Epilogue
New Directions in Migration
Health and Medicine



Chapter 13

Mapping and Modeling Disease Risk
Among Mobile Populations

HENRY G. MWAMBI, PH.D. AND KHANGELANI ZUMA, PH.D.

Human Mobility and Epidemiology

Human mobility patterns play an important role in the spread of many infec-
tious diseases and in designing control strategies for them. Given that epi-
demiology is the study of the occurrence of disease in a person and at a time
and place, this implies that mobility patterns and their distribution within
and between countries or regions are important in explaining the dissemina-
tion of existing, emerging, or re-emerging diseases. Mobility patterns have
been responsible for the introduction of infectious agents into arcas where
they never before existed. A well-known example is the spread of Human
Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS),
which first emerged in the early 1980s. With the passage of time, HIV began
to occur nearly on the entire face of the earth with varying proportions. A more
recent example is the Severe Acute Respiratory Syndrome (SARS) an atypi-
cal pneumonia and part-time sexually transmitted infection (STI) spread
through both sexual and casual contact that first appeared in November 2002
in China. First reported in Asia in February 2003, SARS was spread via
international travelers in a few months to more than two dozen countries in
Asia, North America, South America, and Europe before the global out-
break of 2003 was contained—but by the last case was recorded, there were
a total of 8,437 known cases of the disease, with 813 deaths.

Mathematical and statistical models have been put to good use in under-
standing the spread of infectious pathogens and how best to contain them
(Anderson, Fraser, Ghani, Donnelly, Riley, Ferguson, Leung, Lam, &
Hedley, 2004; Donnely, 2004; Donnelly, Ghani, Leung, Hedley, Fraser, Riley,
Abu-Raddad, Ho, Thach, Chau, Chan, Lam, Tse, Tsang, Liu, Kong, Lau,
Ferguson, & Anderson 2003). The spread and persistence of highly patho-
genic diseases, such as SARS, pose challenges to present day epidemiologists
because their transmission is aided by key factors such as human mobility
patterns including air travel, and the continued growth and overcrowding
in big cities, as seen in many parts of the world, particularly in developing
countries, as well as other risk factors. Considering the foregoing, epidemic

245



246 Henry G. Mwambi and Khangelani Zuma

outbreaks of new infectious agents are likely to become more common than
ever, therefore, epidemiologists need to be equipped with quantitative tools
and skills in order to counter such challenges. Data-oriented mathematical
and statistical methods are crucial for the success of these efforts. It has been
argued that international collaboration in the analysis of epidemiological and
contact-network databases can provide further insight into the spread of
emerging or re-emerging infections such as SARS and avian influenza
(Donnelly et al., 2003).

Models incorporating geographic mobility among regions in the diffusion
of infectious diseases are not new. Sattenspiel and Dietz (1995) developed a
model for the spread of infectious diseases among discrete geographic regions
that incorporated a mobility process describing how contact occurs between
individuals from different regions. Their general mobility formulation
included a range of mobility patterns from complete isolation of all regions to
permanent migration between them. In addition, the authors showed how to
incorporate mobility processes into the basic Susceptible-Infective-Recovered
(SIR) epidemic model, which was applied to describe the 1984 measles epi-
demic on the Caribbean island of Dominica. For STIs including HIV/AIDS, a
number of socioeconomic factors are definitely responsible for the recent rise
in their incidence and prevalence but clearly most of the facilitating factors are
linked to human mobility and migration (Lurie, Williams, Zuma, Mkaya-
Mwamburi, Garnett, Sturm, Sweat, Gittelsohn, & Abdool Karim, 2003a;
Lurie, Williams, Zuma, Mkaya-Mwamburi, Garnett, Sturm, Sweat, Gittelsohn,
& Abdool Karim, 2003b; Zuma, Gouws, Williams, & Lurie 2005). Examples
include increasing urbanization, migrant worker effect, expansion of the
tourist travel sector, and new attitudes towards sexual behavior in modern soci-
eties. Generally, human mobility patterns and social networks in relation to the
spread of infectious diseases are multilevel in nature. By design, it is expected
that there will be more movements of humans within cities, towns and regions
in the same country than movements between two or more countries. As one
goes down to a finer geographic resolution, social networks and contacts
become tighter. However, in developed countries where transport systems are
highly efficient, communication between areas within a country and between
countries in a modeling sense is more probable. This means that the trans-
portation of an infectious agent between countries with such highly connected
systems will be more efficient.

Mathematical Modeling and Infectious Diseases

The earliest known mathematical model for infectious diseases is attributed
to Daniel Bernoulli (1760) for the transmission of smallpox. After the work
by Bernoulli there was a period of no further development in the area,
possibly due to the lack of understanding of the mechanisms driving the
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infectious processes of diseases. Advances in biology and bacteriology
reversed this situation and a major development followed with the first
model for malaria, an indirectly transmitted disease, developed by Sir
Ronald Ross (1909, 1911). In his model, Ross described the process whereby
a human host acquires malaria from an infectious mosquito bite or con-
versely, a disease-free mosquito gets infected by biting an infected human
host. Ross introduced a very important concept in disease control by sug-
gesting that the eradication of malaria could be possible if the mosquito
population could be reduced to a certain finite threshold number, say N,
suggesting that the complete eradication of mosquitoes is not necessary.
This observation led to the threshold phenomenon in epidemiology.
Following this, Kermack and McKendrick (1927) developed an epidemic
model in which the infectivity of an individual depends on the time when the
individual becomes infective or what essentially could be interpreted as an
age of infection model. In this case, an epidemic is defined as a sudden out-
break of a disease, which infects a sizeable portion of the population in a
region before it disappears. The Kermack-McKendrick SIR epidemic model
is formulated as a two-dimensional system of ordinary differential equations
representing transitions (in continuous time) from the Susceptible class (S)
to the Infective class (I) and then from the Infective to the Recovered class
(R). Since this period in history, there has been an increasingly rapid transi-
tion of biology and medicine from qualitative (descriptive) to quantitative
(predictive) sciences in the form of mathematical and statistical models to
explain the growth of human (and animal) populations and the spread of
infectious diseases as well as the design of control strategies. A significant
contribution in this field is the work of Anderson and May (1991) as well as
a number of other model variants including contact rates, quarantine, and
isolation which followed the recent SARS epidemic, and which can be grouped
as infection models and analyzed using the Kermack and McKenderick
approach.

