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Several lines of evidence have revealed that the angiogenic response to ischemic injury 
declines with age, which might account for the increased morbidity and mortality of 
cardiovascular disease (CVD) among the elderly. While impairment of angiogenesis 
with aging leads to delayed wound healing or exacerbation of atherosclerotic ischemic 
diseases, it also inhibits the progression of cancer. Age-related changes of angiogenesis 
have been considered to at least partly result from vascular aging or endothelial cell 
senescence. There is considerable evidence supporting the hypothesis that vascular 
cell senescence contributes to the pathogenesis of age-related CVD, suggesting that 
vascular aging could be an important therapeutic target. Since therapeutic angiogenesis 
is now regarded as a promising concept for patients with ischemic CVD, it has become 
even more important to understand the detailed molecular mechanisms underlying 
impairment of angiogenesis in older patients. To improve the usefulness of therapeutic 
angiogenesis, approaches are needed that can compensate for impaired angiogenic 
capacity in the elderly while not promoting the development or progression of malignancy. 
In this review, we briefly outline the mechanisms of angiogenesis and vascular aging, 
followed by a description of how vascular aging leads to impairment of angiogenesis.  
We also examine potential therapeutic approaches that could enhance angiogenesis 
and/or vascular function in the elderly, as well as discussing the possibility of anti- 
senescence therapy or reversal of endothelial cell senescence.

Keywords: aging, therapeutic angiogenesis, cellular senescence, angiogenic factors, endothelial progenitor cells, 
cancer

inTRODUCTiOn

There is accumulating evidence that angiogenesis, which is the process of forming new blood ves-
sels from existing vascular structures, declines significantly with aging (1–6). Aging is a major risk 
factor for various diseases. In the United States, people over 65 years old have a higher prevalence of 
cardiovascular disease (CVD), and the prevalence of CVD will increase by nearly 10% over the next 
two decades (7). Age-dependent impairment of angiogenesis is considered to be one of the main 
contributors to increased cardiovascular morbidity and mortality. Therefore, understanding the 
mechanisms by which aging induces pathophysiological changes of the vascular system, including 
impairment of angiogenesis, is critical for developing therapeutic strategies to manage age-related 
CVD. This review outlines the mechanisms of angiogenesis and vascular aging or endothelial cell 
senescence. Then recent evidence for the association between vascular aging and angiogenesis is 
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described, followed by discussion about the potential to develop 
therapeutic angiogenesis and anti-senescence therapy for age-
related CVD.

AnGiOGeneSiS in THe eLDeRLY

Major Mechanisms of neovascularization
Growth of new blood vessels in response to certain stimuli such 
as tissue ischemia is called neovascularization and is categorized 
into three mechanisms, which are angiogenesis, arteriogenesis, 
and vasculogenesis (8). Angiogenesis occurs in small capillaries 
and involves sprouting of existing vascular endothelial cells (9). 
Arteriogenesis is a mechanism by which larger arteries form col-
lateral vessels to maintain the blood supply after occlusion (10), 
while vasculogenesis involves the creation of vessels mainly by 
endothelial progenitor cells (EPCs), which were first reported in 
1997 (11). The putative EPCs were initially typified by expres-
sion of CD34 and vascular endothelial growth factor receptor-2 
(VEGFR-2) (11), then specified by additional various other 
markers expressed on their surface, such as CD 133, CD31, and 
von Willebrand factor (12, 13). It is known that EPCs arise from 
the bone marrow and differentiate into endothelial cells which 
form de novo vascular structures (8, 14). All three mechanisms 
are believed to contribute to the development of physiological or 
pathological neovascularization.

effects of Aging on Angiogenesis
Recovery of blood flow after hind limb ischemia is reported to 
be impaired in older animals compared with young animals (1). 
Consistent with this finding, the development of collateral arter-
ies is significantly impaired in older patients with coronary artery 
disease (15), and the incidence of amputation is high in elderly 
patients with acute lower limb ischemia (16). These observations 
support the notion that impairment of angiogenesis occurs with 
aging. Indeed, endothelial cells from aged mice show a decreased 
capacity for both proliferation and migration (2, 3). Moreover, 
impairment of angiogenesis with aging contributes to delayed 
wound healing. Healing of skin wounds is a process that involves 
aggregation of keratinocytes and fibroblasts through the forma-
tion of highly vascular granulation tissue (2, 17, 18). Many aspects 
of the healing process are influenced by aging, and it was reported 
that formation of benign granulomas is inhibited in aged mice 
along with a decrease of capillary density (2).

