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In general, only a total of four tissue classes are distinguished: the covering tissue
(epithelial tissue), the connective and supporting tissue (connective tissue, fatty tissue, bone,
and cartilage), the muscle tissue, and the nervous tissue. All organs of the body, such as
the heart and lungs, as well as functional organ systems such as the skeletal, nervous, and
vascular systems, are composed of these four tissue types. Moreover, specialized tissues in
the form of organs with dedicated cellular and extracellular organization are known. In
total, 12 different organs in the human organism are known. Each organ in the body has a
distinctive structure (e.g., heart, lungs, liver, eyes, and stomach) and performs very specific
tasks. An organ is composed of different types of tissue and thus also of different types of
cells. For example, the heart is made up of muscle tissue that contracts and pumps blood
through the veins, fibrous tissue of the heart valves, and special cells that control heart rate
and rhythm [1]. In the eye are muscle cells that open and close the pupil, clear cells that
form the lens and cornea, cells that produce the fluid contained in the eye, cells that sense
light, and nerve cells that conduct impulses to the brain [2]. Even an organ as simple as
the gallbladder contains different types of cells, such as those that form a coating of the
bladder that protects it from irritation by bile, muscle cells that contract to expel bile, and
cells that form the fibrous outer wall that holds the sac together [3].

Various diseases and mainly cancer often threaten the functionality of these various
organs, so that in many cases biomaterials or medical devices have to be used in order
to be able to restore structure and functionality [4]. In general, materials of both organic
and inorganic origin are on the market for a broad variety of applications. For example,
these biomaterials include metal alloys, ceramics, polymers, and biocomposites [5–8].
It quickly becomes apparent how different the basic physicochemical properties of the
large heterogeneous group of biomaterials are. Thereby, biomaterials are defined by their
function. Since they should replace the function of certain host tissues, they must possess
the right respective mechanical, chemical, and biological properties (optimized for their
purpose, their specific application, and their respective biological surroundings).

In this context, the term “biocompatibility” is used to describe the appropriate biologi-
cal requirements of a biomaterial. Its definition describes “biocompatibility” as the ability
of a material to perform with an appropriate host response in a specific application [9].
Thus, biocompatibility addresses the identification of a specific host response. Moreover,
biocompatibility includes the safety of a biomaterial, which means that a material ap-
plication does not elicit detrimental local or systemic responses. Therefore, biomaterials
have to undergo tissue and animal testing to determine their safety and efficacy prior
to human application. For example, the importance of biocompatibility was shown by
the consequences of allergic reactions to nickel- and chromium-containing stainless steel
implants [10]. In the worst case, the biological rejection of a biomaterial occurs, which
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can lead to the necessity of its removal (even in combination with biomaterial-induced
inflammatory responses). Altogether, a lot of research into new biomaterials is necessary
and has to focus on improving biocompatibility of biomaterials.

A variety of biomaterials are currently available on the market for soft and hard tissue
regeneration [6,11]. Moreover, a broad spectrum of new materials is currently being de-
veloped worldwide. Thus, an enormous number of preclinical in vitro and in vivo studies,
and clinical studies as well, are being conducted to clarify the related tissue reactions and
their regenerative capacities. The compositions of the biomaterials for soft and hard tissue
regeneration vary from natural polymers (such as collagen and decellularized bone matrix)
up to synthetic polymers such as polylactid acid (PLA) [12,13]. Furthermore, different
new composite materials and metals (e.g., magnesium) are currently being developed and
investigated [14]. Moreover, new manufacturing methods such as 3D printing are on the
rise and can be of greater interest for future applications [15]. Finally, it is of great interest
to conduct further research focusing on the molecular mechanisms of and immunological
responses to biomaterials.

In this special issue new insights into the underlying cellular and molecular inter-
actions of biomaterials for hard and soft tissue regeneration are presented ranging from
collagen-based matrices for osteoconduction and collagen membranes for guided bone
regeneration (GBR) to newly developed methodologies such as electrical stimulation of
adipose-derived stem cells, vascular grafts, and bioabsorbable ossification materials for
maxillofacial bone surgery [11,16–23]. Altogether, this special issue includes studies de-
scribing novel biomaterials and innovative material processing techniques related to the
healing processes of soft and hard tissues.
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