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ABSTRACT: Crystal structure prediction is one of the major
unsolved problems in materials science. Traditionally, this problem
is formulated as a global optimization problem for which global
search algorithms are combined with first-principles free energy
calculations to predict the ground-state crystal structure of a given
material composition. These ab initio algorithms are currently too
slow for predicting complex material structures. Inspired by the
AlphaFold algorithm for protein structure prediction, herein, we
propose AlphaCrystal, a crystal structure prediction algorithm that combines a deep residual neural network model for predicting the
atomic contact map of a target material followed by three-dimensional (3D) structure reconstruction using genetic algorithms.
Extensive experiments on 20 benchmark structures showed that our AlphaCrystal algorithm can predict structures close to the
ground truth structures, which can significantly speed up the crystal structure prediction and handle relatively large systems.

■ INTRODUCTION
The periodic crystal structures of inorganic materials
determine the many unique and exotic functions of functional
devices such as lithium batteries, quantum computers, solar
panels, and chemical catalysts. While it is easy to compose a
material with chemically reasonable formula or to generate
millions of formulas with charge neutrality and electro-
negativity balance using modern generative machine learning
algorithms such as MATGAN,1 it is notoriously challenging to
predict the crystal structure from a given chemical
composition,2 which however is required to check its
thermodynamic and mechanical stability or their synthesiz-
ability.3−5 With the crystal structure of a chemical substance,
many physicochemical properties can be predicted reliably and
routinely using first-principles calculation or machine learning
models.6

Due to its importance in chemistry and condensed matter
physics, crystal structure prediction has been investigated
intensively for more than 30 years.7−16 In the crystal structure
prediction (CSP) problem,17 the goal is to find a ground-state
structure (in terms of all atomic coordinates of the atoms in a
unit cell) with the lowest free energy for a given chemical
composition (or a chemical system with variable composi-
tions) at a given pressure−temperature condition. It is
assumed that atomic configurations with lower free energy
correspond to a more stable arrangement of atoms and the
materials will be more synthesizable. One of the simplest and
most widely used approaches for CSP is the template-based or
element substitution approach in which an existing crystal

structure with a similar formula is first identified and then
some atoms are replaced with other types of elements. The
replacement can either be based on personal heuristics or
guided by machine-learned substitution rules in terms of
element combination patterns11,18 or atomic fingerprints that
describe coordination topology15 or other chemical patterns19

around unique crystallographic sites. Template-based ap-
proaches are widely used in discovering new materials such
as lithium-ion cathode materials19 and heteroanionic com-
pounds.20 But they have a major limitation in their inability to
generate new crystal structure types.
The majority of work on the CSP problem is focused on ab

initio approaches, which try to search the atomic configuration
space to locate the ground-state structure guided by the first-
principles calculations of the free energy of candidate
structures.8−14 These approaches use a variety of search/
optimization algorithms such as random sampling, simulated
annealing, minima hopping, basin hopping, metadynamics,
genetic algorithms, and particle swarm optimization to achieve
systematic search while overcoming the local minima due to
energy barriers in the search landscape. They have been
successfully applied to discover a series of new materials as
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summarized in refs 16, 21. To improve the sampling efficiency
and save the costly DFT calculations, a variety of strategies
have been proposed such as exploiting symmetry22 and
pseudosymmetry,17 smart variation operators, clustering, and
machine learning interatomic potentials with active learning.23

Despite their wide successes, the scalability and applicability
of these ab initio CSP algorithms are severely limited due to
their dependence on the costly DFT calculations of free
energies for sampled structures. A quick check of their success
stories reported in the literature16,21,24 can find that most of
their discovered crystal materials are binary materials or those
with less than 20 atoms in the unit cell. Our practice with these
software shows that the algorithms tend to waste a lot of DFT
calculations to reach the local areas of the ground-state
structures, which may be addressed by seeding them with an
approximate structure close to the target. With a limited DFT
calculation budget, how to efficiently sample the atom
configurations becomes a key issue and the scalability of
CSP remains an unsolved issue.

