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Can CT radiomic analysis in NSCLC predict
histology and EGFR mutation status?
Subba R. Digumarthy, MDa,∗, Atul M. Padole, MDa, Roberto Lo Gullo, MDc, Lecia V. Sequist, MDb,
Mannudeep K. Kalra, MDa

Abstract
To assess the role of radiomic features in distinguishing squamous and adenocarcinoma subtypes of nonsmall cell lung cancers
(NSCLC) and predict EGFR mutations.
Institution Review Board-approved study included chest CT scans of 93 consecutive patients (43men, 50 women, mean age 60±

11 years) with biopsy-proven squamous and adenocarcinoma lung cancers greater than 1cm. All cancers were evaluated for
epidermal growth factor receptor (EGFR) mutation. The clinical parameters such as age, sex, and smoking history and standard
morphology-based CT imaging features such as target lesion longest diameter (LD), longest perpendicular diameter (LPD), density,
and presence of cavity were recorded. The radiomics data was obtained using commercial CT texture analysis (CTTA) software. The
CTTAwas performed on a single image of the dominant lung lesion. The predictive value of clinical history, standard imaging features,
and radiomics was assessed with multivariable logistic regression and receiver operating characteristic (ROC) analyses.
Between adenocarcinoma and squamous cell carcinomas, ROC analysis showed significant difference in 3/11 radiomic features

(entropy, normalized SD, total) [AUC 0.686–0.744, P= .006 to<.0001], 1/3 clinical features (smoking) [AUC 0.732,P= .001], and 2/3
imaging features (LD and LPD) [AUC 0.646–0658, P= .020 to .032]. ROC analysis for probability variables showed higher values for
radiomics (AUC 0.800, P< .0001) than clinical (AUC 0.676, P= .017) and standard imaging (AUC 0.708, P< .0001). Between EGFR
mutant and wild-type adenocarcinoma, ROC analysis showed significant difference in 2/11 radiomic features (kurtosis, K2) [AUC
0.656–0.713, P= .03 to .003], 1/3 clinical features (smoking) [AUC 0.758, P< .0001]. The combined probability variable for
radiomics, clinical and imaging features was higher (AUC 0.890, P< .0001) than independent probability variables.
The radiomics evaluation adds incremental value to clinical history and standard imaging features in predicting histology and EGFR

mutations.

Abbreviations: AUC = area under curve, EGFR = epidermal growth factor receptor, HU = