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More than 10% of the world’s population already suffers from varying degrees

of diabetes mellitus (DM), but there is still no cure for the disease.

Cardiovascular disease (CVD) is one of the most common and dangerous of

the many health complications that can be brought on by DM, and has become

the leading cause of death in people with diabetes. While research on DM and

associated CVD is advancing, the specific mechanisms of their development

are still unclear. Given the threat of DM and CVD to humans, the search for new

predictive markers and therapeutic ideas is imminent. Non-coding RNAs

(ncRNAs) have been a popular subject of research in recent years. Although

they do not encode proteins, they play an important role in living organisms,

and they can cause disease when their expression is abnormal. Numerous

studies have observed aberrant ncRNAs in patients with DM complications,

suggesting that they may play an important role in the development of DM and

CVD and could potentially act as biomarkers for diagnosis. There is additional

evidence that treatment with existing drugs for DM, such as metformin, alters

ncRNA expression levels, suggesting that regulation of ncRNA expression may

be a key mechanism in future DM treatment. In this review, we assess the role

of ncRNAs in the development of DM and CVD, as well as the evidence for

ncRNAs as potential therapeutic targets, and make use of bioinformatics to

analyze differential ncRNAs with potential functions in DM.
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Introduction

DM is a metabolic disease characterized by high blood sugar

and is mainly classified as type 1 diabetes mellitus (T1DM), type

2 diabetes mellitus (T2DM), gestational diabetes mellitus

(GDM), and other less common types (1). T1DM is mainly

caused by the destruction of beta cells due to autoimmune

abnormalities (2). The main features of T2DM are insulin

resistance (IR) and islet b-cell dysfunction (3). Despite

advances in medical care, there is still no complete cure for

DM. Numerous risk factors for DM have been identified, but the

specific mechanisms underlying the development of DM are not

yet fully understood (4, 5). Existing studies suggest that

numerous signaling pathways involved in the development of

DM. Inhibition of antioxidant stress pathways such as Keap1/

Nrf2 promotes the progression of DM (6). Endoplasmic

reticulum stress pathways, including PERK-ATF4-CHOP, lead

to b-cell destruction in DM (7). The abnormal phosphorylation

of insulin receptor (INSR) brings about IR (3). In addition,

patients with DM are often afflicted with other concomitant

diseases, including microvascular diseases such as kidney disease

and eye disease, and macrovascular diseases such as CVD and

cerebrovascular disease. Of these diseases, CVD has become the

leading cause of death in patients with diabetes (8, 9). Various

types of DM are considered to be the main cause of CVD, which

includes coronary heart disease, peripheral artery disease, and

heart failure (10). In recent years, the focus of research on the

mechanisms of diabetes and CVD development has shifted to

the molecular level, including the study of disturbed epigenetic

modifications and abnormal ncRNA expression (11, 12).

Over 98% of human genome expression products are

ncRNAs, which mainly include microRNAs (miRNAs) with a

length of 19 to 25 bases, long non-coding RNAs (lncRNAs) with

a length of more than 200 bases, and ring-loaded RNAs

(circRNAs) characterized by a closed-loop structure (13).

Although these ncRNAs do not express proteins, they still play

an important role in organism. miRNAs can bind to messenger

RNAs (mRNAs) whose 3’-untranslated region (3’UTR)

complements them, thereby regulating the expression of target

genes. In this way, miRNAs are indirectly involved in the

regulatory functions of numerous physiological activities.

LncRNAs possess non-random short open reading frames

(sORFs), and are involved in key processes such as chromatin

modification, chromosome recycling, and DNA transcription.

Some studies have shown that circRNAs regulated the

expression of downstream target genes by binding to miRNAs.

However, a recent study has shown that circRNAs can bind to

their host genes and directly regulate the expression of the host

genes (14). In recent years, it has been found that ncRNAs play

an important role in maintaining the normal activities of the

body and that abnormal expression of ncRNAs is closely related

to the development of many diseases, including DM (15–17). An
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increasing number of studies have focused on ncRNAs in DM

and its complications, suggesting that ncRNAs can interact with

insulin (18). Evidence also suggests that ncRNAs may serve as

modulators and diagnostic markers of diabetic cardiovascular

disease (19–22).

In this review, we summarized some of the evidence

regarding the role of ncRNAs in the development of DM and

diabetic CVD and their use as therapeutic targets. Related

sequencing results revealed differential ncRNAs present in the

development of DM and CVD (https://www.ncbi.nlm.nih.gov/

geo/). The common DM treatment drug metformin changed the

expression level of some ncRNAs after treatment. We also used

the data from the Gene Expression Omnibus (GEO) to perform

a clustering analysis of target genes of differentially expressed

miRNAs in various types of DM. This evidence suggests that

ncRNAs play an important role in DM and CVD, and may be

the key to treat these diseases in the future.
Diabetes mellitus

Type 1 diabetes mellitus

T1DM, also known as “insulin-dependent diabetes mellitus”,

is caused by autoimmune destruction of insulin-producing b-
cells in the patient’s pancreas and manifests as an absolute

deficiency of insulin (23). Mutations in genes such as HLA,

INS, CTLA4, and PTPN22 have been identified in this

genetically sensitive group of immune system abnormalities,

which combined with environmental factors, eventually lead to

the development of T1MD (24, 25). During the early

development of T1DM, islet autoantigens such as insulin,

tyrosine phosphatase IA2, glutamic acid decarboxylase (GAD),

and zinc transporter protein 8 (ZNT8) become targets of the

immune system (26). Multiple mechanisms exist for the

development of T1DM, and ncRNAs play an important role in

these mechanisms. Numerous studies have shown that ncRNAs

play an important role in immune abnormalities in T1DM, such

as elevated miR-34a and decreased miR-146a associated with

GAD antibodies (27, 28). miR-143-3p, which is up-regulated in

peripheral blood mononuclear cells of T1DM patients, can

engage with the inflammatory response by further down-

regulating IL-2, TNF-a, and IFN-g expression through FOSL2

(29). Apoptosis of b-cells is the main manifestation of their

disruption. miRNA-203a was found to be elevated in b-cells in a

mouse non-obese diabetes (NOD) model (A T1DM animal

model), and was verified to regulate b-cell proliferation and

apoptosis through IRS2 (30). Abnormal b-cell insulin secretion

is also one of the main manifestations of impaired b-cell
function in T1DM patients. In a mouse NOD model, LncRNA

MALAT1 inhibited insulin secretion by decreasing PDX-1

promoter histone acetylation (31). When b-cells are destroyed,
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glucose homeostasis is disturbed in patients, leading to acute

diseases like ketoacidosis or hyperosmolar coma and secondary

complications such as cardiovascular disease and blindness (32).

Over the past few decades, it has been observed that the majority

of patients with T1DM develop the disease at a young age or in

adolescence, causing T1DM to initially be considered as

“juvenile diabetes”. s (33). Owing to the discovery of insulin,

T1DM has changed from an acute fatal disease to a chronic

disease requiring regular exogenous insulin supplementation to

keep patients alive (34). However, insulin supplementation is a

double-edged sword for T1DM patients, as inappropriate insulin

dosage can lead to severe hypoglycemia (35). Several insulin

analogs have been developed to avoid such side effects, with

improved performance in areas such as speed of function, risk to

patient, and convenience (36, 37). Furthermore, a proportion of

T1DM patients are misdiagnosed as T2DM in clinical settings

and there are extensive limitations to the effectiveness of single

insulin therapy (38). Therefore, the search for novel biomarkers

and therapeutic ideas for T1DM is of great importance to the

quality of life for T1DM patients.
Type 2 diabetes mellitus

T2DM, also known as “non-insulin-dependent diabetes”, is a

common chronic disease that corresponds to T1DM and

accounts for more than 90% of the DM patients (https://www.

idf.org/). The main features of T2DM are hyperinsulinemia, IR,

and defective insulin secretion caused by b-cell failure (39).