The Basic SIR Model

In this model the assumption is made that an individual can only occupy one
of three possible disease states or classes. Firstly, an individual is uninfected
and susceptible to the disease; secondly, if the individual comes into contact
with the infectious agent and becomes infected then his/her state will change
from that of susceptible to infected; and finally, the individual may develop
some immunity to the disease and change from infective to the recovered or
removed class. It should be noted, however, that this structure is in most cases
a major simplification because in reality the disease stages may be more
detailed. In order to briefly explain the formulation of the SIR epidemic
model, the enticing approach developed by Daley and Ghani (1999) is fol-
lowed. Let x(¢), y(¢) and z(¢) respectively denote the number of individuals in
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the susceptible, infected, and recovered classes of the disease at time ¢ respec-
tively. The total number of individuals is N = x(¢) + y(¢) + z(¢) and assumed to
be constant as in its original formulation (Kermack & McKendrick, 1927).
The variables x(7), y(¢) and z(¢) are taken as continuous deterministic variables,
hence they can be modeled using a system of differential equations given by:

dx

il Bxy (13.1)
d

=By — vy (13.2)
dz

S = (13.3)

The initial state of the systemis (x(0), y(0), z(0)) = (x,>0, y,> 0, 0) assum-
ing there is at least one infected person in the population otherwise the popu-
lation will remain uninfected. In its basic form, the model assumes a closed
population with no migration in or out of that population. The parameter
denotes the rate of infection per individual per unit time or what may be called
the hazard of infection. Note that susceptibles get infected at a rate that is pro-
portional to the product of susceptible and infected individuals. This concept
is known as “the law of mass action” governing the spread of infectious dis-
eases assuming homogeneous mixing between those susceptible to and infected
with the disease. The parameter y is the recovery or the removal rate of an
infected individual. Written in this form the model assumes that the duration
of infection follows an exponential distribution with a mean given by 1/y. An
equation relating x(¢) and z(7) can be obtained (Daley & Ghani, 1999) by first
dividing the equation for x(7) by the equation for z(¢) to yield:

dx B X Y
—=—"—x=—— where p =% 134
5= 5 P=73 (13.4)
Then the solution to equation (13.4) is easily obtained as

X =Xxpe "’ (13.5)
where p can be defined as a measure of the relative removal rate. This there-
fore means that

y=N—-xpe ' —z (13.6)

hence

%: Y(N=xpe " — 2) (13.7)

The above equation has a parametric solution given by

yz:foz%, 0< <o (13.8)
N—-V—xye v
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There are two main results which can be inferred from system (13.1)-(13.3).
The first one is the criticality condition which comes from equation (13.2).
Since at the start of the epidemic, this equation can be re-expressed as

D~ By p) (139)

it follows that if the epidemic is ever to grow, then we require that
dy
E|;=o>00r Xy >p

(i.e., the initial number of susceptibles must exceed a threshold value equal
to p). The second important result from the work of Kermack and
McKendrick (1927) is derived as follows. From equation (13.8), as 1 —oe, z(¢)
approaches its limiting value z_< N. Thus in the limit

N—-z — xoe’%: 0
Now suppose that x;, is close to N; then z_ is the approximate solution of
0=N-—Ne "=~ N—z —N(1-z lp+z212p%)

Thus if say N = p+ v with v << p then

Zo = 2v =~ 2V
1+
p

Thus if x;= N = p+ v with v > 0, then since y_ =0, x_=p—vsince x_+z_
= N. According to this result, some susceptibles will ultimately survive the
epidemic free from infection. An important fundamental property related to
the first result noted above is that there is a basic reproductive number R, of
the disease, determining whether the disease will die out without spreading or
whether there will be an epidemic. R is defined as the number of expected
secondary infections caused by a single infective introduced into a wholly
susceptible population of size N over its entire infectious duration. In this
case, since the mean infective period is 1/y, then R, = BN/y, from the final size
equation it is possible to calculate the fraction x_/N of the population that
escapes the epidemic.

A more realistic model is one that includes a latent or exposed (incubating)
class whose members progress to the infectious class at a rate of say o to which
could also be included a disease-induced mortality at rate c. If the time-scales
of the disease process are much faster than the demographic processes, then
the basic reproductive number of the disease becomes R, = BN/(y+ ). For a
complete analysis of an age of infection model closely related to the original
Kermack-McKendrick model, of which system (13.1)-(13.3) is a special case,
the reader is referred to the work of Brauer (2005) in which general contact
rates are allowed.
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Extensions to Incorporate Reactions to an Epidemic

An actual epidemic model differs considerably from the idealized model sys-
tem (13.1)-(13.3) and its extension to the Susceptible-Exposed-Infected and
Infectious-Recovered (SEIR) model with the SARS epidemic as a notable
recent example follows. Some key differences are:

1. Various vaccination strategies are possible, such as the vaccination of
health care workers and other first-line responders to the epidemic, vacci-
nation of individuals who have been in contact with diagnosed infectious
individuals, or vaccination of members of the population who are in close
proximity to the diagnosed infectious individuals.

2. Those diagnosed as infected can be hospitalized, both for treatment and as
a means of isolation from the rest of the population.

3. Contact tracing (Mueller, Kretzschmar, & Dietz, 2000) may be used to
identify people at risk of becoming infective, and consequently so that they
may be quarantined (or instructed to remain at home and to avoid con-
tacts) and monitored so that they may be isolated immediately if and when
they become infective.

4, Sometimes isolation may be imperfect, as in the case of in-hospital trans-
mission of infection, which can be a major problem.

In hospitals, transmission can account for many new cases as was the case
with SARS. This is an important heterogeneity in disease transmission which
must be accounted for whenever there is any risk of transmission. Such
details were accounted for in models for SARS (Anderson et al., 2004,
Donnely et al., 2003) and approaches used for the SARS epidemic can also
be relevant to other epidemics. The SARS outbreak attracted renewed effort
to epidemic modeling, which is of great value in coping with future disease
outbreaks. Thus if a vaccine is available for a disease that threatens to be an
epidemic outbreak such as avian influenza, a vaccinated class that is pro-
tected at least partially ought to be included in the model development. But
for an epidemic outbreak, where no vaccine protection is available, isolation
and quarantine are the two main control measures available. Thus one can
formulate a model for an epidemic once such control measures are in place,
as in the work of Brauer (2005), who assumes that the epidemic has just
started and so the number of infectious individuals is still small and almost
all members of the population are still susceptible. In this approach, a class
of quarantined individuals (Q) and another class of isolated (/) members are
introduced. A general model with six compartments called the Susceptible-
Exposed-Quarantined-Infected-Isolated-Recovered (SEQIJR) model is for-
mulated in order to capture the course of the epidemic with no vaccine but
with some control measures in place. The control reproductive number R_. is
then defined as the number of secondary infections caused by a single infec-
tive in a population consisting essentially only of susceptible individuals with
control measures in place. In order to derive the expression for R the fol-
lowing assumptions are necessary:
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1. Exposed members may be infective with infectivity reduced by a factor 6,,
where 0 < 6, < 1.

2. Exposed members who are not quarantined become infectious at rate G,.

3. Exposed members are quarantined at rate o, per unit time. Although quar-
antine is not perfect, it should be assumed that it reduces the contact rate
by, say BQ.

4. Infective individuals are diagnosed at rate o, per unit time and isolated.
Quarantined members are monitored and isolated immediately on showing
disease symptoms at rate ,.

5. There is a possibility of transmission of disease by isolated members, with
an infectivity factor of 6,.

6. Infectious individuals who are not isolated leave the infective class at rate
v, with a fraction f; recovering, while isolated members leave the isolated
class at rate y, with a fraction f, recovering.

Without going into further details, an expression for R_.is readily constructed

(see full paper by Brauer, 2005):

R,= 6, N " Npo, " 6o NP, " 6, NBo, a, n 6, NBa,
Ay AA, A0, Y2A1A, Y24

(13.10)

where A, = o, + 0, and A, = «, + 7, giving the overall rate of leaving the
exposed and infectious classes respectively. The epidemiological interpreta-
tion of each termin R_.is as follows. The mean duration in the Exposed class
is /A, with contact rate modified to 6,f3, giving a contribution of 8, Nf/A,.
A fraction 6,/A, goes from the Exposed class to the Infectious class, with con-
tact rate # and mean duration of //A,, giving a contribution of Nfoc,/A A,
Next, a fraction /A, goes from the Exposed class to the Quarantined class,
with contact rate 6,8 and mean duration //0,, giving a contribution to R, of
GQN[}(ZI/A ,0,. A fraction 6,0,/A; A, move from the Exposed to the Infectious
class then to the Isolated class (J), with contact rate 6,4 and a mean duration
of 1/y,, giving a contribution of 8 Nfo,a,/y,A,A,. Lastly a fraction /A,
move from E to Q to J with contact rate 6,8 and a mean duration of 1/y, giv-
ing a contribution of 6 ,NBo,/A,y, Adding all these contributions together
leads to the expression of R_.

Modeling Epidemics on Social Networks

Localized spread of infectious diseases has been successfully captured through
various spatial models such as those developed by Mollison (1977), Durrett
and Levin (1994), and Grenfell and associates (2001), among others. Such
approaches recognize that the predominantly local nature of disease transmis-
sion leads to high degree of spatial heterogeneity and hence the population is
not well mixed. As an alternative, the use of social network analysis has increas-
ingly become an important tool to further our understanding of the spread of
epidemics, particularly when proximity in space is no longer the determining
risk factor for transmission. The approach is most useful in the development of
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more effective targeted control and treatment strategies. A wide range of com-
municable human diseases can be considered as spreading through a network of
possible transmission routes. The implied network structure of a particular dis-
ease is vital in determining its dynamics, mixing pattern, and spread. The struc-
ture becomes particularly crucial when the average number of connections per
individual is small as is the case for many STIs including HIV/AIDS. The use of
social network models in epidemics is ideally an extension of the traditional
population-level, pathogen-focused analysis of epidemics to one that is focused
more closely on the host. Attention is no longer only on an individual’s risk
behavior, but focused on that individual’s risk environment—which can accord-
ingly increase or decrease an individual’s risk behavior depending on the infec-
tious status and behaviors of the people with whom s/he typically interacts.
Thus, routinely collected contact tracing data is a critical source of information
in the construction of disease networks for specific areas of occurrence; however
in many parts of the world such data are either partially available or non-
existent. This problem is further magnified in developing countries whose health
budgets are highly constrained. Nonetheless it is recommended that centralized
computer-based data systems be kept at all cost to cumulatively capture the
contact tracing information gathered by public-health workers and physicians.