Here, we propose a novel deep knowledge-guided ab initio
approach for crystal structure prediction, which is inspired by
the recent successes of deep learning approaches for protein
structure prediction25−27 led by the famous AlphaFold.26 To
our knowledge, our AlphaCrystal algorithm is the first method
for crystal contact map prediction in CSP. We use deep
residual neural networks28 for contact prediction, which learns
the intricate relationships of bonding relationships of atoms.
The advantage of AlphaCrystal is that it can exploit the rich
atom interaction distribution or other geometric patterns or
motifs29 existing in a large number of known crystal structures
to predict the atomic contact map. This complex hidden
knowledge can be learned as deep physical knowledge by our
deep neural network, which can be exploited by the contact
map prediction and atomic coordinate reconstruction process.
We train the deep neural network using a subset of materials
with solved structures from the Materials Project database and
then test it on a set of test samples. Our experimental results
show that our method when trained with 80% MP samples can

Figure 1. AlphaCrystal framework for contact map-based crystal structure prediction.

Figure 2. Deep neural network model for crystal material contact map prediction.
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achieve almost 100% contact map accuracy out of 48% of the
test set.
Our contributions can be summarized as follows:

• We propose AlphaCrystal, a deep learning and genetic
algorithm-based approach for crystal structure prediction
using the predicted atomic contact map as a knowledge-
guided methodology for addressing the crystal structure
prediction problem.

• We evaluated our algorithm over 20 benchmark crystal
targets and find that it can predict their contact maps
with high accuracy, which further leads to successful
prediction of their crystal structures.

• We applied AlphaCrystal to predict 10 nontrivial crystal
structures and verified their stability by DFT calcu-
lations.

■ METHODS
AlphaCrystal Framework for Contact Map-Based

Crystal Structure Prediction. In our previous work,30 we
showed that given a correct contact map along with the space
group and lattice constants, a genetic algorithm can be used to
reconstruct the atomic coordinates (so its structure) with high
accuracy. Here, we propose a deep learning-based model for
predicting the contact map given its composition only. Based
on this contact map predictor, we propose AlphaCrystal, a new
framework for knowledge-guided crystal structure prediction as
shown in Figure 1. The architecture is composed of three main
modules: (1) a contact map predictor, a space group
predictor,31 and a lattice constant predictor;32 (2) the contact
map-based atomic coordinate reconstruction algorithm;30 and
(3) DFT relaxation-based local search or free energy-based ab
initio search.
Deep Learning Model for Crystal Material Atomic

Contact Prediction. One of the major components of the
AlphaCrystal algorithm is the deep residual network-based
predictor of contact maps. As shown in Figure 2, the whole
network is composed of three parts: the first part uses a
sequence of stacked one-dimensional (1D) residual network
layers to learn convoluted atom site features. The input to this
module is the sequence of element symbols in the input
formula where L is the number of atoms in the unit cell. Each
element is represented by 11 features including Mendeleev
number, unpaired electrons, ionization energies, covalent
radius, heat of formation, dipole polarizability, average ionic
radius, group number and row number in the periodic table,
Pauling electronegativity, and atomic number.
The second part of our contact map predictor is the

conversion of convolved site features into pairwise feature
maps with dimensions of L × L × 3n (outer concatenation),
where n indicates 128. The third module is composed of a
sequence of stacked two-dimensional (2D) residual network
layers, which maps the paired site features to predicted contact
maps. Moreover, a batch normalization33 and a nonlinear
transformation34 succeed in each convolutional layer. Batch
normalization makes the training faster and stable by
recentering and rescaling each layer at each minibatch. The
output of the 1D residual network is a 2D matrix with
dimensions of L × n, which is the learnt convoluted interatom
site features hierarchically. The learnt intersite features are
converted to a three-dimensional (3D) matrix as the inputs to
a 2D residual network.

Residual Network Block. Figure 2 right pane shows the
architecture of the residual network block used in our two
residual network modules. In each block, there are two
convolutional layers, a batch normalization, and two nonlinear
transformations. The nonlinear transformation is performed by
the ReLU activation function max(X, 0).34 Let F(Xl) denote
the output of the block, and then Xl+1 is max(F(Xl) + Xl,0).
The addition of Xl and F(Xl) is nonlinearly transformed. We
use nine building blocks for each module in our main
architecture. The number of filters is doubled per three blocks.
The initial numbers of filters for the first and second modules
are 32 and 256, respectively.
Contact Map Generation and Loss Function. We use the

following rule to convert a crystal structure into a contact map
matrix M: for each pair of atoms A and B in the unit cell, if
their distance is within the range of [covalence radiusA +
covalence radiusB − 0.4, covalence radiusA + covalence radiusB
+ 0.4], then there is a bond between atom A and atom B and
the corresponding M[i,j] is set to 1, otherwise it is set to 0.
When two atoms are both metal atoms, we set their contact
map entry as 0 too.
Since a contact map is a binary matrix, we use the cross-

entropy loss as the loss function for neural network training. It
is defined as follows

= · + ·
=N

y y y yloss
1

log( ) (1 ) log(1 )
i

N

i i i icross entropy
0

(1)

where N is the maximum length of the formula, which is set to
12 and 24 in our experiments; yi is the true contact map label
at position i, and ŷi is the predicted probability scores at
position i.
Training and Dealing with Crystals of Different Atom

Sites. To deal with varying sizes, we set the maximum number
of atoms in a formula as L, which is set to 12 and 24 in our
experiments. When a formula has fewer atoms, we create
tensors by padding zeros. We sort all samples by their atom
number and then partition them into minibatches so that for
each minibatch, the sizes are similar.
Predictors for Space Group and Lattice Constants.

For each formula, we use CryspNet31 to predict the top two
crystal systems and the top 5 space groups for each crystal
system. We then use MLatticeABC32 to predict the lattice
constants for each formula. Next, we use the deep neural
network model as shown in Figure 2 to predict the contact
map.
3D Crystal Structure Reconstruction Algorithm. With

all of the predicted information including the contact map, the
space group, and the lattice constants, we then used
CMCrystal,30 a genetic algorithm for contact map-based
atomic position reconstruction, to predict the crystal structure
for a given formula. We set the number of evaluations to be
100,000 or 1000 generations for a population size of 100 of the
GA. The mutation rate is set to 0.001. Compared to the
previous version of the CMCrystal algorithm, we have added
an additional term to the GA optimization objective function,
which is the fitness of valid bonds. It is defined as follows

=
+

fitness
no. of valid bonds

no. of valid bonds no. of short bondsbond

(2)
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where short bonds are defined as any bond with a length less
than the sum of two neighbor atoms’ covalent radius minus 0.4
Å; valid bonds are those with lengths within the range of
[covalence radiusA + covalence radiusB − 0.4, covalence
radiusA + covalence radiusB + 0.4] for the atom pair A and B.
The final fitness is defined as the product of contact map
fitness and valid bond fitness.
Evaluation Metrics. The objective function for contact

map-based structure reconstruction is defined as the dice
coefficient, which is shown in the following equation

= = | |
| | + | |

× • +A B
A B

A B
fitness dice

2 2
sum

(A) sum(B)opt

(3)

where A is the predicted contact map matrix and B is the true
contact map of a given composition, both only contain 1/0
entries. A ∩ B denotes the common elements of A and B, �
g� represents the number of elements in a matrix, • denotes
the dot product, and Sum(g) is the sum of all matrix elements.
The dice coefficient essentially measures the overlap of two
matrix samples, with values ranging from 0 to 1, with 1
indicating perfect overlap. We also call this performance
measure contact map accuracy.
To evaluate the reconstruction performance of different

algorithms, we can use the dice coefficient as one evaluation
criterion, which, however, does not indicate the final structure
similarity between the predicted structure and the true target
structure. To address this, we define the root mean square
distance (RMSD) and mean absolute error (MAE) of two
structures as follows

=

= + +

=

=
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v w

n
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(5)

where n is the number of independent atoms in the target
crystal structure. For symmetrized cif structures, n is the
number of independent atoms of the set of Wyckoff equivalent
positions. For regular cif structures, it is the total number of
atoms in the compared structure. vi and wi are the
corresponding atoms in the predicted crystal and the target
crystal structure. It should be pointed out that in the
experiments of this study, the only constraint for the
optimization is the contact map; it is possible that the
predicted atom coordinates are oriented differently from the
target atoms in terms of coordinate systems. To avoid this
complexity, we compare the RMSD and MAE for all possible
coordinate system matching such as (x,y,z -->x,y,z), (x,y,z
-->x,z,y), etc., and report the lowest RMSD and MAE.
We also calculate root mean square (RMS) distances as a

performance measure of the structure prediction using
Pymatgen’s structure matcher module. We use the getrmsdist
function with a fractional length tolerance ltol of 0.6, a site
tolerance stol of 0.6, and an angle tolerance in degrees angletol

Figure 3. Contact map accuracy score distribution of predicted contact maps of test samples. For more than 40% of the 1136 test samples, the
contact map accuracy is 100%.
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of 20 to compute the displacement between two structures.
These threshold values are much larger than the defaults due
to the range of discrepancy between the predicted structures
and the ground truth ones.
DFT Validation of Predicted Structures. The predicted

structures were relaxed using density functional theory (DFT)
based on the Vienna Ab initio Simulation Package
(VASP)35−38 in which projected augmented wave (PAW)
pseudopotentials were implemented.39,40 A plane-wave cutoff
energy of 400 eV was considered with the Perdew−Burke−
Ernzerhof (PBE) exchange−correlation functional of the
generalized gradient approximation (GGA).41,42 The structural
optimization was performed with energy and force criteria of
1.0 × 10−5 eV/atom and 10−2 eV/Å, respectively. The
Brillouin zone integrations were carried out with Γ-centered
Monkhorst−Pack k-meshes.