Consistent with T1DM, T2DM is also caused by a combination

of genetic and environmental factors. Genetic polymorphisms in

several genes have been observed to be associated with T2DM,

and over 200 susceptibility genes have been identified in T2DM,

including KLF14, KCNQ1, DUSP9, and FTO (40). Unlike

T1DM, unhealthy lifestyle habits such as a high-calorie diet

and lack of exercise account for a large proportion of the factors

in the development of T2DM (41). As these poor lifestyle habits

persist, hyperglycemia and hyperlipidemia, which favor IR and

inflammation, emerge and expose b-cells to toxic stresses

such as inflammation, endoplasmic reticulum stress, and

metabolic/oxidative stress, leading to loss of islet integrity in

severe cases (42). There is growing evidence that ncRNAs are

extensively involved in these processes. miR-29 promotes the

recruitment and activation of circulating monocytes and

macrophages in a TRAF3-dependent manner, thereby

promoting inflammation (43). Additionally, miRNA-21

induces endoplasmic reticulum stress through activation of

mTORC1, leading to b-cell apoptosis (44). Lower lncRNA

Eif4g2 has been observed in dysfunctional mouse islets and b-
cells, which contributed to apoptosis in b-cells with diminished

ability to inhibit oxidative stress (45). T2DM is a lipotoxicity-

related disease in which obesity-induced miR-802 impairs

insulin transcription by inhibiting NeuroD1 and reduces
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insulin secretion by inhibiting calcium influx field (46).

Another recent study showed that the adipocyte-derived

exosome miR-27a induces IR in skeletal muscle by inhibiting

PPARg, which is one of the reasons that obese people are more

likely to develop T2MD (47). Although early studies showed that

T2DM occurs in older age groups, an increase in unhealthy

lifestyle habits associated with modernization has led to the

rejuvenation of patients with T2DM. b-cell loss also occurs more

rapidly in young patients (10-17 years), resulting in increased

early treatment failure in younger patients (48). The current

prevention or control of T2DM is usually based on establishing

good lifestyle habits, such as a healthy diet and physical exercise

(49, 50). Because T2DM is a lipotoxicity-related disease that is

associated with an unhealthy lifestyle, it has been widely

reported that both exercise and diet can improve T2DM to

some extent (51). NcRNAs were observed to be involved in the

improvement of T2DM by exercise. For example, miR-143,

which causes IR, was observed to be downregulated after

aerobic exercise (52). Insulin can also be used to treat T2DM,

and it was found that lncRNA LncASIR, a downstream regulator

of the insulin signaling pathway, enhances insulin pathway gene

transcription in adipocytes during treatment with insulin (53).

Therapeutic drugs for T2DM are usually used to balance the

blood glucose range through various mechanisms such as

improvement of insulin synthesis and regulation of glucose

utilization. These drugs mainly include the following

categories: metformin and insulin secretion stimulators, alpha-

glucosidase inhibitors, thiazolidinediones (TZDs), glucagon-like

peptide-1 (GLP-1) analogs, dipeptidyl peptidase 4 (DPP-4)

inhibitors, and sodium-dependent glucose co-transport protein

inhibitors (SGLT2-Is), all of which have potentially toxic side

effects (54, 55). Despite the extensive research on T2DM and the

development of novel drugs, T2DM remains a disease that

cannot be treated and continues to severely affect humans

(56, 57).
Gestational diabetes mellitus

GDM was initially described as a hyperglycemia caused by

poor glucose tolerance first detected during pregnancy (58). It is

most recently defined as DM that is not evident before

pregnancy but is diagnosed in the middle or late stages of

pregnancy (59). GDM is one of the most common diseases

during pregnancy, and the International Diabetes Federation has

shown that one in six newborns worldwide is affected by GDM

(https://www.idf.org/). GDM is very comparable to T2DM, with

risk factors including genetic and environmental factors and

obesity (60). And like T1DM and T2DM, the development of

GDM is also a gradual process (Figure 1). Furthermore, women

with a history of GDM have a much higher risk of developing

subsequent T2DM than women with no history of GDM (61).

More than half of patients with a history of GDM develop
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T2DM within 5-10 years after delivery. GDM can also be

harmful to the patient’s newborn and is associated with higher

infant mortality, large babies, and premature births (62–64). It

has been shown that insulin sensitivity is reduced by more than

half in late pregnancy compared to pre-pregnancy. During

healthy pregnancy, glucose regulation changes to supply the

needs of the developing fetus, and when the pancreatic b-cells
are unable to respond properly to this change, it can lead to

hyperglycemia (65). Such changes are often due to increases in

hormones such as prolactin (PRL) and placental prolactin, the

levels of which typically rise during pregnancy. One study has

shown that these hormones signal through the prolactin receptor

(PRLR) on target cells and that loss of PRLR signaling in

pregnant mice leads to loss of MafB expression in b-cells,
resulting in loss of proliferation and poor glucose tolerance in

b-cells, while non-pregnant mice are not affected (66). GDM also

bears similarities to T1DM and T2DM in how it is treated.

Firstly, after considering the health of the patient and the fetus,

the treatment of GDM prioritizes lifestyle interventions.

Glucose-lowering therapy for GDM, which becomes necessary

if lifestyle interventions fail, mainly consists of insulin therapy

and oral hypoglycemic agents. For patients who do not wish to

receive insulin therapy, metformin and glibenclamide are the

only oral hypoglycemic agents available for treatment. Due to

the long-term effects of GDM on both the pregnant woman and

the fetus, and the fact that the potential side effects of most drugs

are not known, extreme caution is needed when using these

drugs during pregnancy (67).
Other types of diabetes

In addition to the three most common forms of diabetes

mentioned above, there are also other less common forms of
Frontiers in Endocrinology 04
diabetes, such as monogenic diabetes and Cystic fibrosis-related

diabetes (CFRD).

Monogenic diabetes are caused by a single gene mutation

and account for less than 5% of DM patients. Types of

monogenic diabetes mainly include Neonatal Diabetes Mellitus

(NDM), Maturity-Onset Diabetes of the Young (MODY), and

some syndromic forms of diabetes (68). NDM is defined as

diabetes diagnosed within six months of birth and usually

presents clinically alongside hyperglycemia, growth

retardation, and sometimes, dehydration (69). NDM is

categorized into temporary (TNDM) and permanent (PNDM),

with the distribution roughly equal for each type (69). KCNJ11

and ABCC8, as genes that encode ATP-sensitive potassium

channel subunits in pancreatic cells, are the most frequently

observed gene defects in PNDM (59). Mutations in the insulin

gene (INS) are the second most common cause of PNDM (70).

Approximately 70% of TNDMs are caused by abnormalities in

chromosome 6q24, and defects in genes such as KCNJ11,

ABCC8, and INS have also been found in the remaining cases

(71). The current treatment of NDM mainly includes insulin

therapy and sulfonylurea therapy (70). MODY is a group of

hereditary DM that develops at a young age, shares some of the

atypical features of T1DM and T2DM, and lacks b-cell
autoimmunity or IR (72). More than 15 MODY-related genes

have been identified, and defects in these genes can lead to b-cell
dysfunction (73). The most common forms of mutation are

GCK, HNF1A, and HNF4A; these genes are prioritized for

clinical diagnosis (74). The diagnosis of MODY is very

important for treatment, as it determines the treatment

strategy. For example, patients with GCK-MODY who do not

have other types of DM do not require glucose-lowering therapy

except for special circumstances during pregnancy, and do not

have macrovascular complications (73). While the most

common HNF1A-MODY CVD risk is similar to that of
FIGURE 1

Development of T1DM, T2DM, and GDM.
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T2DM, which is usually treated with sulfonylureas, the GLP-1

RA used to treat T2DM has recently been shown to be effective

in treating HNF1A-MODY as well (75, 76).

CFRD is a specific yet very common form of diabetes in

patients with cystic fibrosis (CF) (77). CFRD has few

macrovascular complications and causes little to no fatal CVD

(78). However, CFRD has remained a major complication of CF

in recent years and has significantly increased pulmonary

morbidity and mortality in CF patients. The etiology of CFRD

is complex, and current evidence suggests that chloride channel

defects, oxidative stress, inflammation, and the intestinal

proinsulin axis are all involved in the development of CFRD

(79). Due to these factors, patients with CF have impaired

pancreatic exocrine secretion, followed by fibrosis and fatty

infiltration, ultimately leading to structural destruction of the

islets (80). It appears that CFRD undergoes islet cell-targeted

destruction, however, in contrast to T1DM, this effect is not

autoimmune. In contrast, diet interventions for CFRD patients

are opposite to those of T2DM patients, as the increased energy

consumption requires patients to consume large amounts of

calories to maintain their weight and nutrition (81). Existing

non-insulin hypoglycemic drugs are not suitable for CFRD.