Social network models have already been applied to study infectious dis-
eases in the study of STI transmission patterns (e.g., Wylie & Jolly, 2001).
A mathematical model to address the question of heterogeneity in the rates
of partner change and sexual mixing patterns was developed to investigate
ethnic inequalities in the incidence of STIs in south-east London (Turner,
Garnett, Ghani, Sterne, & Low, 2004). A more general analysis of (sexual)
network models is found in a paper by Eames and Keeling (2002), who devel-
oped an intuitive mathematical framework to deal with the heterogeneities
implicit within contact networks and those that arise because of the infection
process. The researchers demonstrated how such models can be used to esti-
mate parameters of epidemiological importance, and how they can be
extended to examine the effectiveness of various control strategies, particularly
screening and contact tracing.

In general, a network model for an infectious disease focuses on one of the
fundamental issues of epidemiology—such as, who can acquire infection
from whom (Lurie et al., 2003b). Such networks represent an individual
within a population as a node, with connecting edges denoting relationships
that could lead to the transmission of the disease. For many of the common
airborne diseases it may be difficult to define which contacts form an edge,
but for STIs, edges are more precisely defined as and correspond to sexual
partnerships, thus networks are disease dependent. The initial spread and
long-term behavior of any infectious disease are determined by both its
epidemiological characteristics and the graph theoretical properties of the
network. Some of these properties include an average number of neighbors,
degree of clustering and the path length between nodes (Ghani & Garnett,
1998; Kretzschmar & Morris, 1996; Morris & Kretzscmar, 1995). One of the
key features of an infection occurring within the constraints of a network is
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the rapid build-up of correlations in the infectious status of connected indi-
viduals. This aggregation will have the net effect of reducing the average
number of susceptible partners per infected individual and consequently
slow the spread of an epidemic. Note that standard epidemiological models
such as the SIR model ignore this important correlation structure. In prac-
tice, however, the chains of transmission detected are seldom more than a
few individuals long. This necessitates the need for modeling approaches
that are capable of utilizing the available detailed information about the net-
work, but does not require the complete network to be reconstructed. This
goal was achieved by modeling partnerships as dynamic variables, develop-
ing a set of differential equations for the various types of connected pairs
within the network in the study of STIs (Eames & Keeling, 2002). The
beauty of this approach is that the models can easily be parameterized
through the use of readily attainable contact tracing data, yet retain a high
degree of generality.

Standard models for the dynamics of diseases or the mean-field models
(Anderson & May, 1991) classify individuals according to their infection his-
tory by keeping track of the densities of susceptible, infected, and immune
hosts. In general, these models consider the proportion of individuals in each
class and ignore the underlying network or spatial structure. For STIs and
childhood respiratory diseases (e.g., the respiratory synctial virus [RSV])
there is generally little or no immunity, so individuals return to the suscepti-
ble state upon recovery hence a suitable model for such infections is the SIS.
The simplest correlation dynamics equations keep track of states of neigh-
boring pairs of hosts on the lattice (Van Baalen, 2005). The general pair-wise
network model for the Susceptible-Infective-Susceptible (SIS) model dynam-
ics, following Keeling (1997), is outlined as follows. First label individuals as
S or I and superscripts to denote their number of partners. Thus [/"] denotes
the number of infected individuals with n partners and [S"/"] the number of
partnerships between a susceptible with n partners and an infected with m
partners. It is through such partnerships between susceptible and infected
individuals that infection can be transmitted. Considering the dynamics of
infectious individuals, two basic events can occur: either the infectious indi-
vidual recovers, assumed to occur at rate v or a susceptible individual gets
infected by an infectious individual assumed to occur at rate . This leads to
the following equation for the number of infected individuals with n partners:

%z—v[l”]nLyz[S”lm] (13.11)
The second term on the right hand side gives the total number of infected
partners of all ", each of whom transmits infection at rate y. By making the
standard assumption of ignoring partnerships but using contact data to esti-
mate mixing between classes, this number can be estimated by:

s 1810 1]

=~ X o Xl (13.12)
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where [r] denotes the number of individuals with n partners (with a similar
meaning for [m]) and [nm)] the number of partnerships with n and m partners.
Although this mean-field approximation includes risk-structured hetero-
geneities, it ignores the correlations in infection status that emerges between
connected individuals. To model the dynamics of pairs, such as the [S"/"]
pair, equations of the form given below can be constructed.

dSnI"I n m n m n m
%:’yZ([S S"IP =[P S"I") =y [S"1"]
P

—VIS" I+ VT (13.13)

The terms in the above equation refer to the creation of the [S"/"] pair caused
by infection of an S within an [S"S™] pair, loss of the pair caused by infection
of the S” from outside or within the partnership, loss of the pair because of the
recovery of the infected individual, and the last term which is specific to an SIS
process represents the creation of the pair due to an [["] recovery (which will be
absent from the SIR model). In a similar manner, one can construct equations
for all types of pairs by considering all possible events that can lead to that pair.
This process could in theory be extended to model triplets, such as [S"S"/], in
terms of quadruples and so on, but the system rapidly becomes more compli-
cated and in addition, the amount of data available to characterize the triplets
is limited. This problem can be alleviated by making use of the moment closure
approximation (Dushoff, 1999; Van Baalen, 2005), which allows the estimation
of the number of triplets in terms of pairs, which closes the system, enabling
one to calculate the behavior of individuals and pairs.

The impact of network models can be explained when important epidemio-
logical quantities are considered, such as the basic reproduction ratio, R,
already defined as the average number of secondary cases produced by an aver-
age infectious individual in a wholly susceptible population. It is calculated as
a measure of initial growth of an infinitesimal infection in an otherwise sus-
ceptible population. For a structured population, however, the growth rate may
depend on which class of individuals is infected. It might therefore be necessary
to allow the level of infection to equilibrate between classes (so that high-risk
individuals are more likely to be infected) before calculating R,. For network
models, R, should be calculated only once early spatial correlations (which
develop within a couple of generations) have formed (for a detailed analysis,
refer to Eames and Keeling, 2002 and Keeling, 1999). For an SIR version of
the pair-wise network model, the basic reproduction ratio is given by

R,=YA=D (13.14)
14
where A is the dominant eigenvalue of the matrix M given by:
. = = 1) (13.15)

mn = mX [m]
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The matrix M is therefore a useful means of quantifying the connectedness
of contact networks. Thus the strong correlations between the infection sta-
tuses of neighboring individuals play two roles. First, the negative correlation
between susceptible and infectious individuals acts to dampen the epidemic
spread and therefore reduces R, Second, in standard mean-field models,
which ignore partnerships and correlations, R is the same for both the SIS
and SIR models. However in a pair-wise SIR structure, infectious individuals
have a high proportion of recovered individuals as their neighbors, which will
limit further spread of the disease. This limitation does not exist in the SIS
formulation, and hence epidemic growth is more rapid. Thus equation (13.14)
above offers only a lower bound for the SIS disease process. The importance
of taking partnerships into account was demonstrated by using simulation
studies where the mean-field model consistently overestimated initial spread
of an infection over a range of values of the dimensionless infection para-
meter here given by y/v (Eames & Keeling, 2003). The key aim of modeling
epidemics and analysis is to help in the design of control and treatment
strategies. Clearly a control strategy focused on high-risk individuals (those
with high numbers of contacts), taking advantage of the heterogeneities pres-
ent in the network of partnerships, is likely to be more successful than that
applied homogeneously across the population. More importantly at the verge
of eradicating the disease, the high-risk classes can act as both reservoir and
possible invasion routes for new infections. Hence when an intervention is
about to achieve success it becomes increasingly important to target those
individuals most central to disease spread.

Migrant Worker Effect: A Real Application

Introduction

HIV was identified as the cause of AIDS two years after its identification as
a disease. Today, HIV affects all countries of the globe, making it and its dis-
ease consequences the most significant emerging infection of the late 20th
century (Nicoll & Gill, 1999). To date, epidemiological factors determining
the geographical spread of STIs/HIV are still not completely understood.
The geographical spread of STIs/HIV is determined by an interaction of
factors related to demography, socioeconomics, and sexual behavior. HIV, like
other infections that spread from person to person, follows the movement of
people (Decosas & Adrien, 1997; Decosas, Kane, Anarfi, Sodji, & Wagner,
1995; Mabey & Mayaud, 1997; Quinn, 1994). The predominant socioeco-
nomic factor (particularly in developing regions) is the rural-urban labor
migration of young sexually active men leaving their sexual partners behind
(Decosas, et al., 1995; Pison, Le Guenno, Lagarde, Enel, & Seck, 1993).
Mobile people are at higher risk of STIs/HIV than those in stable living
arrangements (Lagarde, Pison, & Enel, 1996; Pison, et al., 1993), primarily



256 Henry G. Mwambi and Khangelani Zuma

because the conditions of migration bring, for instance men into heterosexual
contact with commercial sex workers and other women at high risk of
STIs/HIV (Jochelson, Mothibeli, & Leger, 1991). The consequent sexual net-
working between urban and rural areas determines the diffusion rate of
STIs/HIV into local societies (Fleming & Wasserheit, 1999). Furthermore, the
women left behind sometimes have to exchange sex for favors as a survival
strategy (Evian, 1993). The stark reality of the impact of STIs/HIV on society
requires deeper understanding of factors determining the spread of STIs/HIV
and further understanding of the relationship between STIs and HIV.

Migration and HIV Diffusion Risks

In a study of the effects of migration in the transmission dynamics of HIV,
migrant men from two adjacent health districts in South Africa’s northern
province of Kwa-Zulu/Natal were recruited at two primary migration desti-
nations, Richards Bay (an industrial area) and Carletonville (a mining town).
Migrant men were eligible to participate in the study if they were from
Hlabisa or Nongoma districts, if they had at least one regular partner living
in at least one of the two districts, and if they had been a migrant for at least
the last six months (study methodology and results have been reported else-
where, see Lurie et al., 2003a, Lurie et al., 2003b; Zuma et al., 2005; Zuma &
Lurie, 2005). Migrant men gave information to locate their rural partners
who were then invited to participate in the study. Non-migrant men and their
partners living within a one kilometre radius from a migrant couple’s home
were asked to participate in the study. A detailed questionnaire was adminis-
tered and urine and blood were collected for STI/HIV testing respectively.