■ RESULTS AND DISCUSSION
Training and Test Data. The contact map predictor in the

present study is trained and tested using the MP database,
which is a database of inorganic crystal structures with DFT-
calculated properties consisting of almost all elements in the
periodic table and is freely accessible through the REST API
interface. A total of 126,336 unique crystal structure data
points queried in November 2020 (consisting of 46,781
synthesized crystals associated with the ICSD identifiers and
77,734 theoretically proposed virtual crystals) were used for
our learning model.
The training data set is downloaded from Materials Project

using Pymatgen API. We only choose a crystal structure with
the least formation energy if the corresponding formula has
multiple structures. Materials with only metal elements are

Figure 4. Contact maps for Dy4S4Cl4 and As8Ir4. Yellow cells indicate bonds, while black cells show no bonds.

Table 1. Performances of AlphaCrystal in Terms of Contact Map Prediction Accuracy

target mp_id no. of sites atom# in the unit cell # of variables space group contact map accuracy

Ag2F4 mp-7715 2 6 6 14 1.0
Mg2P8 mp-384 3 10 9 14 0.6
Ru2F8 mp-974434 3 10 9 14 0.86
As8Ir4 mp-15649 3 12 9 14 0.819
Ge4F8 mp-7595 3 12 9 19 0.819
Pd4S8 mp-13682 2 12 6 61 0.694
Dy4S4Cl4 mp-561307 3 12 9 14 0.875
Si4Pt4Se4 mp-1103261 3 12 9 29 1.0
Ta4N4O4 mp-4165 3 12 9 14 1.0
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removed in this manuscript. We set the maximum number of
atoms in the unit cell to be 12, which contains 11,355 samples.
Overall Contact Map Prediction Performance. In this

experiment, we hold out 1136 known materials in the data set
as the test set and use the remaining 10,219 samples as the
training set for training our deep neural network model for
contact map prediction. We set the number of epochs to 125,
Adam optimizer43 is used to update model parameters, and the
learning rate is set to 0.0001. After training, the model is used
to predict the contact maps of the test samples, and their
contact map accuracy scores are plotted in Figure 3. The
average and standard deviation of prediction accuracy are
0.927 and 0.090, respectively. It is impressive to see that almost
461 out of 1136 test samples have the contact map predicted

with 100% accuracy. For more than 91% of test samples, the
contact map accuracy is higher than 80%, indicating that the
deep contact map predictor has captured the bonding
relationships of atoms in the crystal structures. Figure 4
shows two examples of the true contact maps and the
predicted contact maps for Dy4S4Cl4 and As8Ir4.
To further examine the contact map prediction performance,

Table 1 shows the contact map accuracy for 10 structures of
different space groups with different numbers of atoms ranging
from 6 to 12 atoms in their unit cells. We find that for binary
materials, the contact map accuracy scores range from 0.6 to
1.0 for Mg2P8 and Ag2F4. The number of independent sites is
not the only determining factor, as Pd4S8 has only two
independent sites but its contact accuracy is 0.694, which is

Table 2. Structure Prediction Performance of AlphaCrystal with Ground Truth Space Groups

target mp_id
atom# in the
unit cell

given space
group

target space
group

predicted contact map
accuracy

reconstruct contact map
accuracy RMSD MAE RMS

Cr3O5 mp-1096920 8 1 1 0.939 0.917 0.411 0.314 0.387
Pb4O4 mp-550714 8 29 29 0.696 0.952 0.376 0.324 0.398
Co4P8 mp-14285 12 14 14 0.727 0.968 0.196 0.156 none
Ir4N8 mp-415 12 14 14 0.773 0.952 0.145 0.128 none
V2Cl10 mp-1101909 12 2 2 0.848 0.889 0.212 0.156 0.466
Co2As2S2 mp-553946 6 31 31 0.939 0.857 0.196 0.146 0.404
V2O1F7 mp-765500 10 1 1 0.939 1.0 0.336 0.255 none
V4O4F4 mp-754589 12 92 92 0.803 0.889 0.196 0.171 0.382
Fe4As4Se4 mp-1101894 12 14 14 1.0 1.0 0.193 0.163 0.531
Mn4Cu4P4 mp-20203 12 62 62 0.879 0.941 0.146 0.117 0.560

