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expression profiles of HepaRG cells
Yu Takahashi*1, Yuji Hori*, Tomohisa Yamamoto*, Toshiki Urashima*, Yasunori Ohara* and Hideo Tanaka*

*Japan Tobacco Inc., Central Pharmaceutical Research Institute, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan

Synopsis
3D (three-dimensional) cultures are considered to be an effective method for toxicological studies; however, little
evidence has been reported whether 3D cultures have an impact on hepatocellular physiology regarding lipid or
glucose metabolism. In the present study, we conducted physiological characterization of hepatoma cell lines HepG2
and HepaRG cells cultured in 3D conditions using a hanging drop method to verify the effect of culture environment
on cellular responses. Apo (Apolipoprotein)B as well as albumin secretion was augmented by 3D cultures. Expression
of genes related to not only drug, but also glucose and lipid metabolism were significantly enhanced in 3D cultured
HepaRG spheroids. Furthermore, mRNA levels of CYP (cytochrome P450) enzymes following exposure to correspond-
ing inducers increased under the 3D condition. These data suggest that this simple 3D culture system without any
special biomaterials can improve liver-specific characteristics including lipid metabolism. Considering that the system
enables high-throughput assay, it may become a powerful tool for compound screening concerning hepatocellular
responses in order to identify potential drugs.
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INTRODUCTION

Recently, the demand to establish physiological assays has in-
creased, in particular for compound screening and drug devel-
opment [1,2]. Cell-based assays are essential for validating the
pharmacological activity of drug candidates; however, develop-
ment for a large number of these candidates is often discontinued
during subsequent animal testing or clinical trials, which entails
significant commitments in terms of costs, time and energy. One
of the reasons for these failures is poor predictability associated
with monolayer 2D (two-dimensional) cultures not mimicking
physiological conditions [3].

3D (three-dimensional) cultures, which may reflect the in vivo
environment, are regarded as an effective method for cancer re-
search and toxicological studies [4–6]. Some reports indicate
different cellular responses for drug toxicities between 2D and
3D conditions [7–9]. There are numerous commercial 3D culture
systems available for multiple applications using special bioma-
terials such as collagen [10], hyaluronic acid [11], methylcellu-
lose [12] and poly-2-hydroxyethyl methacrylate [13]. Insphero
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AG supplies a simple scaffold-free system in a 96-well plate
format by culturing cells in hanging droplets [9,14]. The cells are
assembled by gravity force and migrate with polarity and an ex-
tensive extracellular matrix including collagen is formed within
the spheroids as in vivo tissues. When it comes to HepG2 spher-
oids, there are also canaliculi-like structures observed by SEM
(scanning electron microscope) [14]. One of the advantages of
this technology is that it does not require any special materials
or equipment. Candidate screening to identify apoptosis inducers
has reportedly been performed using this system [15]. However,
studies on hepatic function, such as lipid metabolism, have not
been reported to date.

PHHs (primary human hepatocytes) are considered to reflect
hepatocellular activity in vivo; however, use of these cells is lim-
ited due to low availability. Metabolic profiles of these cells also
differ significantly depending on donor source and preparation
procedures [16]. HepaRG cells are derived from one of the hu-
man hepatic cell lines with more characteristics similar to PHHs
compared with HepG2 cells [17]. Unlike PHHs, HepaRG cells
have a stable phenotype in cultured plates and lot-to-lot vari-
ation is known to be low [18,19]. Therefore, HepaRG cells are
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considered to be a good alternative to PHHs in drug metabolism
and toxicity studies [19] and may also be useful in studies of
hepatic function or pharmacodynamics in a physiological envir-
onment.

In the present study, we examined whether some of liver-
specific characters, including protein secretions and metabolic
gene expression profiles, are influenced when HepaRG and/or
HepG2 cells are cultured in 3D conditions. We adopted the In-
sphero’s 96-well plate with a view to applying this technique
to drug discovery in the future, since this plate can uniformly
provide one spheroid per well in a high-throughput manner. By
using this plate, we showed that secretions of apo (apolipoprotein)
B, a major component of VLDL (very low-density lipoprotein)
and LDL (low-density lipoprotein), as well as albumin, a func-
tional liver marker, substantially increased in the 3D cultured
spheroids. Moreover, we found that the expression of genes in-
volved in not only drug and glucose metabolism, but also lipid
metabolism, such as fatty acid synthesis, triglyceride synthesis,
bile acid metabolism and lipoprotein production, significantly in-
creased in the 3D HepaRG spheroids. These results indicate that
hanging drop 3D cultures can enhance hepatocellular character-
istics, which is expected to lead the improvement of liver-specific
metabolic activities. This technology eventually may become a
suitable tool to perform functional and pharmacological studies
for drug development.