On the other hand, progression of cancer is generally slower 
in the elderly compared with younger patients, although the 
incidence of cancer increases with age. In addition to the 
reduced capacity of tumor cells for proliferation and migration, 
impairment of angiogenesis is considered to have an important 
role in slowing the growth of cancer in elderly patients (19). 
Angiogenesis is essential for tumor progression, and there is an 
association between tumor vascularity and the prognosis of most 
neoplasms. In aged mice, invasion of malignancies is suppressed 
along with a decrease of tumor vasculature (19), and a reduced 
tumor microvessel count was reported in elderly patients with 
breast cancer (20). Thus, impairment of angiogenesis in the 
elderly is likely to have an influence on the prognosis of cancer, 

and attenuation of angiogenic capacity with aging can be seen as 
a mechanism that inhibits tumor progression.

MOLeCULAR MeCHAniSMS  
OF vASCULAR AGinG

The age-related reduction of angiogenic capacity and endothelial 
function is believed to at least partly stem from a phenomenon 
called vascular aging (21), which is characterized by cellular 
senescence affecting the vascular endothelium. In cultured cells, 
cellular senescence is the term for irreversible growth arrest 
that occurs after a certain number of cell division cycles (22). 
Senescent cells exhibit both morphological changes and pheno-
typic alterations associated with differences of gene expression 
(23). It is known that the lifespan of cultured cells is negatively 
correlated with the age of the donor, and that primary cultured 
cells from patients with premature aging syndromes have a sig-
nificantly shorter lifespan (24, 25). These observations have led 
to the hypothesis that cellular senescence is associated with the 
aging processes, which was first postulated in the 1960s (26, 27). 
This hypothesis has been extensively investigated during the past 
few decades, leading to improved understanding of the molecu-
lar mechanisms underlying cellular senescence. The biological 
significance of cellular senescence is recognized to be its role 
as a protective mechanism against carcinogenesis due to DNA 
damage or various cellular stresses (28, 29). However, a recent 
study revealed that anti-inflammatory therapy with canakinumab 
could significantly reduce incident lung cancer in patients with 
atherosclerosis (30). Because aging is known to promote vascular 
inflammation by increasing reactive oxygen species (ROS) pro-
duction (6), chronic inflammation during vascular aging might 
promote progression of cancer.

One of the most widely discussed hypotheses that could 
explain vascular cell senescence is the telomere hypothesis (31).  
Telomeres are chromatin complexes composed of non-nucleoso-
mal DNA (TTAGGG repeats) and various telomere-binding pro-
teins that are located at the ends of chromosomes and contribute 
to genomic stability by protecting this region from degradation 
and recombination (32). Telomeres become shorter with each cell 
division, possibly due to imperfect duplication of the extreme 
terminals of the chromosomes by DNA polymerase. Progressive 
telomere shortening eventually triggers senescence and reduces 
the proliferative capacity of cells (33). Telomerase is an enzyme 
that elongates telomeres by using its RNA component as a tem-
plate (34). Introduction of telomerase into human endothelial 
cells inhibits telomere shortening with cell division and protect 
against senescence, suggesting that telomeres may have an impor-
tant role in vascular cell senescence (35–37).

In addition to the telomere hypothesis, some telomere-
independent mechanisms of vascular aging have been suggested. 
Angiotensin II induces premature senescence of human vascular 
smooth muscle cells without affecting telomere length by upregu-
lating p53/p21 expression and activating nuclear factor kappa B to 
increase proinflammatory cytokine production (38). Senescence 
of human vascular endothelial cells was also reported to involve 
activation of Akt, suggesting that insulin/Akt signaling may 
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TAbLe 1 | Matrix metalloproteinase (MMP) family.

enzyme MMP

i. Collagenase group
Interstitial collagenase (collagenase-1) MMP-1
Neutrophil collagenase (collagenase-2) MMP-8
 Collagenase-3 MMP-13

ii. Gelatinase group
Gelatinase A MMP-2
Gelatinase B MMP-9

iii. Stromelysins
Stromelysin-1 MMP-3
Stromelysin-2 MMP-10
Stromelysin-3 MMP-11

iv. Membrane-type (MT) MMPs
MT-1 MMP MMP-14
MT-2 MMP MMP-15
MT-3 MMP MMP-16
MT-4 MMP MMP-17
MT-5 MMP MMP-24
MT-6 MMP MMP-25

v. Others
Matrilysin MMP-7
Macrophage elastase (metalloelastase) MMP-12
Enamelysin MMP-20
Other human metalloproteases MMP-18, MMP-19, MMP-23
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be important in regulating the lifespan of these cells (39). This 
mechanism is reported to be related to control of the production 
of ROS (39).