A total of 168 couples were recruited into the study, of whom 98 (58.3%)
were couples in which the male partner was a migrant, and 70 (41.7%) in which
the male partner was not a migrant. The overall prevalence of HIV was 19.9%
with 24.4% of men and 15.5% of women infected and among 69.6% of the cou-
ples, none of the partners was infected with HIV. Migrant couples were as
likely as non-migrant couples to have neither partner infected with HIV (65.3%
versus 75.7%) that is, to be HIV-concordant'. In 9.5% of the couples, both
partners were infected with HIV, but this did not differ significantly by the
migration status of the male partner (Lurie et al., 2003b). In 20.8% of the cou-
ples, one of the partners was infected with HIV. Migrant couples were 2.5 times
more likely than non-migrant couples to be HIV-discordant? (26.5% versus
12.8%). Of the 35 discordant couples, the man was HIV-positive in 25 (71%) of
the cases and the woman in the remaining 10 (29%) cases. The proportion of
men who were infected in the migrant discordant couples was essentially the
same as in non-migrant HIV discordant couples (Lurie et al., 2003b).

' Both sexual partners have the same HIV status
2Only one sexual partner is infected with HIV in a couple
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The Mathematical Model

In order to estimate the relative risk (RR) of infection for migrant and non-
migrant men and women from their spouses and from partners outside the
relationship, a set of parameters need to be defined (for greater detail of the
model and results, see Lurie et al., 2003b). For a man and a woman in a sex-
ual partnership, the man may be infected from outside the relationship with
probability ¢, the woman may be infected from outside the relationship with
probability S. The man may also be infected by his wife with probability y (if
she is already infected) and the woman may be infected by her husband with
probability o (if he is already infected). If the probabilities of infection are
known, then the probabilities of each of the four concordance possibilities
can be calculated. Combining probabilities gives:

P,=1-a)1-p)

Ppn= a(l _IB)(l _5)
P,=B0—-a)1-7)
P,=af+ay+ By —aB(y+96)

where the first subscript indicates the HIV status of the man (positive or neg-
ative) and the second indicates that of the woman. The parameters are varied
in order to maximize the likelihood of the fit of the estimated probabilities to
the observed probabilities assuming binomial errors. Since there are four
parameters and only three independent observations, an appropriate value
for the ratio of the likelihood that an infected man infects his wife to the like-
lihood that an infected woman infects her husband, is assumed to be &/7.

Fitting this mathematical model to the above described data shows that both
men and women are more likely to be infected by partners outside the relation-
ship than to be infected by their spouses, irrespective of the migration status of
the man. Migrant men are 26 times more likely to be infected by partners out-
side the relationship than from inside the relationship, whereas, women whose
partners are migrants are 2.1 times more likely to be infected from outside the
relationship than from inside. The same is true for non-migrant couples but with
smaller RR of 10.5 for non-migrant men and 0.8 for their partners.

The impact of migration on the transmission dynamics of HIV can be
better understood by comparing the RRs of infection for migrants as
against non-migrants from outside versus inside their primary relationship
for both men and women. Both men and women are likely to be infected
from outside the primary relationship 1.44 and 1.53 respectively; however,
they are less likely to be infected by their spouse if they are part of the
migrant couple (Lurie et al., 2003b). The model assumes that within a
spousal relationship, male-to-female HIV transmission is twice as likely as
female-to-male transmission. Changing the relative transmissibility from
men to women in either direction changes the RR estimates by less than
1.5% in all cases.
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Discussion

It has long been assumed that the primary direction of spread of HIV has
been from returning migrant men, who become infected while away at work,
to their rural partners upon their return home. If this were the case, the male
would be the HIV infected partner in most of the discordant couples; how-
ever, in nearly one-third of the discordant couples the female was the infected
partner. Although this confirms the importance of migration as a risk factor
for infection in both men and women, it changes the understanding of the
way in which migration enhances risk.

The analysis in this chapter has focused on the man as a migrant and a
woman as a non-migrant. In recent years, female circular migration has
increased in South Africa as well as other places. The impact that migration
has on the health of female migrants has not been investigated as extensively
as it has been for men and most studies have concentrated on the migration of
men and the risk that this entails for them and their non-migrant female part-
ners (Decosas et al., 1995; Jochelson et al., 1991; Pison et al., 1993). Fewer
have explored explore HIV infection risk factors among migrant women
(Brewer et al., 1998; Zuma, Gouws, Williams, & Lurie, 2003) but have demon-
strated that migrant women are also at high risk of HIV infection during their
migration periods. There is a need to take drastic steps to address the social
and economic pressures that migrant men, migrant women, and partners of
migrant men face in the process of migration—such as the encouragement of
industrial decentralization and regional developments to reduce the need for
migration as well as to improve the conditions of migration.

Mapping Disease Risk
GIS, Mapping, and Clustering

Disease mapping and geographical information systems (GIS)? are becoming
necessary as new technologies to improve decision-making processes in disease
surveillance and control activities. These tools provide health professionals
the ability to quickly analyze spatial relationships and disease risk factors in
order to facilitate policy planning and implementation. The technique is used
to visualize spatial patterns in the geographical distribution of disease,
usually for explorative and descriptive purposes, to gain important clues
about the etiology of a disease, and to provide information for further
studies. As a result, disease mapping has become a valuable approach to
hypothesis generation in explorative epidemiology.

Because of its growing usefulness, the development of methods for dis-
ease mapping has received great attention. The mapping and GIS program

3GIS is a surveillance system that uses remote sensing to predict disease spread.
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of the World Health Organization (WHO) has spearheaded a global part-
nership in the promotion and implementation of GIS to support decision-
making for a wide range of infectious diseases and as early as 1997, the
WHO held a workshop in Rome on “Disease Mapping and Risk
Assessment for Public Health Decision-Making.” The workshop concluded
with the general belief that geographical analysis of the distribution of risk
factors can be useful in prioritizing preventive measures. Disease mapping
was identified as useful for health service provision and targeting interven-
tions if avoidable risk factors are known. It was however agreed that, no
methodology of choice can be recommended in general and that analytical
methods should be selected on the basis of the structure of the data to be
analyzed and of the hypotheses to be investigated. In most circumstances,
it might be helpful to envisage a first level of descriptive analysis, to be
followed by more specific and problem-dependent analyses involving
parameter estimation and hypothesis testing (Lawson, Biggeri, Boehning,
Lesaffre, Viel, & Bertollini, 1997).