MATERIALS AND METHODS

Cell culture
Human hepatoma cell lines, HepG2 and HepaRG cells, were
obtained from A.T.C.C. (American type culture collection) and
KAC respectively. HepG2 cells were maintained in DMEM (Dul-
becco’s modified Eagle’s medium) supplemented with 10 % FBS,
100 units/ml penicillin and 100 μg/ml streptomycin. Passages
were performed every 2–3 days. Cryopreserved differentiated
HepaRG cells were maintained according to procedures from
the supplier. Briefly, cells were thawed and cultured in Williams’
Media E with Thaw, Plate & General Purpose Medium supple-
ment (Life Technologies) for the first 3 days and then cultured
in Williams’ Media E with Maintenance/Metabolism Medium
supplement (Life Technologies) in subsequent days. Media was
replaced every 2 days. All cultures were performed at 37 ◦C in
95 % humidity with 5 % CO2.

Organotypic 3D cultures
Hanging drop 3D cultures were performed using GravityPLUS
systems (Insphero). Based on recommendations from the plate
manufacturer to perform initial seeding of growing cells starting
at from 250 cells/well and to perform seeding of non-proliferating
cells at a range between 2500 and 25000 cells, 40 μl of cell
suspension was seeded into each well (from 250 to 2000 cells/well

for HepG2 cells, 8000 and 24000 cells/well for HepaRG cells)
of the 3D 96-well plates (GravityPLUS plates). Three quarters
of the media was changed every 1–3 days. Media was replaced
twice repeatedly prior to the quantification of secreted proteins.
Spheroids were collected in GravityTRAP plates by adding 70 μl
of fresh media to each well of the GravityPLUS plates.

Monolayer 2D cultures
Monolayer 2D cultures were performed using non-treated 96-
well plates for HepG2 cells or collagen-coated 96-well plates
(BD) for HepaRG cells. Similar to the procedure for 3D plates
and based on recommendations from the plate manufacturer,
HepG2 cells were seeded at from 250 cells/100 μl/well in 2D
96-well plates. Comparatively, according to procedures from the
supplier of HepaRG cells, HepaRG cells were seeded at 72000
cells/100 μl/well. Media was replaced every 1–3 days.

Quantification of albumin and apoB
Before 24 h elapsed since the start of the experiments, cells
were refed with fresh media. For quantification of apoB se-
cretion, media was replaced with secretion stimulating media
(DMEM with 1 % BSA and 0.2 mM linoleic acid-oleic acid-
albumin (Sigma)). After 24 h of culture, media and cells were
separately recovered. For 3D cultures, 30 μl of media was collec-
ted initially and spheroids were subsequently collected in Grav-
ityTRAP plates by adding 100 μl of fresh media to each well of
the GravityPLUS plates. Concentrations of secreted albumin and
apoB were relatively measured using ELISA kits (TaKaRa) and
HTRF (homogeneous time-resolved fluorescence) kits (Cisbio)
respectively. Assays were performed according to instructions
from each manufacturer. Each quantitative value was normalized
to the corresponding viable cell signal measured by CellTiter-Glo
(Promega).

Quantitative RT-PCR
Cells or spheroids were pooled [n = 12 (2D) or n = 96 (3D)] and
harvested at indicated days after seeding. Total cellular RNA was
extracted using an RNA preparation kit (RNeasy Mini Kit, Qia-
gen) and the subsequent RT (reverse transcription) was performed
using High-Capacity cDNA Reverse Transcription Kits (Applied
Biosystems). Fluorescent quantitative PCR was performed on an
ABI PRISM 7900 system using TaqMan Gene Expression As-
says (Applied Biosystems). 18s rRNA protein transcripts were
used as an internal control to normalize mRNA levels of each
gene.