While modulators and enhancers that target cystic fibrosis

transmembrane conductance regulators (CFTR) function are

being developed, insulin is currently the only recommended

drug for the treatment of CFRD (82).
NcRNAs in diabetes

MiRNAs

miRNAs are thought to be key factors in post-transcriptional

regulation and are first transcribed in the nucleus as pri-

miRNAs, which undergo a series of processing before

maturing (83). miRNA then binds to Argonaute proteins to

form the RNA silencing complex (RISC). miRNAs inhibit

translation or induce degradation of target mRNAs by

directing RISC to mRNAs with sequence-complementary

paired miRNA response elements (MREs) (84). This match

between miRNA and target mRNA is usually not strict, which

allows for a broader range of miRNA regulation (85). In recent

years, researchers have realized that miRNAs play an important

role in the development of diseases, including diabetes (86, 87).

Inter-ethnic miRNA variants have been reported to be

associated with regionally distributed diabetes; for example,

miR-196a and miR-423 variants have been observed in T2DM

patients in Saudi Arabia (88). Some miRNAs have been observed

to be elevated during the development of DM, such as miR-25

and miR-92b (89). In general, these miRNAs with elevated

expression promote the development of DM and play a role in

the body’s IR, damage to b-cells, and other processes central to

the development of diabetes. As research progresses, the specific
Frontiers in Endocrinology 05
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uncovered. Increasing evidence suggests that miRNAs promote

pancreatic b-cell injury in diabetes. MiR-195 promotes

pancreatic b-cell dedifferentiation by targeting Mfn2 and

impairing Pi3k/Akt signaling in T2MD (90), miRNA-200c

targets transcription factor ETV5 to reduce insulin secretion

(91), and miR-4431 targets TRIP10/PRKD1 and impairs glucose

metabolism (92). There are also some miRNAs that are lost in

expression during the progression of DM. The deletion of miR-

16 in muscle, for example, leads to impaired insulin sensitivity in

men and increased glucose intolerance in women (93).

With advances in sequencing technology, alterations in

miRNAs have been identified as a key factor in the study of

the mechanism of action of some antidiabetic drugs. As a result,

some studies have focused on reversing the abnormal expression

of miRNAs with the aim of producing a therapeutic effect on

DM. It was shown that increasing the expression of miRNA-494,

miRNA-92a, miR-136-5p, and miR-149-5p improved pancreatic

b-cell proliferation and insulin secretion (94–96). Furthermore,

miR-150-3p and miR-17-5p can protect b-cell function: The
former can inhibit b-cell focal death and the latter can alleviate

b-cell dysfunction by activating PDX1 signaling (97, 98).

miRNA-16-5p was found to be expressed at lower level in

T1DM patients and could inhibit high-glucose-induced

pancreatic b-cell apoptosis by targeting CXCL10 (99). The

downregulation of miR183-3p could treat GDM by reducing

skeletal muscle IR (100). Hyperinsulinemia is a typical symptom

of T2DM, and studies have shown that exosome-derived miR-

26a increases insulin sensitivity by enhancing insulin signaling,

thereby reducing hyperinsulinemia (101). miR-17-5p-Mfn1/2-

NF-ΚB pathway can exert anti-inflammatory and anti-apoptotic

effects in GDM (102). miR-1249-3p has reduced IR and

inflammation in a mouse model of T2DM (103). And

miRNA-26a can promote regulatory T cells to suppress T1DM

(104). Moreover, miR-212/132-enriched extracellular vesicles

can be used to promote the differentiation of induced

pluripotent stem cells into pancreatic b-cells, and cell

replacement therapy for T1DM can be performed using IPSC

(105). In conclusion, there is growing evidence that miRNAs

have potential anti-diabetic potential in addition to being

biomarkers of DM, which may be a major direction for the

future treatment of DM (Table 1).
LncRNAs

lncRNAs play a role in gene activation and silencing, variable

splicing, and post-translational modifications in organisms (106,

107). The competing endogenous RNA (ceRNA) hypothesis

proposed in 2011 has greatly enriched the role of lncRNAs in

post-transcriptional regulation and has led to increased

attention to the physiological role of lncRNAs. The ceRNA

hypothesis suggests that lncRNAs can regulate miRNA and
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target mRNAs by competitively binding to miRNAs (108).

lncRNA H19 was found to be associated with diabetes more

than a decade ago, but its identity in the study was that of an

imprinted gene rather than of a lncRNA (109, 110). The

proposal of ceRNA has led to a deeper understanding of the

role of lncRNA in various physiological and pathological

phenomena, and the role of lncRNA in diabetes has attracted

attention in recent years. As mentioned above, miRNAs play an

important role in DM, suggesting that lncRNAs may also be

involved in the development of DM.

Similar to miRNAs, lncRNAs have been observed to be

aberrantly expressed in DM. For example, lncRNA OIP5-AS1 is

reduced in GDM, while HOTAIR is highly expressed, both can be

used as biomarkers of GDM (111, 112). LncRNARPL13p5 is highly

expressed in GDM patients, forming a co-expression chain with

TSC2 gene through PI3K-Akt signaling pathway to promote IR

(113). A recent study showed that lncRNAs ENST00000503273,

ENST00000462720, and ENST00000480633 are expressed at
Frontiers in Endocrinology 06
abnormal levels in hypertriglyceridemic patients with different

blood glucose levels and are potential biomarkers of T2DM (114).

EPB41L4A-AS1 induced by persistent high glucose inhibits glucose

uptake through crotonylation and acetylation of GCN5-mediated

proteins, thereby exacerbating the progression of T2DM (115).

And, in agreement with the ceRNA hypothesis, lncRNAs have often

been found to function as molecular sponges in the study of DM

mechanisms. By way of example, in T1DM, four lncRNAs

(LINC01278, TRG-AS1, MIAT, and GAS5-AS1) were found to

potentially compete with miR-181 to regulate its target genes (116).

Moreover, lncRNA KCNQ1OT1 can promote hepatitis C virus-

induced b-cell focalization by mediating the miR-223-3p/NLRP3

axis in virally-induced impaired b-cell function (117). LncRNA

PTGS2 can impair pancreatic b-cell function by regulating miR-

146a-5p and upregulating RBP4, an effect that is reversible (118).

And reversal of abnormal lncRNAs can also reverse skeletal muscle

IR, such as in the case of lncRNA NONMMUT044897.2 (119).

These evidences demonstrated that lncRNAs are located upstream
TABLE 1 The role of miRNAs in diabetes mellitus.

miRNA Type of DM Expression Effect Reference

miR-34a T1DM Up Regulate antibody production (27)

miR-146a T1DM Down Regulate antibody production (28)

miR-143-3p T1DM Up Promote inflammatory response (29)

miRNA-203a T1DM Up Adjust the proliferation and apoptosis of b-cells (30)

miR-29 T2DM Up Promote inflammatory response (43)

miR-21 T2DM Up Induce endoplasmic reticulum stress (44)

miR-802 T2DM Up Reduce insulin secretion (46)

miR-27a T2DM Up Promote insulin resistance (47)

miR-143 T2DM Up Promote insulin resistance (52)

miR-196A T2DM Mutating – (88)

miR-423 T2DM Mutating – (88)

miR-25 DM Up Induce the apoptosis of b-cells (89)

miR-92b DM Up Induce the apoptosis of b-cells (89)

miR-195 T2DM Up Promote the dedifferentiation of b-cells (90)

miRNA-200c T2DM Up Reduce insulin secretion (91)

mIR-4431 T2DM Up Impair glucose metabolism (92)

miR-16 T2DM Down Affect insulin sensitivity and insulin resistance (93)

miR-494 GDM Down Regulate pancreatic cells proliferation and insulin secretion (94)

miR-92a T2DM Down Regulate pancreatic cells proliferation and insulin secretion (83)

miR-136-5p T2DM Down Regulate pancreatic cells proliferation and insulin secretion (96)

miR-149-5p T2DM Down Regulate pancreatic cells proliferation and insulin secretion (96)

miR-150-3p T2DM Down Reduce b-cells dysfunction (97)

miR-17-5p DM Down Inhibit the pyrophosis of b-cells (98)

miR-16-5p T1DM Down Inhibit the apoptosis of b-cells (99)

miR-182-3p GDM Up Promote insulin resistance (100)

miR-26a T2DM Down Regulate insulin sensitivity (101)

miR-17-5p GDM Down Anti-inflammation and anti-apoptosis (102)

miR-1249-3p T2DM Down Reduce insulin resistance and inflammation (103)

miR-26a T1DM Down Promote T cell genesis (104)

miR-212/132 T1DM – Induce pluripotent stem cells to differentiate into b-cells (105)
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of miRNAs in the regulation of many types of DM and that their

use as biomarkers for clinical diagnosis of DM or as potential

therapeutic targets is valid and feasible (Table 2).
CircRNAs

circRNAs are closed-loop RNAs that do not possess

polyadenylated tails (120). One benefit of the circular structure

of circRNAs is that they are more stable than linear RNAs (121).