Figure 5. Benchmark crystal structures predicted by AlphaCrystal. (a−c) Target structures. (d) Predicted structure of Pb4O4 with contact map
accuracy = 95.24% and RMSD = 0.376; (e) predicted structure of V4O4F4 with contact map accuracy = 88.89% and RMSD = 0.196; and (f)
predicted structure of Co2As2S2 with contact map accuracy = 85.71% and RMSD = 0.196.
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lower than those of the other binary structures with three
independent sites such as As8Ir4 and Ge4F8. For ternary
materials, Table 1 shows that our model can also achieve high
contact map accuracy over Si4Pt4Se4 and Ta4N4O4.
Contact Map-Based Crystal Structure Prediction:

Benchmark Results. Here, we evaluate how the predicted
contact maps by our deep neural network model can be used
to edit the crystal structures using our CMCrystal algorithm,30

in which a genetic algorithm is used to search the fractional
coordinates of the crystals with the specified space group and
contact map by minimizing the contact map distance error. We
select 10 target structures, as shown in Table 2, and then
predict their contact maps using our neural network model.
Next, we use the CryspNet algorithm to predict their crystal
systems and top 5 space groups. We then use MLatticeABC to
predict the lattice parameters. However, we find that CryspNet
is not reliable enough to always predict the ground truth space
group as its top 5 predictions. Considering that there are only a
limited number of space groups, it is possible to exhaustively
use each of the possible space groups combined with the
predicted contact map and lattice parameters to reconstruct
the structures and then pick the structure with the lowest
DFT-calculated formation energy. This can be done using 270
jobs (corresponding to 270 possible space groups) on Linux

clusters in parallel. For simplicity, here, we just directly specify
the ground truth space groups and combine them with the
predicted contact maps and lattice parameters to do structure
reconstruction using the CMCrystal algorithm. Then, we
calculate the corresponding RMSD, MAE, and RMS errors for
all the reconstructed structures as shown in Table 2(last three
columns).
There are several interesting observations. First, we found

that for all these binary and ternary benchmark materials, our
algorithm has achieved good contact map prediction accuracy
as shown in column 6 of Table 2, which ranges from 0.696 to
1.0. The structure prediction performances are shown in
column 8 with the lowest RMSD of 0.145 for IrrN8. In terms of
MAE, the best performance is on Mn4Cu4P4 with an MAE of
0.117 despite the predicted contact map accuracy not being
the highest with a score of 0.879. We also tried to calculate the
root mean square error as defined by the Pymatgen routine
and found that it cannot calculate successfully for some of the
structures, while for others, the distances were not consistent
with our RMSE/MAE results, possibly because the deviations
of the predicted structures were too large to the ground truth
structures to calculate them using their algorithm. Another
interesting observation is from the comparison of the predicted
contact map accuracy and the reconstruction contact map

Table 3. Structural Information and Formation Energy of Six Predicted New Structures

material space group a b c α β γ Eform (ev/atom)

Al3As4 215 5.3666 5.3666 5.3666 90 90 90 −0.045
CrCu3S4 215 5.459 5.459 5.459 90 90 90 −0.356
CrRh3S4 164 3.5322 3.5322 11.3559 90 90 120 −0.287
Ge3P4 164 3.9036 3.9036 14.2124 90 90 120 0.057
Li3LaS4 225 6.685 6.685 6.685 90 90 90 −0.991
Li3MnS4 225 8.3957 8.3957 8.3957 90 90 90 −0.822
Li3ZnS4 215 5.7787 5.7787 5.7787 90 90 90 −0.481

