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Abstract

Summary: GBS-SNP-CROP is a bioinformatics pipeline originally developed to support the cost-

effective genome-wide characterization of plant genetic resources through paired-end genotyping-

by-sequencing (GBS), particularly in the absence of a reference genome. Since its 2016 release, the

pipeline’s functionality has greatly expanded, its computational efficiency has improved, and its

applicability to a broad set of genomic studies for both plants and animals has been demonstrated.

This note details the suite of improvements to date, as realized in GBS-SNP-CROP v.4.0, with spe-

cific attention paid to a new integrated metric that facilitates reliable variant identification despite

the complications of homologs. Using the new de novo GBS read simulator GBS-Pacecar, also

introduced in this note, results show an improvement in overall pipeline accuracy from 66% (v.1.0)

to 84% (v.4.0), with a time saving of �70%. Both GBS-SNP-CROP versions significantly outperform

TASSEL-UNEAK; and v.4.0 resolves the issue of non-overlapping variant calls observed between

UNEAK and v.1.0.

Availability and implementation: GBS-SNP-CROP source code and user manual are available

at https://github.com/halelab/GBS-SNP-CROP. The GBS read simulator GBS-Pacecar is available at

https://github.com/halelab/GBS-Pacecar.

Contact: iago.hale@unh.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The GBS-SNP-Calling Reference Optional Pipeline (GBS-SNP-

CROP) is an open-source pipeline that integrates custom parsing

and filtering procedures with well-known, vetted bioinformatic

tools, giving users full readable access to all intermediate files.

Initially designed for paired-end reads, GBS-SNP-CROP employs a

strategy of variant calling based on both within-individual and

across-population patterns of polymorphism to identify and distin-

guish high-confidence variants from both sequencing and PCR

errors, whether or not a reference genome is available. In the latter

case, the pipeline uses a read-clustering strategy to build a so-called

Mock Reference (MR) of consensus GBS fragments for use in down-

stream alignment, variant calling, and genotyping (Melo et al.,

2016).

As a reference-optional (or de novo) pipeline, GBS-SNP-CROP

has proven useful to breeders of under-researched crop species for

which the lack of a reference genome presented a barrier to the effi-

cient use of GBS data (Cheng et al., 2017; Hale et al., 2018; Melo

et al., 2017; Sogbohossou et al., 2018; Wang et al., 2017). The pipe-

line has facilitated studies of genetic diversity and population struc-

ture for natural populations of both plants (Arredondo et al., 2018;

Bartaula et al., 2018; Sunseri et al., 2018) and animals (Drury et al.,

2017; Xu et al., 2017) and has successfully supported molecular

breeding analyses in a variety of crop and non-crop plant species

(Adhikari et al., 2018; Chung et al., 2018; Holloway et al., 2018;

Munjal et al., 2017). In presenting GBS-SNP-CROP v.4.0, this note

describes the expanded functionality and enhanced performance of

the pipeline relative to its original version.
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2 Enhanced functionality and performance

Since its initial release, GBS-SNP-CROP has been updated with a suite

of functional enhancements. Specifically, the pipeline now: (i) accom-

modates both single-end and paired-end reads; (ii) identifies and calls

bi-allelic indels as well as SNPs; (iii) improves overall memory usage

and employs parallelization to substantially reduce computation time;

(iv) supports conversion of the final genotyping matrix into standard

Variant Call Format (VCF); (v) creates a set of comprehensive variant

description files to support user decision-making in the application of

subsequent filters; (vi) enables the identification and filtering of likely

paralogous/duplicated loci, based on the strategy of McKinney et al.

2017; and (vii) facilitates ploidy inference based on individual distri-

bution of allele depth ratios at heterozygous loci, as proposed by

Yoshida et al., 2013 (Supplementary Fig. S1).

2.1 Computation time and data usage
A notable feature of GBS-SNP-CROP v.4.0 is the parallelization of

raw read and genotype-specific mpileup file parsing via the

Parallel::ForkManager CPAN module. On a Unix workstation with

16 GB RAM and a 2.6 GHz Dual Intel processor, v.4.0 requires

�14 minutes to parse 1 Gb of raw sequence data, compared to

�49 minutes under the initial version. On the same machine, v.4.0

completes a full analysis of 55 Gb of 150-bp paired-end data (a

population of 96 Berberis � ottawensis hybrids) in �13 h, compared

to the �45 h required by v.1.0, a time saving of 71%. A similar time

saving (67%) was observed using reads generated by GBS-Pacecar

(Table 1), a de novo GBS read simulator available at https://github.

com/halelab/GBS-Pacecar.

Because of its superior speed and clustering capabilities, includ-

ing fewer ‘missed’ alignments and chimeric centroids, Vsearch

(Rognes et al., 2016) is now called by GBS-SNP-CROP rather than

Usearch (Edgar, 2010) for MR construction (Step 4). While this

change effectively lifts Usearch’s 4 GB data input limit, pipeline

evaluation under a range of data usage scenarios indicates that over-

all performance generally does not improve, and in some cases dra-

matically declines, when more data are used for MR construction.

Using reads from the single most read-abundant genotype for MR

assembly, rather than using all available (population-wide) data,

remains the recommended practice, regardless of Vsearch’s ability to

handle more data (Table 1).

2.2 Homolog variant detection
Despite the many advantages of GBS data, its reliability for

reference-independent (or de novo) variant calling is compromised

by the presence of homologous genomic regions. Whether the result

of gene duplication (intragenomic homology) or polyploidization

(homology across subgenomes), the existence of multiple copies of

highly related but non-allelic sequences hampers reliable genotyping

due to the challenge of separating such sequences into their respect-

ive loci (Dufresne et al., 2014; Waples et al., 2015). While the study

of duplicated loci can shed light on fundamental evolutionary fac-

tors such as the adaptive potential of redundant genes and their role

in the process of speciation (Madlung, 2013), paralogs and dupli-

cated loci routinely confound population genomic studies, especially

in polyploid species (Limborg et al., 2016).