Although a small number of circRNAs can encode proteins, they

are usually classified as ncRNAs; in this review we only discuss

the function of circRNAs as ncRNAs (122). According to the

ceRNA hypothesis, circRNA possesses abundant MREs and can

function as a molecular sponge for miRNAs. Furthermore, some

circRNAs have been found to regulate protein-mRNA binding

through their function as molecular sponges (123). Considering

the stability of circRNAs, they may be more effective than linear

ncRNAs as biomarkers for some diseases. As research into the

molecular mechanisms of DM has proceeded, circRNAs, along

with miRNAs and lncRNAs, have been found to play an

important role in diabetes (Figure 2).

CircRNAs are expressed at abnormal levels in diabetic

patients. CircHIPK3 and circ_0039480 are highly expressed in

GDM and T2DM, respectively, and can be used as biomarkers

for early diagnosis (124, 125). Circ_0111707 was shown to

increase the risk of stress-related T2DM by acting as a

molecular sponge for miR-144-3p (126). Circ-Tulp4, which is

downregulated in diabetic mouse islets, improves b-cell function
by sponging miR-7222-3p and regulating the expression of

cholesterol esterification-related genes, sterol O-acyltransferase

1 (SOAT1), and cyclin D1 signaling pathways to promote b-cell
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adaptation to lipotoxicity (127). CircPIP5K1A as the sponge of

miRNA-552-3p regulates g lycol ipotoxic i ty- induced

inflammation and oxidative damage in rat b-cells via Janus

kinase 1 (128). Similarly, inhibition of circANKRD36 releases its

bound miR-145 to reduce IR and inflammation by inhibiting

XBP1 (129). In children with T1DM, circPPM1F expression is

elevated and activates macrophages and exacerbates pancreatic

injury via the circPPM1F -HuR-PPM1F-NF-ΚB axis (130).

Inhibition of circLRP6 and circ_0054633, which are

upregulated in diabetes, prevents b-cell apoptosis and restores

insulin secretion; they also act as molecular sponges for miR-

409-3p and miR-9-5p, respectively, in this process (131).

Inversely, circ_0060450, which has been found to be highly

expressed in children with T1DM, competitively adsorbs miR-

199a-5p to upregulate its target gene SHP2, which in turn

inhibits macrophage mediated inflammation generated by

IFN-I activation of the JAK-STAT1/3 signaling pathway (132).

Although circ_0060450 may not prevent the development of

pancreatitis and T1DM under the antagonistic effect of other

molecules, it sufficiently demonstrates that circRNAs are

involved in the self-regulation of the patient’s organism while

resisting T1DM. Due to the unmatched stability of circRNAs

and the emerging understanding of their roles in DM, they are

promising as diagnostic markers or therapeutic targets in the

future (Table 3).
Predicting the role of ncRNAs in DM
by bioinformatics

Because sequencing has become a key tool in studies related

to the mechanisms of diabetes, we were able to use sequencing
TABLE 2 The role of lncRNAs in diabetes mellitus.

lncRNA Type of DM Expression Effect Reference

MALAT1 T1DM Up Inhibit insulin secretion (31)

Eif4g2 T2DM Down Inhibit oxidative stress (45)

OIP5-AS1 GDM Down – (111)

HOTAIR GDM Up – (112)

RPL13p5 GDM Up Promote insulin resistance (113)

ENST00000503273 T2DM Down – (114)

ENST00000462720 T2DM Up – (114)

ENST00000480633 T2DM Up – (114)

EPB41L4A-AS1 T2DM Up Inhibit glucose uptake (115)

LINC01278 T1DM Down – (116)

TRG-AS1 T1DM Down – (116)

MIAT T1DM Down – (116)

GAS5-AS1 T1DM Down – (116)

KCNQ1OT1 T2DM Up Promote the pyroptosis of b-cells (117)

PTGS2 T2DM Up Damage the function of b-cells (118)

NONMMUT044897.2 T2DM Up Promote insulin resistance (119)
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results from GEO to analyze ncRNAs in DM (https://www.ncbi.

nlm.nih.gov/geo/). With this sequencing data, we performed

KEGG analysis of target genes of miRNAs differentially

expressed in patients with various types of DM and predicted

the potential role of these miRNAs in the development of DM

and CVD (Figures 3A–C, E, F) . We observed a large number of

circRNA abnormalities in T2DM patients (Figure 3D).

Additionally, we observed changes in the expression of

lncRNAs in T2DM patients treated with metformin,

suggesting that lncRNAs are involved in the therapeutic effect

of metformin on DM (Figure 3G). Currently, the role of a

proportion of ncRNAs have emerged gradually. The aberrant

expression of ncRNAs in DM patients and the modulatory

effects of anti-DM drugs on ncRNAs are suggesting that

ncRNAs may provide greater promise for the diagnosis and

treatment of diabetes and cardiovascular disease.
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NcRNAs in diabetic cardiovascular
disease

Diabetes mellitus and cardiovascular
disease

CVD is the most common and dangerous complication of

DM, with more than 50% of T2MD patients die from it (133).

DM is considered to be one of the main causative factors of

CVD. Obesity is also a key risk factor in both DM and CVD, a

commonality that makes the link between diabetes and

cardiovascular disease even stronger (134). Previous evidence

suggests that DM increases the chance of CVD by accelerating

atherosclerotic lesions (135). In contrast to other tissues, the

vascular endothelium is more sensitive to blood glucose, which

makes it a major target of hyperglycemic injury (136). Metabolic
TABLE 3 The role of circRNAs in diabetes mellitus.

circRNA Type of DM Expression Effect Reference

circHIPK3 T2DM Up – (124)

circ_0039480 GDM Up – (125)

circ_0111707 T2DM Up Increase stress-related T2DM risk (126)

circ-Tulp4 T2DM Down Promote b-cellsadaptation to lipotoxicity (127)

circPIP5K1A T2DM Down Regulate inflammation and oxidative damage to b-cells (128)

circANKRD36 T2DM Up Promote insulin resistance and inflammation (129)

circPPM1F T1DM Up Activate macrophages and aggravate islet injury (130)

circLRP6 T2DM Up Promote b-cell apoptosis and insulin secretion injury (131)

circ_0054633 T2DM Up Promote b-cell apoptosis and insulin secretion injury (131)

circ_0060450 T1DM Up Inhibit macrophage mediated inflammation (132)
fro
FIGURE 2

Non-coding RNAs play an important role in diabetes by regulating mRNAs. Red arrows indicate endogenous antibodies and green arrows
indicate insulin.
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disorders caused by IR or abnormal insulin levels can

cause vascular endothelial dysfunction (137) and the

prolonged persistence of hyperglycemic state can lead to the

accumulation of intracellular reactive oxygen species. In

response to oxidative stress, the patients’ IR increases and

contributes to increased vascular permeability (138). Vascular

destruction in diabetes patients may be caused by increased

fluxes of polyol pathways, diacylglycerol, aldose reductase, late

glycosylation end products, protein kinase C (PKC), and

fructose 6-phosphate (139). The late glycosylation end

products of hyperglycemia severely disrupt the protective effect

of nitric oxide (NO) on the endothelium, and its effects on

macrophages, monocytes, and vascular smooth muscle cells are

widespread. This makes the inflammatory response and

oxidative stress in the endothelial system more severe (140).

Considering the correlation between CVD and DM and the

corresponding health risk of concomitance, prevention and

treatment of CVD is the most critical aspect in the

management of patients with DM.
NcRNAs and diabetic CVD

As in DM, ncRNAs also play an important role in the

development of diabetic CVD. The main phenomena of

uropathy cardiovascular disease are cardiac hypertrophy,

atherosclerosis, heart failure. In addition, cardiomyocyte-

related apoptosis, scorch death, autophagy, fibrosis,

mitochondrial dysfunction and oxidative stress, inflammatory
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response are also important. As the understanding of the

mechanisms of diabetic CVD has become more advanced,

researchers have found that ncRNAs are extensively involved

in these processes (Figure 4).

A study showed that miR-30c expression was reduced in DM

patients, that its absence induced cardiac hypertrophy cardiac

hypertrophy (141). Recent studies have shown that in GDM,

miR-195-5p inhibits vascular endothelial growth factor A to

promote endothelial dysfunction (142). And in another study,

silencing miR-195 attenuated diabetic cardiomyopathy in mice

(143). In T2DM, downregulation of erythroid miR-210 induces

endothelial dysfunction (144). Previous work has found that

knocking down circ_0071269 prevents cardiomyopathy injury

through the miR-145/gasdermin A axis (145), whereas miR-424-

5p affects cardiovascular health through anti-angiogenesis in

T1DM (146). The lncRNA ZFAS1 can act as a molecular sponge

for miR-150-5p, and, when ZFAS1 is inhibited it, can reduce

iron death and combat diabetic cardiomyopathy by activating

CCND2 (147). CircCDR1as promotes cardiomyocyte apoptosis

in diabetic cardiomyopathy by activating the hippo signaling

pathway; in contrast, circHIPK3 is downregulated in diabetic

cardiomyopathy and protects cardiomyocytes from high-

glucose-induced apoptosis when overexpressed (148, 149).

Reducing the expression of lncRNA TINCR and MIAT inhibit

cell scorching and alleviate diabetic cardiomyopathy, the former

by enhancing the mRNA stability of NLRP3 and the latter by

acting as a molecular sponge for miR-214-3p (150, 151). miR-

135b and miR-30a-5p are expressed at lower level in DM, and

when their expression levels are increased, they can be used to
A B D

E F G

C

FIGURE 3

Bioinformatic analysis of the potential role of ncRNAs in DM. KEGG analysis of the target genes of miRNAs up-regulated (A) or down-regulated
(B) in T1DM. KEGG analysis of the target genes of differentially expressed miRNAs in T2DM (C). Differential expression of circRNA in T2DM (D).
KEGG analysis of the target genes for up-regulated (E) or down-regulated (F) miRNAs in GDM. LncRNAs with altered expression in T2DM
patients after metformin treatment (G).
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treat diabetic cardiac fibrosis by inhibiting cardiomyocyte

scorching (152, 153). miR-340-5p targets Mcl-1 to mediate

diabetes-induced oxidative stress in cardiomyocytes (154).

Inhibition of miR-378a restores cardiac function by rescuing

ATP synthase in the diabetic heart (155). As cardioprotective

effects were found in T1DM patients treated with the classical

DM drug metformin, such effects may be caused by

downregulated miR-222, miR-195, and miR-21a (156). In

conclusion, ncRNAs play an important role in diabetic CVD

and therefore are good biomarkers for diabetic CVD and may

also be key targets for the treatment of diabetic CVD (Table 4).
Discussion

As a chronic disease with no cure, a high incidence, and

many associated health complications, DM presents a high

health risk. DM not only brings inconvenience to the lives of

patients, causing bodily or even life-threatening damage, but also

imposes a huge burden on patients’ families and the social health

care system. For these reasons, work on the diagnosis and

treatment of DM has been an important area of interest in

medical research, and advances in this field will directly or

indirectly reduce the risk of DM complications like

diabetic CVD.

One of the traditional methods of treatment for T1DM is the

administration of exogenous insulin supplementation (157,

158). However, islet transplantation is one of the conventional

T1DM treatments, and appears to be longer lasting. Clinical

outcome assessment is important in this treatment approach,

and miR-375, an ncRNA, whose levels represent post-transplant
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islet activity, can be used as a reliable biomarker to assess

prognosis (159, 160). Furthermore, several new therapies have

been developed in recent years, in which ncRNAs also play an

important role. For stem cell-based therapies that regenerate b-
cells through bone marrow transplantation of stem cells, miR-

212/132 can play an adjuvant role by promoting the induction of

stem cell differentiation to b-cells (105, 161, 162). While immune

tolerance therapy can slow the progression of T1DM by

suppressing the patient’s immune system, it is costly and has

the potential to induce adverse effects (163). A recent study

reported that islet non-b-cells can secrete insulin after

reprogramming, which brings a new idea to the treatment of

T1DM, however, it is still not widely used in the clinic (164).

Metformin, a first-line drug for T2DM treatment, has been

found to reduce elevated miR-221/222/223 in DM in a dose-

dependent manner, suggesting that regulation of ncRNA

expression may be one of the key mechanisms of metformin

in DM treatment (165, 166). There are several new anti-T2DM

drugs in development that have a better safety profile and can

prevent complications (167). Although the development of these

drugs tends to be aimed at personalization for the patient, there

are still significant limitations to reaching a true personalization

that most patients can obtain.

As a key factor driving the development of complications

such as DM and CVD, ncRNA plays an important role in several

aspects as b-cell failure, insulin secretion, and IR. The function

of b-cells is regulated by ncRNAs and sometimes b-cells
function through ncRNAs. High expression of miR-212-5p

inhibits insulin secretion in b-cells (168). While b-cells
enhance insulin sensitivity and control glucose homeostasis

through the miR-26a and miR-29 family (101, 169).Various
FIGURE 4

NcRNAs are participating in the development of diabetic CVD.
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evidence now shows that ncRNAs such as miR-1249-3p,

lncRNA PTGS2, and circ-Tulp4 can alleviate DM by reversing

the links they are participating in through restoration of their

expression levels; ncRNAs thus have full potential to act as

therapeutic targets. With the help of gene editing technology, it

may also be possible to use gene therapy to restore the

expression of abnormal ncRNAs in patients in the long term

(170). A recent study developed a tool for RNA delivery that

targets b-cells (171). In addition, various carriers, including

liposomes and exosomes, have been found to be useful for

delivering RNA (172, 173). The delivery system of ncRNAs

might have potential application in clinical treatment of DM and

CVD. Furthermore, benefiting from the diversity of gene editing

tools, it may be possible in the future to truly personalize the

treatment of diabetic patients.

Insulin therapy in GDM is a treatment recognized as

harmless but its dosage must be strictly controlled. A study

showed that miR-27 inhibits Akt phosphorylation by targeting

Pdpk1 and Pik3r1 in the context of IR and that insulin treatment

promotes miR-27 expression, thus deepening IR (174).

However, while it was demonstrated in this research that

treatment with metformin inhibited miR-27 expression to

reduce its effects, the potential side effects of metformin are

unclear and safety remains uncertain. This result suggests that

regulation of ncRNA expression may be one of the key roles of

traditional diabetes therapeutics. Moreover, the regulation of

ncRNAs expression pattern may enhance the traditional

treatments for DM.

Common diagnostic markers for DM include fasting

plasma glucose (FPG), oral glucose tolerance (OGT), and
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glycated hemoglobin (HbA1c), etc. (175). However, these

indicators are not particularly effective in the early diagnosis

of DM. Several molecules have been used as novel molecular

biomarkers for DM. The main biomarkers of T1DM include C-

peptides that can represent insulin production, and

autoantibodies against endogenous islet antigens such as

GAD, ZnT8, insulin (23, 176). In T2DM, inflammatory

systemic markers such as Glycosylated acetyls (GlycA),

Advanced Glycation End Products (AGEs) are effective

biomarkers (177, 178). In addition, based on the presence of

higher levels of oxidative damage in DM, lipid peroxidation

markers such as isoprostane, protein oxidation markers such as

advanced oxidation protein products (AOPPs), and oxidative

DNA damage biomarkers such as 8-OHdG can also be utilized

for the diagnosis of DM (179). Due to the fact that GDM can

have various long-lasting effects on both the patient and the

fetus, prevention of GDM is crucial. The guidelines laid about

by the American College of Obstetricians and Gynecologists

(ACOG) recommend screening in high-risk groups. Early

screening is usually performed at 24-28 weeks of gestation

and includes a fasting glucose and oral glucose tolerance test

(OGTT) (180). However, abnormalities of ncRNAs often

appear early in the course of symptoms. One study

successfully diagnosed GDM by miRNA early in pregnancy

(around 10 weeks) and required a much shorter fasting time

before sampling (at least 4 hours compared to 10-16 hours for

OGTT (181). Thus, screening with ncRNAs as biomarkers has

undeniable advantages: Firstly, ncRNA changes can be more

sensitive to predict GDM at an earlier stage of pregnancy and

thus allow better intervention. Secondly, the ncRNA assay is
TABLE 4 The role of ncRNAs in diabetic CVD.