Figure 6. Predicted crystal structures after DFT relaxation by AlphaCrystal. (a) Al3As4 (Eform: −0.045 eV/atom). (b) CrCu3S4 (Eform: −0.356
eV/atom). (c) CrRh3S4 (Eform: −0.287 eV/atom). (d) Li3LaS4 (Eform: −0.991 eV/atom). (e) Li3MnS4 (Eform: −0.822 eV/atom). (f) Li3ZnS4
(Eform: −0.481 eV/atom).
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accuracy, which evaluates how the contact map from predicted
structures matches the contact map from ground truth
structures. We find that in most cases, the GA-based
optimization algorithm CMCrystal can achieve high accuracy
in reconstructing the predicted contact maps with accuracy
ranging from 0.857 to 1.0.
Figure 5 shows three target structures and their predicted

ones. For Pb4O4, our algorithm achieves a contact map
accuracy of 95.24% and an RMSD of 0.376. For the target
structure V4O4F4, even though the contact map accuracy is
lower (88.89%), the RMSD error is lower with a score of
0.196, and the overall structures are similar. A similar RMSD
score has also been achieved for the target Co2As2S2.
Discovery of New Structures Using AlphaCrystal. In

our previous work, we developed MatGAN,1 a deep generative
machine learning for large-scale generation of new hypothetical
material compositions with chemical validity and high potential
of being stable. Here, we use MATGAN to generate 5 million
hypothetical material compositions and then apply charge
neutrality check and electronegativity balance check. Then, we
train a composition-based formation energy predictor using
Roost, a composition, and graph-based predictor. We then
filter out those candidates with La or Ac elements. We use the
trained free energy predictor to screen the top 100
compositions with the lowest predicted formation energies
and with the number of atoms less than 12 and the number of
elements in the compounds to be 2 or 3.
For the selected 100 candidate materials, we use

CryspNet,31 a composition and deep neural network predictor
for crystal systems and space groups to predict the top 2 crystal
systems. For each predicted crystal system, we predict the top
5 space groups for the candidate. So for each composition, we
have 10 candidate structures of different space groups. For
each of such structure candidates, we apply the MLatticeABC
algorithm to predict its lattice constants a, b, and c (Table 3).
For the above 100 × 10 = 1000 candidate structures, we use

the contact map predictor to predict their contact maps and
use the CMCrystal30 algorithm to predict their crystal
structures. For each of the 10 candidate structures of a given
formula, we use a graph neural network-based model to predict
their formation energy and pick the structure with minimum
formation energy as its final structure. Out of the 100 predicted
structures, we pick the top 7 with the lowest predicted

formation energy to do DFT relaxation and phonon calculation
to further determine their stability. The structures of these
calculations are shown in Figure 6. Out of the seven candidate
structures, one structure is dynamically stable, as shown, where
there are no imaginary phonon frequencies (Figure 7).
Discussion. We have shown that deep learning models can

be trained to predict atomic pairwise relationships, which can
be further used to reconstruct atomic coordinates using genetic
algorithms. A possible limitation is that the contact map itself
may not be sufficient to guide the search of the coordinates for
complex material structures. The pairwise distance matrix may
be more informative than the binary contact map, as is the case
in protein structure prediction. Moreover, this contact map-
based CSP algorithm may be combined with an energy-based
global optimization algorithm, especially with the progress of
machine learning-based potentials.44

■ CONCLUSIONS
We propose AlphaCrystal, a deep residual neural network
approach for crystal structure prediction by first predicting the
contact map of atom pairs for a given material composition and
then using it to predict its crystal structure using a genetic
algorithm. Compared to the minimization of free energy
during atomic configuration search in conventional ab initio
CSP methods, our method takes advantage of the existing
physical or geometric constraints (such as the symmetry of
atom positions) of the existing crystal structures in material
repositories. Our experiments show that our AlphaCrystal
algorithm is able to reconstruct crystal structures for a large
number of materials with diverse space groups by optimizing
the placement of the atoms using the contact map matching as
the objective for the given space group and stoichiometry. We
also applied y-scrambling to shuffle the structures of the
compositions and found that the model trained with the
shuffled data set lost its contact map prediction power. Our
predicted structures are so close to the target crystal structures;
therefore, they can be used to seed the costly free energy
minimization-based CSP algorithms for further structure
refining. While we have demonstrated the feasibility of contact
map-based prediction of structures from formulas, we do
recognize that the structure reconstruction from only the
contact maps is not sufficient for successful structure
prediction for many formulas. Adding distance constraints

Figure 7. Structure and phonon dispersion of Li3MnS4, which is likely to be thermodynamically stable. (a) Structure (formation energy: −0.822
eV/atom). (b) Phonon dispersion.
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may be the next step. Overall, we believe our AlphaCrystal can
be a new kind of deep knowledge-guided approach for large-
scale prediction of crystal structures, which is very useful in the
high-throughput discovery of new materials using modern
generative material design models.45
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