MeCHAniSM OF iMPAiReD 
AnGiOGeneSiS ASSOCiATeD  
wiTH vASCULAR AGinG

Several mechanisms have been proposed as potential underlying 
causes of the age-related impairment of angiogenesis.

Reduced Production/Response to Growth 
Factors and nitric Oxide (nO)
It is known that expression of vascular growth factors and/or 
the response to these factors is attenuated in elderly persons. 
Production of vascular endothelial growth factor (VEGF), which 
is one of the key regulators of physiological and pathological 
angiogenesis (40–42), is decreased in the elderly at both basal 
levels and in response tissue injury (43–45). This is thought to 
be due to reduced activation of hypoxia-inducible factor-1α, 
a transcription factor for VEGF (46, 47). Also, expression of 
platelet-derived growth factor is inhibited in cardiac endothelial 
cells from aged rats (48), while the response of senescent human 
umbilical vein endothelial cells to basic fibroblast growth factor 
(FGF) is diminished due to impaired tyrosine phosphorylation of 
FGF receptors (49). All of these changes are likely to contribute to 
impairment of angiogenesis in the elderly.

Moreover, production of NO is decreased in the vascular 
cells of elderly persons or in senescent endothelial cells (50–52). 
Reduced bioavailability of NO with aging not only inhibits vaso-
dilation through its innate effect, but also increases the sensitivity 
of endothelial cells to apoptotic stimuli, leading to disruption of 
endothelial function and angiogenic potential (53).

Reduced number/Function of ePCs
Endothelial progenitor cells are cells recruited from the bone 
marrow to sites of ischemia that promote neovascularization by 
undergoing differentiation into endothelial cells (11, 54). EPCs 
are currently utilized for therapeutic angiogenesis as a form of 
cell transplantation therapy (55–57). EPCs obtained from elderly 
persons show reduced survival, migration, and proliferation in 
culture, suggesting functional impairment due to cellular senes-
cence (58). Interestingly, the number and function of EPCs are 
inversely correlated with various risk factors for atherosclerosis 
(59–61). Exhaustion of these cells not only leads to impaired 
angiogenesis but also attenuates the maintenance of vascular 
homeostasis, which might result in initiation of atherosclerosis 
(62). Indeed, EPCs from patients with coronary artery disease 
show reduced proliferation and migration, while EPC numbers 
are decreased in patients with advanced coronary artery stenosis 
(63–65). The decline of EPC numbers is considered to result from 
impairment of differentiation in the bone marrow with aging, as 
well as attenuated recruitment of these cells due to reduced VEGF 
production in peripheral tissues. These changes could be partially 
explained by age-related alterations of the stem cell niche, such as 
decreased tenascin-C expression in bone marrow (66).

Changes of the extracellular Matrix
Endothelial cell proliferation requires a scaffold for cells to 
migrate and space for cells to grow, created by degradation of the 
basement membrane around blood vessels. Correct organization 
of the extracellular matrix has a critical influence on this process 
(67, 68). Because production of extracellular proteins such as 
fibronectin and collagen is known to decrease with aging, this 
change has been suggested to make a contribution to impairment 
of angiogenesis (69, 70).

Matrix metalloproteinases (MMPs) are proteases involved 
in degradation of the extracellular matrix (71). MMPs can be 
divided into several groups on the basis of cellular localization, 
biochemical properties, and sequence similarities (Table 1) (71). 
As well as production of extracellular proteins, the activity of 
MMPs decreases with aging (72). Conversely, the expression of 
tissue inhibitor of metalloproteinase, which inhibits MMPs, is 
enhanced by aging (73). The resulting dysregulation of MMPs is 
considered to be one of the key factors leading to impairment of 
angiogenesis in elderly persons, along with increased production 
of angiogenic inhibitors such as thrombospondins (3, 74, 75).