ncRNA Type of DM Expression Effect Reference

miR-30c - Down Low expression can induce myocardial hypertrophy (141)

miR-195-5p GDM Up Promote endothelial dysfunction (142)

miR-195 - Up Low expression reduces diabetic cardiomyopathy (143)

miR-210 T2DM Down Low expression promotes endothelial dysfunction (144)

circ_0071269 - Up Low expression can prevent cardiomyopathy injury (145)

miR-424-5p T1DM Up Anti-angiogenesis (146)

lncRNA ZFAS1 - Up Low expression can alleviate diabetes cardiomyopathy (147)

CircCDR1as - Up Promote the apoptosis of cardiomyocyte (148)

CircHIPK3 - Down Protect cardiomyocytes from apoptosis (149)

lncRNA TINCR - Up Promote the pyroptosis of cardiomyocytes (150)

lncRNA MIAT - Up Promote the pyroptosis of cardiomyocytes (151)

miR-135b - Down Protect cardiomyocytes from pyroptosis (152)

miR-30a-5p - Down Protect cardiomyocytes from pyroptosis (152)

miR-340-5p - Up Cause oxidative stress in cardiomyocytes (154)

miR-378a - Up Reduce ATP synthase activity in the heart (155)

miR-222 T1DM Up It is related to the protective effect of metformin on the heart (156)

miR-195 T1DM Up It is related to the protective effect of metformin on the heart (156)

miR-21a T1DM Up It is related to the protective effect of metformin on the heart (156)
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more convenient and stable, enabling shorter fasting time and

reduction in maternal discomfort.

CVD, as the most dangerous complication of DM, is the

leading cause of death in patients with T1DM and T2DM (182).

DM can cause numerous negative effects on the patient’s internal

environment, such as hyperlipidemia, hyperglycemia, higher

oxidative stress, and persistent inflammation (183, 184). These

factors have a critical role to play in the development of diabetic

CVD (185–189). Diabetic CVD can be broadly divided into

cardiomyopathy and vascular disease (190). Diabetic

cardiomyopathy mainly includes increased cardiomyocyte

death triggered by the DM environment and cardiomyocyte

dysfunction caused by abnormal myocardial mitochondrial

calcium ion handling (191). Atherosclerosis is the most

common form of diabetic vascular disease. The high levels of

AGE caused by DM and the stimulation of oxidative stress cause

endothelial dysfunction and trigger a sustained inflammatory

response that eventually leads to atherosclerosis (192). NcRNAs

play an important role in the process of DM-induced CVD. As

previously described, aberrantly expressed ncRNAs promote

cardiomyocyte death or endothelial injury (142, 148, 149).

NcRNAs bring new perspectives for the prevention and

treatment of diabetic CVD. From the perspective of

prevention, ncRNAs can be used to screen or treat DM to

avoid the risk of CVD. In addition, recent studies support the

use of ncRNAs as therapeutic targets for CVD, for example,

inhibition of ZFAS1, TINCR, and MIAT can reduce abnormal

programmed cardiomyocyte death (147, 150, 151).
Conclusion

DM poses a major concern to human health. Although it is

not fatal as a chronic disease, many complications it causes can

have serious consequences and even lead to death. CVD, in

particular, is the most lethal of the many complications of DM.

Evidences suggested that ncRNAs are involved in the

development of DM and can be used as biomarkers for the

diagnosis of DM. This indicates that ncRNAs have potential
Frontiers in Endocrinology 12
application in the future for clinical treatment of DM and

associated CVD.
Author contributions

CSL, DW, and DL wrote the manuscript. CSL, ZJ, YG, LS,

RL, MC, and CL collected the references and prepared figures.

All authors contributed to the article and approved the

submitted version.
Funding

This work was supported by the Jilin Health Commission

Program under Grant 2020J05S, the Fundamental Research Funds

for the Central Universities under Grant 2019JCKT-70, the Jilin

Education Department Program under Grant JJKH20200950KJ,

and the Jilin Scientific and Technological Development Program

under Grant 20220505033ZP, 202002006JC and 20210101010JC.

The scientific research project of key laboratories of colleges and

universities in Jilin Province [2019] No. 004.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Redondo MJ, Hagopian WA, Oram R, Steck AK, Vehik K, Weedon M,
et al. The clinical consequences of heterogeneity within and between different
diabetes types. Diabetologia (2020) 63(10):2040–8. doi: 10.1007/s00125-020-
05211-7

2. Eizirik DL, Pasquali L, Cnop M. Pancreatic b-cells in type 1 and type 2
diabetes mellitus: Different pathways to failure. Nat Rev Endocrinol (2020) 16
(7):349–62. doi: 10.1038/s41574-020-0355-7

3. Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe
KB, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci (2020), 21
(17):6275. doi: 10.3390/ijms21176275

4. Siqueira ISL, Alves Guimarães R, Mamed SN, Santos TAP, Rocha SD, Pagotto
V, et al. Prevalence and risk factors for self-report diabetes mellitus: A population-
based study. Int J Environ Res Public Health (2020) 17(18):6497. doi: 10.3390/
ijerph17186497

5. Zeru MA, Tesfa E, Mitiku AA, Seyoum A, Bokoro TA. Prevalence and risk
factors of type-2 diabetes mellitus in Ethiopia: Systematic review and meta-analysis.
Sci Rep (2021) 11(1):21733. doi: 10.1038/s41598-021-01256-9

6. Lou Y, Kong M, Li L, Hu Y, Zhai W, Qi X, et al. Inhibition of the Keap1/Nrf2
signaling pathway significantly promotes the progression of type 1 diabetes
mellitus. Oxid Med Cell Longev (2021) 2021:7866720. doi: 10.1155/2021/7866720

7. Hu X, Hu C, Liu J, Wu Z, Duan T, Cao Z. 1,25-(Oh)2d3 protects pancreatic
beta cells against H2o2-induced apoptosis through inhibiting the perk-Atf4-Chop
pathway. Acta Biochim Biophys Sin (Shanghai) (2021) 53(1):46–53. doi: 10.1093/
abbs/gmaa138
frontiersin.org

https://doi.org/10.1007/s00125-020-05211-7
https://doi.org/10.1007/s00125-020-05211-7
https://doi.org/10.1038/s41574-020-0355-7
https://doi.org/10.3390/ijms21176275
https://doi.org/10.3390/ijerph17186497
https://doi.org/10.3390/ijerph17186497
https://doi.org/10.1038/s41598-021-01256-9
https://doi.org/10.1155/2021/7866720
https://doi.org/10.1093/abbs/gmaa138
https://doi.org/10.1093/abbs/gmaa138
https://doi.org/10.3389/fendo.2022.961802
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2022.961802
8. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev
(2013) 93(1):137–88. doi: 10.1152/physrev.00045.2011

9. Yun JS, Ko SH. Current trends in epidemiology of cardiovascular disease and
cardiovascular risk management in type 2 diabetes.Metabolism (2021) 123:154838.
doi: 10.1016/j.metabol.2021.154838

10. Glovaci D, Fan W, Wong ND. Epidemiology of diabetes mellitus and
cardiovascular disease. Curr Cardiol Rep (2019) 21(4):21. doi: 10.1007/s11886-
019-1107-y

11. Filardi T, Catanzaro G, Mardente S, Zicari A, Santangelo C, Lenzi A, et al.
Non-coding rna: Role in gestational diabetes pathophysiology and complications.
Int J Mol Sci (2020) 21(11):4020. doi: 10.3390/ijms21114020

12. Bansal A, Pinney SE. And its role in the pathogenesis of diabetes. Pediatr
Diabetes (2017) 18(3):167–77. doi: 10.1111/pedi.12521

13. Anastasiadou E, Jacob LS, Slack FJ. Non-coding rna networks in cancer. Nat
Rev Cancer (2018) 18(1):5–18. doi: 10.1038/nrc.2017.99

14. Xu X, Zhang J, Tian Y, Gao Y, Dong X, ChenW, et al. Circrna inhibits DNA
damage repair by interacting with host gene. Mol Cancer (2020) 19(1):128.
doi: 10.1186/s12943-020-01246-x

15. Ali SA, Peffers MJ, Ormseth MJ, Jurisica I, Kapoor M. The non-coding rna
interactome in joint health and disease. Nat Rev Rheumatol (2021) 17(11):692–705.
doi: 10.1038/s41584-021-00687-y