To address this fundamental issue and help users distinguish real

allelic variation from artifactual polymorphisms due to homology (i.e.

homolog variants), GBS-SNP-CROP now calculates for each called

variant the mean allele depth ratio observed across all heterozygous

individuals. Following the strategy described by McKinney et al.

(2017), the deviation of this ratio from its expected value (1:1) is

expressed as a Z-score, based on a binomial distribution with P¼0.5.

Using these Z-scores, reported in a new column in the pipeline’s final

genotyping matrix, users can now identify and filter likely homolog

variants. To test the informativeness of this new filter, SNPs and indels

were called in populations of two different plant species, one diploid

(Berberis � ottawensis) and one tetraploid (Actinidia arguta). Using a

conservative threshold of jZij > 5 to declare likely homolog variants,

the percentages of culled loci for the diploid and tetraploid species

were 14.3% and 40.1%, respectively (Supplementary Table S1).

2.3 Improved accuracy
To assess the accuracy of GBS-SNP-CROP v.4.0 relative to the pipe-

line’s initial release (v.1.0), we simulated a set of 150bp single-end GBS

reads with GBS-Pacecar. Across the 100 000 unique base GBS frag-

ments simulated, 25 000 SNPs and 10 000 indels were induced, with no

Table 1. Comparative summary of GBS-SNP-CROP v.4.0 performance, based on a set of simulated data from GBS-Pacecar

Pipelinea MR genob Time (min)c Variants calledd Type I errore Type II errorf Accuracyg

UNEAK NA 8.5 2642 0.9% 92.5% 7.5%

GSC v.1.0 1 370.8 23 395 1.3% 34.1% 65.4%

GSC v.4.0 1 121.7 29 738 0.6% 15.6% 84.0%

5 156.9 26 885 0.6% 23.6% 76.0%

10 171.5 26 854 0.5% 23.7% 76.1%

15 179.1 26 897 0.5% 23.6% 76.1%

20 183.0 26 892 0.5% 23.6% 76.1%

25 163.2 26 901 0.5% 23.5% 76.2%

Note: In total, 25 000 SNPs and 10 000 indels were simulated across a genomic space of 100 000 GBS fragments. A total of 60 002 165 single-end reads were

simulated for a population of 25 individuals (average of 2.4 million reads per genotype), with a sequencing error rate of 1.1%. See Supplementary Table S1 for

more details
aUNEAK ¼ TASSEL-UNEAK; GSC ¼ GBS-SNP-CROP.
bThe number of genotypes used for mock reference (MR) assembly.
cComputation time (minutes) required to run the full analysis on a Unix workstation with 16 GB RAM and a 2.6 GHz Dual Intel processor.
dNumber of variants called by a pipeline (Note: a total of 35 000 variants were simulated, consisting of 25 000 SNPs and 10 000 indels).
ePercentage of called variants that could not be validated (false positives).
fPercentage of true, simulated variants that were not detected by the pipeline.
gOverall accuracy: 100 * [number of validated variants/(total number of simulated variants þ number of non-validated variants)].
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more than one variant per fragment. Approximately 60 million reads

were generated across a population of 25 individuals, with read depth

between 20-30x and sequencing error rate of 1.1%. As described in the

GBS-Pacecar documentation, the details of all induced polymorphisms

were recorded to enable downstream validation.

In addition to a significant improvement in speed, both Type I and

Type II error rates are lower in v.4.0 than in the original version

(Table 1). Indeed, the overall accuracy of the pipeline increased signifi-

cantly from 65.4 to 84.0%, in large part due to its expanded indel

functionality. As mentioned above, Table 1 also confirms that

increased data usage for MR construction (e.g. multiple genotypes ver-

sus one genotype) results in higher error rates and poorer overall per-

formance. Applying the same depth criteria for SNP genotyping, the

Type I error for TASSEL-UNEAK (Lu et al., 2013) was only slightly

higher than that of GBS-SNP-CROP v.4.0, although it called less than

one-tenth of the number of validated variants. UNEAK’s Type II error,

however, was enormous (92.5%), in part due to the pipeline’s 64 bp

read length requirement, leading to an overall accuracy of only 7.5%.

In the original release of GBS-SNP-CROP (Melo et al. 2016), it

was observed that the sets of SNPs called by v.1.0 and UNEAK did

not overlap completely. Such orthogonality begs the question,

‘Which set is right?’ What is notable about this simulation is that it

shows that each pipeline calls correct variants but neither calls the

complete set, lending credence to the idea of applying both to the

same set of data. As shown in Supplementary Figure S2, however,

the new version of GBS-SNP-CROP resolves this earlier issue of or-

thogonality. Through improved MR assembly, v.4.0 now detects all

SNPs called by UNEAK, including those missed by v.1.0.

3 Conclusions

The GBS-SNP-CROP pipeline has proven to be a useful bioinfor-

matics tool in the cost-effective genomic study of a wide range of

plant and animal species; and updates since its initial release have

expanded its functionality, improved its accuracy, and enhanced its

overall performance. With the ability to handle variable-length sin-

gle-end and paired-end reads, to detect both SNPs and indels, and to

identify likely homolog variants, the most recent version of GBS-

SNP-CROP (v.4.0) is a robust and versatile tool for variant calling

in both model and non-model species.
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