Statistical analysis
The results obtained in the present study are presented as means
+− S.E.M. Data were evaluated using Student’s t test for two
groups.
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Figure 1 Albumin secretion increased in 3D spheroids
(A) HepG2 cells were seeded into 96-well plates at 250 and 500
cells/well. After 5 days of culture, cells were refed with fresh media and
subsequently cultured for 24 h. Media and cells were then separately
collected and relative amounts of albumin and viable cell signals were
respectively measured as described in the ‘Materials and Methods’
section. Error bars indicate +− S.E.M. (n = 4). **P < 0.01, compared
with 2D cultures at each cell count. (B) HepaRG cells were seeded into
96-well plates at 72000 cells/well (2D) or 24000 cells/well (3D) and
cultured according to the procedures listed in the ‘Materials and Meth-
ods’ section. After 6 days of culture, cells were refed with fresh media
and processed in the same manner as (A). Error bars indicate +− S.E.M.
(n = 6). **P < 0.01, compared with 2D cultures.

RESULTS

Increase in albumin secretion in 3D cultures
The purpose of the study is to investigate whether 3D hanging
drop cultures can affect the nature of hepatic cells. Relative
albumin levels secreted into culture media within 24 h were meas-
ured first and results showed that the albumin levels from viable
cells were higher in 3D cultured HepG2 spheroids at any cell
count (Figure 1A). Results in HepaRG cells also indicate that
higher albumin secretion per viable cell was detected in 3D cul-
tures compared with 2D cultures (Figure 1B), in which the num-
ber of cells was optimized to cover around 80 % of the plates.
According to the manufacturer’s instruction described in ‘Mater-
ials and Methods’, less than 25000 cells/40 μl/well were used in
the 3D plates. Although the total cell number (24000 cells/well) is
smaller than that in 2D cultures (72000 cells/well), we consider
each cell density is comparable (720 cells/μL in 2D and 600
cells/μL in 3D) and normalizing to viable cell signals enables
fair comparison between 2D and 3D. Additionally, 3D cultured
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Figure 2 ApoB secretion increased in 3D spheroids
(A) HepG2 cells were seeded into 96-well plates at 250 and 500
cells/well. After 6 days of culture, cells were refed with stimulating
media and subsequently cultured for 24 h. Media and cells were then
separately collected and relative amounts of apoB and viable cell sig-
nals were respectively measured as described in the ‘Materials and
Methods’ section. Error bars indicate +− S.E.M. (n = 4). **P < 0.01,
compared with 2D cultures at each cell count. (B) HepaRG cells were
seeded into 96-well plates at 72000 cells/well (2D) or 24000 cells/well
(3D) and cultured according to the procedures listed in the ‘Materials
and Methods’ section. After 6 days of culture, cells were refed with fresh
media and processed in the same manner as (A). Error bars indicate +−
S.E.M. (n = 6). **P < 0.01, compared with 2D cultures.

HepaRG spheroids which consist of 8000 cells/well also showed
significantly higher albumin production per viable cell than 2D
cultured cells (result not shown).

Increase in apoB secretion in 3D cultures
ApoB secretion, which reflects VLDL secretion and is regarded
as one of major liver functions, was next monitored. The results
showed that relative amounts of apoB secretion from viable cells
increased in 3D cultures at any cell count as well as albumin (Fig-
ure 2A). In HepaRG cells, the results also indicated significantly
higher apoB secretion from 3D cultured spheroids both of 8000
(result not shown) and of 24000 cells/well (Figure 2B).

Increase in liver-specific gene expression in 3D
HepaRG spheroids
Furthermore, whether liver-enriched gene expression would be
affected when cells were cultured in 3D conditions was examined
by quantitative RT-PCR. Unlike HepaRG cells, the gene expres-
sion of CYP (cytochrome P450) family enzymes are reported to
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Figure 3 Liver-specific gene expression was augmented in 3D HepaRG spheroids
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be significantly lower in HepG2 cells than in PHHs [20]. There-
fore we verified whether CYP expression is augmented in 3D
cultured HepG2 spheroids. Contrary to expectations, the expres-
sion remained almost unchanged and the levels were significantly
lower when compared with results obtained in 3D cultured Hep-
aRG spheroids (Figure 3A; result not shown). Hypothesizing this
as being due to HepG2 cells having limited potential as func-
tional liver cells, it was anticipated that further optimizations of
culture conditions did not aid in the enhancement of the gene
expressions up to physiological levels. Hence, the focus of the
present study was switched to HepaRG cells and gene expression
during the time course of the culture was compared between 2D
and 3D conditions.