16. Fasolo F, Di Gregoli K, Maegdefessel L, Johnson JL. Non-coding rnas in
cardiovascular cell biology and atherosclerosis. Cardiovasc Res (2019) 115
(12):1732–56. doi: 10.1093/cvr/cvz203

17. Huang Y, Liu HM, Wu LL, Yu GY, Xiang RL. Long non-coding rna and
mrna profile analysis in the parotid gland of mouse with type 2 diabetes. Life Sci
(2021) 268:119009. doi: 10.1016/j.lfs.2020.119009

18. Tian Y, Xu J, Du X, Fu X. The interplay between noncoding rnas and insulin
in diabetes. Cancer Lett (2018) 419:53–63. doi: 10.1016/j.canlet.2018.01.038

19. Rawal S, Manning P, Katare R. Cardiovascular micrornas: As modulators
and diagnostic biomarkers of diabetic heart disease. Cardiovasc Diabetol (2014)
13:44. doi: 10.1186/1475-2840-13-44

20. Li H, Fan J, Zhao Y, Zhang X, Dai B, Zhan J, et al. Nuclear mir-320 mediates
diabetes-induced cardiac dysfunction by activating transcription of fatty acid
metabolic genes to cause lipotoxicity in the heart. Circ Res (2019) 125(12):1106–
20. doi: 10.1161/circresaha.119.314898

21. Beltrami C, Angelini TG, Emanueli C. Noncoding rnas in diabetes vascular
complications. J Mol Cell Cardiol (2015) 89(Pt A):42–50. doi: 10.1016/
j.yjmcc.2014.12.014

22. Napoli C, Benincasa G, Schiano C, Salvatore M. Differential epigenetic
factors in the prediction of cardiovascular risk in diabetic patients. Eur Heart J
Cardiovasc Pharmacother (2020) 6(4):239–47. doi: 10.1093/ehjcvp/pvz062

23. Syed FZ. Type 1 diabetes mellitus. Ann Intern Med (2022) 175(3):Itc33–
itc48. doi: 10.7326/aitc202203150

24. Wang Z, Xie Z, Lu Q, Chang C, Zhou Z. Beyond genetics: What causes type
1 diabetes. Clin Rev Allergy Immunol (2017) 52(2):273–86. doi: 10.1007/s12016-
016-8592-1

25. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet (2014)
383(9911):69–82. doi: 10.1016/s0140-6736(13)60591-7

26. Scherm MG, Daniel C. Mirna-mediated immune regulation in islet
autoimmunity and type 1 diabetes. Front Endocrinol (Lausanne) (2020)
11:606322. doi: 10.3389/fendo.2020.606322

27. Zhang QJ, Li J, Zhang SY. Effects of Trpm7/Mir-34a gene silencing on
spatial cognitive function and hippocampal neurogenesis in mice with type 1
diabetes mellitus. Mol Neurobiol (2018) 55(2):1568–79. doi: 10.1007/s12035-017-
0398-5

28. Yang M, Ye L, Wang B, Gao J, Liu R, Hong J, et al. Decreased mir-146
expression in peripheral blood mononuclear cells is correlated with ongoing islet
autoimmunity in type 1 diabetes patients 1mir-146. J Diabetes (2015) 7(2):158–65.
doi: 10.1111/1753-0407.12163

29. Pan S, Li M, Yu H, Xie Z, Li X, Duan X, et al. Microrna-143-3p contributes
to inflammatory reactions by targeting Fosl2 in pbmcs from patients with
autoimmune diabetes mellitus. Acta Diabetol (2021) 58(1):63–72. doi: 10.1007/
s00592-020-01591-9

30. Duan X, Zhao L, Jin W, Xiao Q, Peng Y, Huang G, et al. Microrna-203a
regulates pancreatic Β cell proliferation and apoptosis by targeting Irs2. Mol Biol
Rep (2020) 47(10):7557–66. doi: 10.1007/s11033-020-05818-4

31. Ding H, Wang F, Shi X, Ma H, Du Y, Hou L, et al. Lncrna Malat1 induces
the dysfunction of Β cells Via reducing the histone acetylation of the pdx-1
promoter in type 1 diabetes. Exp Mol Pathol (2020) 114:104432. doi: 10.1016/
j.yexmp.2020.104432
Frontiers in Endocrinology 13
32. Vauzelle-Kervroëdan F, Delcourt C, Forhan A, Jougla E, Hatton F, Papoz L.
Analysis of mortality in French diabetic patients from death certificates: A
comparative study. Diabetes Metab (1999) 25(5):404–11.

33. Thomas NJ, Jones SE, Weedon MN, Shields BM, Oram RA, Hattersley AT.
Frequency and phenotype of type 1 diabetes in the first six decades of life: A cross-
sectional, genetically stratified survival analysis from uk biobank. Lancet Diabetes
Endocrinol (2018) 6(2):122–9. doi: 10.1016/s2213-8587(17)30362-5

34. Banting FG, Best CH, Collip JB, Campbell WR, Fletcher AA. Pancreatic
extracts in the treatment of diabetes mellitus. Can Med Assoc J (1922) 12(3):141–6.

35. Admon G, Weinstein Y, Falk B, Weintrob N, Benzaquen H, Ofan R, et al.
Exercise with and without an insulin pump among children and adolescents with type
1 diabetes mellitus. Pediatrics (2005) 116(3):e348–55. doi: 10.1542/peds.2004-2428

36. Rossetti P, Porcellati F, Fanelli CG, Perriello G, Torlone E, Bolli GB.
Superiority of insulin analogues versus human insulin in the treatment of
diabetes mellitus. Arch Physiol Biochem (2008) 114(1):3–10. doi: 10.1080/
13813450801900777

37. Xu B, Tang G, Chen Z. Dasiglucagon: An effective medicine for severe
hypoglycemia. Eur J Clin Pharmacol (2021) 77(12):1783–90. doi: 10.1007/s00228-
021-03183-0

38. Hope SV, Wienand-Barnett S, Shepherd M, King SM, Fox C, Khunti K, et al.
Practical classification guidelines for diabetes in patients treated with insulin: A
cross-sectional study of the accuracy of diabetes diagnosis. Br J Gen Pract (2016) 66
(646):e315–22. doi: 10.3399/bjgp16X684961

39. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet (2017) 389
(10085):2239–51. doi: 10.1016/s0140-6736(17)30058-2

40. Witka BZ, Oktaviani DJ, Marcellino M, Barliana MI, Abdulah R. Type 2
diabetes-associated genetic polymorphisms as potential disease predictors.Diabetes
Metab Syndr Obes (2019) 12:2689–706. doi: 10.2147/dmso.S230061

41. Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to type 2
diabetes and recent advances in the treatment and prevention. Int J Med Sci (2014)
11(11):1185–200. doi: 10.7150/ijms.10001

42. Christensen AA, Gannon M. The beta cell in type 2 diabetes. Curr Diabetes
Rep (2019) 19(9):81. doi: 10.1007/s11892-019-1196-4

43. Sun Y, Zhou Y, Shi Y, Zhang Y, Liu K, Liang R, et al. Expression of mirna-29
in pancreatic Β cells promotes inflammation and diabetes Via Traf3. Cell Rep
(2021) 34(1):108576. doi: 10.1016/j.celrep.2020.108576

44. Melnik BC. The pathogenic role of persistent milk signaling in Mtorc1- and
milk-Microrna-Driven type 2 diabetes mellitus. Curr Diabetes Rev (2015) 11(1):46–
62. doi: 10.2174/1573399811666150114100653

45. Wang J, Lin Z, Yang Z, Liu X. Lncrna Eif4g2 improves palmitate-induced
dysfunction of mouse b-cells Via modulation of Nrf2 activation. Exp Cell Res
(2020) 396(2):112291. doi: 10.1016/j.yexcr.2020.112291

46. Zhang F, Ma D, Zhao W, Wang D, Liu T, Liu Y, et al. Obesity-induced
overexpression of mir-802 impairs insulin transcription and secretion. Nat
Commun (2020) 11(1):1822. doi: 10.1038/s41467-020-15529-w

47. Yu Y, Du H, Wei S, Feng L, Li J, Yao F, et al. Adipocyte-derived exosomal
mir-27a induces insulin resistance in skeletal muscle through repression of pparg.
Theranostics (2018) 8(8):2171–88. doi: 10.7150/thno.22565