Numerous disease-mapping methods exist from the simple to the compli-
cated (Lawson et al., 1997). While many of the earlier methods adopted a
frequentist approach, Bayesian approaches based on Markov Chain Monte-
Carlo (MCMC) methods have been gaining importance. In one of the earli-
est applications of the latter method, an empirical Bayes approach was used
to shrink the Standardized Mortality Ratio (SMR) towards a local or global
mean (Besag, York, & Molli¢, 1991; Clayton & Bernardinelli, 1992). In the
paper by Besag and associates (1991) the method was generalized to allow
for different spatial heterogeneity. In their model Clayton and Bernadinelli
(1992) discuss a Markov Random Field (MRF) approach as representing
spatially structured heterogeneity. A nonparametric Bayesian approach was
later proposed for the detection of clusters of elevated (or lowered) risk for the
identification of unknown risk factors regarding the disease (Knorr-Held &
Raer, 2000).

Mapping Mobile Populations

The first two case studies illustrate the use of GIS techniques in disease map-
ping and control. The third case study is on modeling disease risk in space
and time, where data are both longitudinal in time and spatial in nature.

(1) Using Remote Sensing and GIS to Identify Villages in Uganda
at High Risk for Sleeping Sickness

GIS and remote sensing were used to identify villages at high risk for sleep-
ing sickness (also known as human Africa trypanosomiasis, caused by
Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense), as
defined by reported incidence (Odiit, Bessel, Fevre, Robinson, Kinoti,
Coleman, Welburn, McDermott, & Woolhouse, 2006). Sleeping sickness is a



260 Henry G. Mwambi and Khangelani Zuma

vector disease spread by the riverine tsetse fly species Glossina fuscipes
fuscipes; therefore, tsetse fly densities and infection rates are major entomo-
logical determinants of sleeping sickness which is regarded as a re-emerging
disease (WHO, 1986).

Landsat Enhanced Thematic Mapper (ETM) satellite* data were classified
to obtain a map of land cover, and Normalized Difference Vegetation Index
(NDVI) and Landsat band-5° were derived as unclassified measures of vege-
tation density and soil moisture, respectively. GIS functions were used to
determine the areas of land cover types and mean NDVI and band-5 values
within 1.5 km radii of 389 villages where sleeping sickness incidence had been
estimated. Analysis was carried out using backward logistic regression, and
proximity to swampland and low population density were found to be pre-
dictive factors of reported sleeping sickness presence, with distance to a
sleeping sickness hospital as an important confounding variable. The study
area comprised the Tororo district in eastern Uganda (Odiit et al., 2006).
A sample of 389 villages out of a total of 884 census villages was selected
with each village covering an area of approximately 0.5 to 5km?, in an area
that has two distinct wet (September-November and March-May) and dry
(June-August and December-February) seasons. Increasing land pressure has
forced people to encroach on marginal habitats to expand the area under cul-
tivation. In eastern and southern Africa, where sleeping sickness occurs,
reservoir hosts are a major contributing factor to its persistence. The human
population in the area is split between rural mixed farmers, growing subsis-
tence crops and rearing small holdings of cattle, and those living in the
region’s urban centers. The movement of infected cattle from endemic areas
has been implicated in the re-emergence of sleeping sickness in areas where it
was not known to be endemic (Fevre et al., 2001) but where tsetse flies are
prevalent. Such movements of cattle bring the sleeping sickness agent into
contact with the causal vector, which in turn transmits it to humans.

In this study logistic regression was used to first asses the statistical signif-
icance of satellite-derived variables, distance to a sleeping sickness hospital
and population densities. For logistic regression, a binary response was
defined as taking a value of 1 if sleeping sickness was present in a village
and 0 otherwise, then using the presence and absence of disease as a predic-
tor variable, backward logistics regression analysis of variables with associa-
tions of significance was carried out. After this, backward-stepwise logistic
regression was performed to find the most parsimonious model of sleeping
sickness risk (Greenland & Maldonado, 1994). This is a typical example
in which human and animal mobility critically affects the spread of an
infectious disease.

4 A series of satellites by the USGS and NASA.
SBand designated to discriminate moisture content of the soil and vegetation and also
able to penetrate thin clouds.
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(2) Bayesian and GIS Mapping of Childhood Mortality in Burkina Faso

Investigators used GIS ArcView and an empirical Bayes smooting technique
to map the annual childhood mortality rates for each of 39 villages in the
Nouna Demographic Surveillance Area (DSA) in Burkina Faso, West Africa
(Sankoh, Berke, Simboro, & Becher, 2002). The study was restricted to chil-
dren under the age of five years and was carried out between 1993 and 1998.
The annual population of children younger than five years per village ranged
from 15 to 454, showing a wide range of village size. In summary, annual
mortality rates for each village in the study area was calculated using mid-year
populations of children under five as the denominator. Two mapping tech-
niques were implemented: first, the GIS software ArcView was used to map
the crude mortality rates, and then the data were smoothed by the method
of empirical Bayes (shrinkage) estimation®. The geostatistical method of
Krigging was then administered to spatially interpolate the data for succes-
sive years. As an output of the above analysis, a semivariogram (the spatial
dependence structure) of the mortality rates was estimated. The method
of Krigging was used to produce isopleth maps showing the risk of children
living in a certain place in the study region to die in a given year (Sankoh,
et al., 2002). The maps showed no clear spatial trend pattern but the authors
found that there was a tendency of villages in the northeastern region to pro-
duce higher incidence or risk values, which confirmed clustering of disease
reported earlier by Sankoh and associates (2001). It is important to note that
disease mapping was used primarily as an explorative tool to provide a gen-
eral insight as opposed to precise estimates of incidence or spatial trends
(Kafadar, 1999).

