dn≥3 point groups, and q0 ∝ (Bx ,−By) forms a mirror pair
with B in crystals with the D2d point group. While the direction
of Cooper pair momentum relative to the magnetic field depends

on crystal symmetry, the supercurrent diode effect is generally
allowed when the current is passed along the axis of Cooper pair
momentum.

For Ising superconductors with point group D3h such as tran-
sition metal dichalcogenides with an odd number of layers, the
supercurrent diode effect is absent for in-plane field and in-
plane current, where the combined symmetry of vertical mirror
Iz : z →−z with respect to the basal plane and time-reversal T
is preserved, IzT : J →−J ,B →B . However, one can realize
nonreciprocal critical currents in an Ising superconductor by
introducing an out-of-plane magnetizationMz (e.g., by ferromag-
netic proximity effect), so that

αq = t + a0q
2 + b(q3x − 3qxq

2
y )Mz , [26]

and a0 > 0, where a0 and b are determined by Fermi surface
properties of the Ising superconductor. Denoting θ as the angle
between J and x axis, the supercurrent diode coefficient is then

δ = b

√
|t |
3a3

0

Mz cos 3θ. [27]

We further consider the supercurrent diode effect in the limit
of vanishing SOC. In this case, finite-momentum FFLO super-
conductivity occurs at high magnetic fields above the Pauli limit.
In particular, the single-q FF state (which can be energetically
favored over the LO state by weak SOC) breaks both inversion
and time-reversal symmetry, thus giving rise to the diode effect as
shown in Fig. 3E. In Fig. 3F, we also plot δm along the critical
field line B = Bc(T ), where the normal phase, the BCS phase,
and the FF phase meet at the tricritical point (T∗,B∗) (Fig. 3A).
As the magnetic field increases from B∗ to Bc =Δ=

√
2BP , the

Cooper pair momentum increases rapidly from zero to 1/ξ0, and
the diode coefficient δ shows remarkable features.

The magnitude of the supercurrent diode effect |δ| becomes
very large near both B∗ (the tricritical point) and Bc (the T =
0 end point of the FF phase). This can be understood from the
behavior of Ginzburg–Landau coefficient αq . Near the tricritical
point, we have

αq = c0 + c1q
2 + c2q

4, [28]

with c0 ∝ T − T∗, c1 ∝ B∗ − B , and c2 > 0. At B just above
B∗, the Cooper pair momentum q0 ∝

√
B − B∗ is small.

Nonetheless, αq is highly skewed with respect to q0: It increases
very slowly as q decreases from q0. As a result, J+

c → 0 while J−
c

remains finite as T → T∗,B → B∗. Thus the diode coefficient
δ = (J+

c − J−
c )/(J+

c + J−
c )≈ 1 reaches the maximum possible

value near the tricritical point.
On the other hand, near the transition between the FF super-

conductor and normal phase at low temperature T → 0, we have

αq = Re

[
log

(
B +

√
B2 − v2

F q
2

Δ0

)]
. [29]

Minimizing αq over q yields a large Cooper pair momentum
q0 = B/vF approaching 1/ξ0 as B → Bc . In this case, due to
the nonanalytic dependence of q , αq is highly skewed with
respect to q0: It rises steeply as q decreases from q0. This leads to
the maximum possible diode effect with δ = (J+

c − J−
c )/(J+

c +
J−
c )≈−1 nearBc , taking the opposite sign from the one near the

tricritical point. Details of the supercurrent diode effect in the FF
phase can be found in SI Appendix. Note that, at low temperature
away from the critical line Bc(T ), the single-q FF state may yield
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to a multiple-q state. In the absence of SOC, the double-q LO
state has a spatially modulated gap amplitude and constant phase,
which does not show the diode effect.

Discussion

The supercurrent diode effect predicted in this work, including
nonreciprocal critical current and polarity-dependent in-plane
critical field, may be observed in polar SrTiO3 films (47) and
artificially engineered heavy fermion superlattices of YbCoIn5 –
YbRhIn5 –CeCoIn5 (29), where the layer stacking breaks inver-
sion symmetry. In both cases, an upturn of the in-plane critical
field has been observed and attributed to the Rashba spin splitting.
Other candidates include transition metal dichalcogenide MoTe2
in the low-symmetry Td structure (48–50), and half-Heusler
superconductors such as YPtBi with tetrahedral point group
(51–54). These two classes of materials have strong spin–orbit
interaction and small Fermi energy, which enhances the super-
current diode effect.

Another interesting platform to search for supercurrent diode
effect is magic-angle twisted bilayer graphene (55, 56), whose
twisted bilayer structure breaks inversion symmetry. Although
spin–orbit interaction is negligibly small, an in-plane magnetic

field modifies the moiré band structure by giving electrons a mo-
mentum shift in the interlayer tunneling process. As we showed
recently, a small field causes a shift of Fermi surface by δk ∝B
in the direction parallel to B (56). Therefore, field-induced finite-
momentum superconductivity and the supercurrent diode effect
may appear when the critical current is measured along the field
axis.

Last but not the least, the supercurrent diode effect should
also exist when the superconducting state spontaneously breaks
time-reversal and inversion symmetry. Thus, nonreciprocal critical
current at zero magnetic field and polarity-dependent critical field
in the equilibrium state provide new probes of unconventional
superconductivity with hidden orders.

Data Availability. All study data are included in the article and/or SI Appendix.

Note Added. Recently, two related works (57, 58) on a similar topic have
appeared.
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