Cellular Senescence
Cellular senescence is believed to result from telomere shorten-
ing associated with successive cell division and chronic oxidative 
stress (76). Several studies have demonstrated that atherosclerotic 
lesions contain senescent vascular endothelial cells (77–79), and 
the telomere length of somatic cells is inversely correlated with 
the number of risk factors for atherosclerosis (80–86). In addition 
to the decline of replicative capacity, cellular senescence leads to 
increased expression of inflammatory cytokines and decreased 
production of NO by the vascular endothelium (87, 88). These 
changes associated with aging are considered to play a key role 
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in the development of atherosclerosis, as well as directly lead-
ing to impairment of angiogenesis (22). EPCs also develop the 
functional and phenotypic characteristics of cellular senescence 
in elderly persons, resulting in impaired functioning of these cells 
(21, 58, 89).

THeRAPeUTiC iMPLiCATiOnS  
OF AGe-ReLATeD iMPAiRMenT  
OF AnGiOGeneSiS

Atherosclerotic ischemic diseases, such as arteriosclerosis oblit-
erans and ischemic heart disease, are among the major age-related 
diseases with surging morbidity and mortality (90). Atherosclerotic 
plaques from older patients tend to be larger with significant ste-
nosis, as well as having more calcified lesions (91). Angiogenesis is 
promptly triggered by ischemia, but this response is attenuated in 
the elderly (1, 2, 5). While revascularization is currently the most 
effective treatment for ischemia, many patients are unsuitable for 
this therapy due to technical reasons or unclear benefit, especially 
among the elderly population (92). Wound healing is also impaired 
with aging, and this change is associated with reduced levels of 
angiogenic factors such as VEGF or FGF (2, 4).

Previous preclinical studies and small-scale clinical trials 
have shown that gene therapy or the delivery of VEGF or FGF 
protein, as well as cell therapy employing EPCs and bone mar-
row or peripheral blood mononuclear cells, have some efficacy 
for alleviating ischemia. These revascularization strategies are 
collectively called therapeutic angiogenesis (93–96). Moreover, 
local application of basic FGF to refractory skin ulcers has been 
shown to promote wound healing and has demonstrated remark-
able clinical benefit (97–99), leading to approval of basic FGF as a 
topical treatment in Japan.

Unfortunately, therapeutic angiogenesis is not always 
effective. Among patients with critical limb ischemia, nearly 
half of those treated do not achieve sufficient improvement of 
ischemic symptoms (100). The key reasons for lack of improve-
ment are considered to be an attenuated response to growth 
factors and decreased viability or function of transplanted cells 
due to cellular senescence (5). One of the potential strategies 
to overcome these problems is modification of senescence-
associated molecules. Indeed, it has been reported that trans-
duction of the human telomerase reverse transcriptase (TERT) 
gene into EPCs led to improvement of neovascularization in a 
murine model of hind limb ischemia (101), with this explicit 
anti-senescence strategy serving as a model for therapeutic 
angiogenesis.

However, it should be noted that both cellular senescence and 
impairment of angiogenesis are mechanisms inhibiting cancer 
progression (4, 23). Strategies such as introduction of the TERT 
gene, as mentioned above, are thought to be associated with a 
high risk of cancer (101), and clinical application of this tech-
nology would be difficult in its present form. Thus, employing 
therapeutic angiogenesis in elderly patients will always be associ-
ated with a certain risk of promoting the development of cancer. 
Because therapeutic angiogenesis or anti-senescence therapy 
for the elderly is a two-edged sword, it is important to focus on 
therapeutic targets that are as specific as possible (Figure  1). 
Accordingly, local administration of these therapies could be one 
option. Additionally, various drugs with known cardioprotective 
effects, such as statins (102), thiazolidinediones (103), aspirins 
(104), and estrogens (105), have also been reported to increase 
telomerase activity and are not considered to increase the risk 
of malignancy. Thus, targeting the appropriate senescence-
associated molecules may allow development of safe and effective 
anti-senescence therapy.

FiGURe 1 | Ideal antisenescence therapy and therapeutic angiogenesis. Although cellular senescence and impaired angiogenesis have undesirable effects, these 
age-related changes also inhibit the progression of cancer. Restoring the repair potential of normal tissues, while preserving the protective effect against 
development and progression of malignant tumors, is the ultimate objective of anti-senescence therapy and therapeutic angiogenesis.
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COnCLUSiOn

Although impairment of angiogenesis with aging is detrimental 
for various ischemic diseases, it conversely has a favorable effect by 
suppressing the development and progression of malignant tumors. 
Deeper understanding of the detailed mechanisms involved in vas-
cular aging and angiogenesis may lead to ideal molecular-targeted 
therapy that promotes angiogenesis by suppressing age-related sign-
aling pathways while preserving the protective effect against cancer.
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