In general, the Bayesian smoothing technique is used to address the issue
of heterogeneity in the population at risk and it is therefore a useful tool to
use in explorative mapping of disease and mortality. In this study the method
was helpful for visual identification of clustering in the northeastern side of
the study region.

(3) Modeling Risk from a Disease in Time and Space

Both models for longitudinal and spatial data were combined in a hierarchi-
cal Bayesian framework, with particular emphasis on the role of time- and
space-varying covariate effects (Knorr-Held & Besag, 1997). Data analysis
was implemented via Markov chain Monte Carlo methods and the method-
ology was applied to the Ohio lung cancer data covering the period of 1968
to 1988. The state of Ohio is located in northeastern United States and is
divided into 88 counties. The database consisted of the population size and
the number of deaths from lung cancer, stratified by age, gender, and race
(white or non-white), for each year between 1968 and 1988 and for each

¢Other smoothing techniques include the loess, kernel smoothing, or head-banging to
name a few (Elliot et al., 2000).
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county. Two approaches that adjust for unmeasured spatial covariates, par-
ticularly tobacco consumption, were used; the first included the use of ran-
dom effects model to account for unobserved heterogeneity and the second
involved the addition of a simple urbanization measure as a surrogate for
smoking behavior. The Ohio data set has been of particular interest because
of the suggestion that a nuclear plant located in the southwest of the state
may have caused increased levels of lung cancer. The authors, however, con-
cluded that Bayesian smoothing may not be the most appropriate tool for a
focused analysis of this nature, and that the Ohio dataset does not provide
enough information for any proper conclusion to be drawn. Thus the
authors’ main interest in the data was to illustrate the use of Bayesian mapping
in time and space.

It is important to note that disease occurrence data in time and space is in
the form of counts that nominally follow binomial or Poisson distributions.
The key property with data of this type is that the outcomes are naturally cor-
related in time and space. The challenge is then to incorporate this correlation
structure in any model one adopts to model the process. The generalized linear
model (GLM) therefore is the starting point in an attempt to model such data
statistically because the GLM neatly synthesizes likelihood-based approaches
to regression analysis for a variety of outcome measures (McCullagh & Nelder,
1989). Extensions of the GLM involve models with random terms in the linear
predictor giving rise to generalized linear mixed models (GLMMs). These
models are useful for modeling the dependence among outcome variables
inherent in longitudinal or repeated measures designs and for producing
shrinkage estimates in multi-parameter problems, such as the construction of
maps of small area disease rates (Clayton & Kaldor, 1987). For more details
about these models including inference methods in GLMMs the reader is
referred to the work of Breslow (1993).

Conclusions and Future Research

This chapter has presented the SIR model as the basic mean-field epidemic
model (Anderson & May, 1991; Daley & Gani, 1999) upon which further
extensions and modifications can be implemented to capture more complex
disease processes, in order to introduce basic concepts associated with disease
modeling in order to enhance understanding and analysis of such processes.
The extension of the above basic model has been particularly directed towards
the understanding of the recent SARS epidemic and other general properties
which have been described more elegantly by Brauer (2005). Further, the
chapter has emphasized the need to develop statistical methods to enable the
estimation of key parameters of a disease process and to enable the evaluation
of the significance of some key factors driving epidemics such as HIV. As an
example of the effect of population mobility on disease transmission, migrant
worker effects and the spread of HIV/AIDS in Africa have been discussed.
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The chapter has highlighted the concept of social networks as a means of
enhancing present understanding of the local dynamics of infectious diseases,
particularly when proximity of individuals in space is no longer the determi-
nant factor of whether or not and individual infects or gets infected. Spatial
explicit models have been used (e.g., Durett & Levin, 1994) when spatial het-
erogeneity plays a significant role in the spread of a disease. The discussion has
been focused on sexual network models because partnerships are more easily
defined with these infections. The spread of STIs, especially HIV/AIDS
depends very much on patterns of sexual contact prevalent in a given popula-
tion. In some societies serial monogamy may be the norm such that having
more than one partner at the same time is an exception, while in other societies
polygamy is the norm or at least widely accepted. Understanding of such dif-
ferences is therefore important to understanding the spread of such infections
and to help in designing control and intervention strategies. This chapter has
also presented GIS and disease mapping techniques, which are becoming
increasingly more applicable by improving decision-making process in disease
surveillance control activities. The technique is useful as a tool to visualize spa-
tial patterns in the geographic distribution of disease, for explorative and
descriptive purposes as well as to provide information for further studies. Many
earlier methods for disease mapping methods adopted the frequentist
approaches, but currently Bayesian inference methods (parametric and non-
parametric) are gaining popularity because of the advent of powerful compu-
tational methods such as the MCMC methods of parameter estimation and
inference generation. The combination of standard statistical and Bayesian
modeling approaches in order to understand the spread of the highly patho-
genic diseases such as HIV/AIDS, Malaria, TB, and childhood diseases in
Africa are among the future research interests of the authors of this chapter.
Finally, it is our goal to enhance capacity in the continent in the field of disease
modeling and mapping to inform policy on the most optimal control strategies
that have high efficiency and of minimal cost relative to some existing methods.
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