48. Huelgas RG. [a clinical trial to maintain glycemic control in youth with type
2 diabetes]. Rev Clin Esp (2012) 212(10):500. doi: 10.1016/j.rce.2012.07.015

49. Alkhatib A, Tsang C, Tiss A, Bahorun T, Arefanian H, Barake R, et al.
Functional foods and lifestyle approaches for diabetes prevention and
management. Nutrients (2017) 9(12):1310. doi: 10.3390/nu9121310

50. Balducci S, Sacchetti M, Haxhi J, Orlando G, D’Errico V, Fallucca S, et al.
Physical exercise as therapy for type 2 diabetes mellitus. Diabetes Metab Res Rev
(2014) 30 Suppl 1:13–23. doi: 10.1002/dmrr.2514

51. Forouhi NG, Misra A, Mohan V, Taylor R, Yancy W. Dietary and
nutritional approaches for prevention and management of type 2 diabetes. Bmj
(2018) 361:k2234. doi: 10.1136/bmj.k2234

52. Li B, Fan J, Chen N. A novel regulator of type ii diabetes: Microrna-143.
Trends Endocrinol Metab (2018) 29(6):380–8. doi: 10.1016/j.tem.2018.03.019

53. Degirmenci U, Li J, Lim YC, Siang DTC, Lin S, Liang H, et al. Silencing an
insulin-induced lncrna, lncasir, impairs the transcriptional response to insulin
signalling in adipocytes. Sci Rep (2019) 9(1):5608. doi: 10.1038/s41598-019-42162-5

54. Luo XM, Yan C, Feng YM. Nanomedicine for the treatment of diabetes-
associated cardiovascular diseases and fibrosis. Adv Drug Delivery Rev (2021)
172:234–48. doi: 10.1016/j.addr.2021.01.004

55. Tan SY, Mei Wong JL, Sim YJ, Wong SS, Mohamed Elhassan SA, Tan SH,
et al. Type 1 and 2 diabetes mellitus: A review on current treatment approach and
gene therapy as potential intervention. Diabetes Metab Syndr (2019) 13(1):364–72.
doi: 10.1016/j.dsx.2018.10.008
frontiersin.org

https://doi.org/10.1152/physrev.00045.2011
https://doi.org/10.1016/j.metabol.2021.154838
https://doi.org/10.1007/s11886-019-1107-y
https://doi.org/10.1007/s11886-019-1107-y
https://doi.org/10.3390/ijms21114020
https://doi.org/10.1111/pedi.12521
https://doi.org/10.1038/nrc.2017.99
https://doi.org/10.1186/s12943-020-01246-x
https://doi.org/10.1038/s41584-021-00687-y
https://doi.org/10.1093/cvr/cvz203
https://doi.org/10.1016/j.lfs.2020.119009
https://doi.org/10.1016/j.canlet.2018.01.038
https://doi.org/10.1186/1475-2840-13-44
https://doi.org/10.1161/circresaha.119.314898
https://doi.org/10.1016/j.yjmcc.2014.12.014
https://doi.org/10.1016/j.yjmcc.2014.12.014
https://doi.org/10.1093/ehjcvp/pvz062
https://doi.org/10.7326/aitc202203150
https://doi.org/10.1007/s12016-016-8592-1
https://doi.org/10.1007/s12016-016-8592-1
https://doi.org/10.1016/s0140-6736(13)60591-7
https://doi.org/10.3389/fendo.2020.606322
https://doi.org/10.1007/s12035-017-0398-5
https://doi.org/10.1007/s12035-017-0398-5
https://doi.org/10.1111/1753-0407.12163
https://doi.org/10.1007/s00592-020-01591-9
https://doi.org/10.1007/s00592-020-01591-9
https://doi.org/10.1007/s11033-020-05818-4
https://doi.org/10.1016/j.yexmp.2020.104432
https://doi.org/10.1016/j.yexmp.2020.104432
https://doi.org/10.1016/s2213-8587(17)30362-5
https://doi.org/10.1542/peds.2004-2428
https://doi.org/10.1080/13813450801900777
https://doi.org/10.1080/13813450801900777
https://doi.org/10.1007/s00228-021-03183-0
https://doi.org/10.1007/s00228-021-03183-0
https://doi.org/10.3399/bjgp16X684961
https://doi.org/10.1016/s0140-6736(17)30058-2
https://doi.org/10.2147/dmso.S230061
https://doi.org/10.7150/ijms.10001
https://doi.org/10.1007/s11892-019-1196-4
https://doi.org/10.1016/j.celrep.2020.108576
https://doi.org/10.2174/1573399811666150114100653
https://doi.org/10.1016/j.yexcr.2020.112291
https://doi.org/10.1038/s41467-020-15529-w
https://doi.org/10.7150/thno.22565
https://doi.org/10.1016/j.rce.2012.07.015
https://doi.org/10.3390/nu9121310
https://doi.org/10.1002/dmrr.2514
https://doi.org/10.1136/bmj.k2234
https://doi.org/10.1016/j.tem.2018.03.019
https://doi.org/10.1038/s41598-019-42162-5
https://doi.org/10.1016/j.addr.2021.01.004
https://doi.org/10.1016/j.dsx.2018.10.008
https://doi.org/10.3389/fendo.2022.961802
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2022.961802
56. Islam MS, Sharif A, Kwan N, Tam KC. Bile acid sequestrants for
hypercholesterolemia treatment using sustainable biopolymers: Recent advances
and future perspectives. Mol Pharm (2022) 19(5):1248–72. doi: 10.1021/
acs.molpharmaceut.2c00007

57. Keller DM, Ahmed N, Tariq H, Walgamage M, Walgamage T, Mohammed
A, et al. Sglt2 inhibitors in type 2 diabetes mellitus and heart failure-a concise
review. J Clin Med (2022) 11(6):1470. doi: 10.3390/jcm11061470

58. Metzger BE, Coustan DR. Summary and recommendations of the fourth
international workshop-conference on gestational diabetes mellitus. the organizing
committee. Diabetes Care (1998) 21 Suppl 2:B161–7.

59. Classification and diagnosis of diabetes: Standards of medical care in
diabetes-2018. Diabetes Care (2018) 41(Suppl 1):S13–s27. doi: 10.2337/dc18-S002

60. Johns EC, Denison FC, Norman JE, Reynolds RM. Gestational diabetes
mellitus: Mechanisms, treatment, and complications. Trends Endocrinol Metab
(2018) 29(11):743–54. doi: 10.1016/j.tem.2018.09.004

61. Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus
after gestational diabetes: A systematic review and meta-analysis. Lancet (2009) 373
(9677):1773–9. doi: 10.1016/s0140-6736(09)60731-5

62. Billionnet C, Mitanchez D, Weill A, Nizard J, Alla F, Hartemann A, et al.
Gestational diabetes and adverse perinatal outcomes from 716,152 births in France
in 2012. Diabetologia (2017) 60(4):636–44. doi: 10.1007/s00125-017-4206-6

63. Araujo Júnior E, Peixoto AB, Zamarian AC, Elito Júnior J, Tonni G.
Macrosomia. Best Pract Res Clin Obstet Gynaecol (2017) 38:83–96. doi: 10.1016/
j.bpobgyn.2016.08.003

64. Kong L, Nilsson IAK, Gissler M, Lavebratt C. Associations of maternal
diabetes and body mass index with offspring birth weight and prematurity. JAMA
Pediatr (2019) 173(4):371–8. doi: 10.1001/jamapediatrics.2018.5541

65. Catalano PM, Huston L, Amini SB, Kalhan SC. Longitudinal changes in
glucose metabolism during pregnancy in obese women with normal glucose
tolerance and gestational diabetes mellitus. Am J Obstet Gynecol (1999) 180
(4):903–16. doi: 10.1016/s0002-9378(99)70662-9

66. Banerjee RR, Cyphert HA, Walker EM, Chakravarthy H, Peiris H, Gu X,
et al. Gestational diabetes mellitus from inactivation of prolactin receptor and mafb
in islet b-cells. Diabetes (2016) 65(8):2331–41. doi: 10.2337/db15-1527

67. Finneran MM, Landon MB. Oral agents for the treatment of gestational
diabetes. Curr Diabetes Rep (2018) 18(11):119. doi: 10.1007/s11892-018-1093-2

68. Zhang H, Colclough K, Gloyn AL, Pollin TI. Monogenic diabetes: A gateway
to precision medicine in diabetes. J Clin Invest (2021), 131(3):131. doi: 10.1172/
jci142244
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