Initially, changes in CYP expression of HepaRG cells were
assessed by quantitative RT-PCR and CYP1A2, CYP2B6 and
CYP3A4 mRNA levels were found to be significantly higher
in 3D cultures (Figure 3A). Similar results have been described
in previous reports [21,22], although 3D culture systems differ
from the hanging drop method. Subsequently, the expression of
other genes involved in liver-specific functions was assessed. The
mRNA levels for G6Pase (glucose-6-phosphatase) and PEPCK2
(phosphoenolpyruvate carboxykinase 2), both of which are in-
volved in gluconeogenesis, increased at days 4 and/or 7 (Fig-
ure 3B). L-PK (L-type pyruvate kinase), one of the rate-limiting
glycolytic enzymes, also had higher mRNA levels at days 4 and
7 in 3D cultured spheroids (Figure 3C). Furthermore, the mRNA
levels for SREBP1 (sterol regulatory element-binding protein 1),
SCD1 (stearoyl-CoA desaturase 1) and DGAT2 (diacylglycerol
acyltransferase 2), all of which are involved in energetic lipid
synthesis in the liver, also increased at days 4 and 7 (Figure 3D).
Similar results were also obtained for the gene expression of
CYP7A1, CYP8B1 and ABCB11 (ATP-binding cassette, sub-
family B (MDR (multidrug resistance)/TAP (transporter asso-
ciated with antigen processing)), member 11), all of which are
involved in bile acid metabolism (Figure 3E). The expression of
ABCB11 was almost undetectable in HepG2 spheroids, as well as
CYP2B6 and CYP3A4. The mRNA levels for apoE and apoA-I,
which are components of LDL and HDL (high-density lipopro-
tein) respectively, were also higher at days 4 or/and 7 (Figure 3F).
On the other hand, the expression of GAPDH (glyceraldehyde-
3-phosphate dehydrogenase), a housekeeping gene, was not stat-
istically different between 2D and 3D cultures (Figure 3G). In
this experiment, whereas HepaRG cells were seeded at 24000
cells/40 μl/well in the 3D plates, similar results were also ob-
tained at a cell count of 8000 cells/40 μl/well (result not shown).
These results indicate that the 3D hanging drop culture system
improved the extensive expression profiles of genes essential for
hepatic functions.

Increase in CYP expression in 3D HepaRG
spheroids with treatment of CYP inducers
Last, the change in gene expression of CYP enzymes when Hep-
aRG cells or spheroids were treated with corresponding inducers
was assessed. Omeprazole, phenobarbital and rifampicin were se-
lected as inducers for CYP1A2, CYP2B6 and CYP3A4 respect-
ively. When redifferentiated HepaRG cells were treated with CYP
inducers, the expression of CYP1A2, CYP2B6 and CYP3A4 in-
creased both in 2D and 3D conditions (Figure 4). These gene
expressions were significantly higher in 3D cultured spheroids
and also in the inducer-treated group, demonstrating that it is
possible to perform CYP induction assays in conditions more
closely mimicking physiological environment using the 3D cul-
ture plates.

DISCUSSION

In the present study, we assessed the effect of 3D cultures on hep-
atocellular characteristics and validated the hypothesis that 3D
cultures can improve levels of apoB secretion per viable cell and
mRNA levels of various genes exclusively expressed in the liver.
We chose Insphero’s 96-well plate, which can generate tissue-
mimicking spheroids at high throughput. It is noteworthy that
this 3D culture system requires neither special biomaterials such
as basement membrane proteins nor particular equipment such
as bioreactors, thereby the effect of cultural environment change
itself can be directly evaluated without any external factors. For
instance, Matrigel, an artificial extracellular matrix gel used for
3D cultures, has been reported to contain multiple growth factors,
including basic fibroblast growth factor, epidermal growth factor,
insulin-like growth factor, transforming growth factor β, platelet-
derived growth factor and nerve growth factor [23].

In the quantitative RT-PCR experiment, we assessed many
genes responsible for liver function in HepG2 and HepaRG cells.
Expression of some critical genes such as CYP3A4 and ABCB11
was very low or almost undetectable in HepG2 cells even when
cultured in 3D conditions (Figure 3), indicating that they have
limited potential as functional liver cells. In other words, it seems
3D culture cannot substantially aid in the up-regulation of gene
expression of cells whose capacities have been somewhat biased.
Hence, the use of HepG2 cells should be examined carefully
according to each experimental purpose.

On the other hand, we showed that mRNA levels for many
critical genes in the liver were generally increased in 3D cultures
of HepaRG cells (Figure 3). The genes picked up in the analysis

HepG2 and HepaRG cells were seeded into 96-well plates at 2000 cells/well (HepG2), 72000 cells/well (2D, HepaRG)
or 24000 cells/well (3D, HepaRG) and subsequently cultured for up to 7 days. Cells were harvested at indicated days:
Relative mRNA levels of genes involved in drug metabolism (A), gluconeogenesis (B), glycolysis (C), energetic lipid synthesis
(D), bile acid metabolism (E) and lipoprotein metabolism (F) and levels of GAPDH (G) were determined by quantitative
RT-PCR and were normalized to levels of 18s rRNA. All assays were performed in triplicate. Error bars indicate +− S.E.M.
**P < 0.01, compared with 2D cultures performed on each day.
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Figure 4 Gene expression of CYP family enzymes increased in 3D HepaRG spheroids treated with CYP inducers
HepaRG cells were seeded into 96-well plates at 72000 cells/well (2D) or 24000 cells/well (3D). After 5 days of culture,
cells were treated with 100 μM omeprazole, 1000 μM phenobarbital or 20 μM rifampicin for 48 h. Cells were subsequently
harvested and relative mRNA levels of CYP1A2, CYP2B6 and CYP3A4 were determined by quantitative RT-PCR and
normalized to levels of 18s rRNA. All assays were performed in triplicate. Error bars indicate +− S.E.M. **P < 0.01,
compared with 2D cultures.

are known to be directly regulated by transcription factors highly
expressed in the liver. For instance, CYP3A4, PEPCK2, L-PK,
SCD1, ABCB11 and ApoA-I are target genes for PXR (pregnane
X receptor) [24], FOXO1 (forkhead box O 1) [25], ChREBP (car-
bohydrate responsive element-binding protein) [26], SREBP1
[27], FXR (farnesoid X receptor) [28] and LRH-1 (liver receptor
homologue-1) [29] respectively. The data suggest that these tran-
scription factors are activated by changing the cultured environ-
ment from 2D to 3D.

Moreover, mRNA levels of genes with contradictory functions
such as G6Pase/L-PK and apoE/apoA-I were augmented in 3D
cultures (Figures 3B, 3C, 3F). This suggests that basal metabolic
rate of HepaRG cells would be enhanced in 3D conditions. By
contrast, the expression of genes involved in cholesterol meta-
bolism (e.g. LDL receptor) or fatty acid oxidation (e.g. CTP1A,
carnitine palmitoyltransferase 1A) did not increase in the 3D cul-
tured spheroids (result not shown). The results indicate that the
change in cellular capacity triggered by 3D cultures is seemingly
somewhat biased. Further investigation would be needed to clas-
sify activated pathways responsible for hepatocellular functions.

We also showed that the expression of numerous genes was
significantly higher at day 7 in 3D cultured HepaRG spheroids
compared with day 0, a manufacturer-supplied fully differenti-
ated state from 2D cultures, implying that 3D cultures enhance
the hepatic activity of HepaRG cells. This suggests that it would
be possible by employing this 3D culture system to conduct as-
says which would otherwise be difficult to implement for reasons
such as having cellular responses too low to detect.

Although we performed 3D cultures for single type of cells in
the present study, it would be of great interest to try co-culturing
with different types of cells. It is reported that HUVEC (hu-
man umbilical vein endothelial cell) predominantly migrate to
the periphery, representing a natural cell-type composition, when
it is cultured together with HepG2 cells using the hanging drop
method [14]. Since the liver is composed of numerous types of
cells, such as parenchymal hepatocytes, Kupffer cells, macro-
phages and hepatic satellite cells, combining these cells in a single
hanging droplet may be effective to generate more physiological
microtissues.

In summary, to the best of our knowledge, this is the first report
of evidence that 3D spheroid cultures up-regulate apoB produc-
tion and the extensive liver-specific gene expression of cultured
cells. From these evidences, one can expect that diverse meta-
bolic functions are improved by 3D cultures and therefore they
should be examined by establishing functional assays including
metabolite measurement, which may provide a useful system for
drug discovery research in the future.
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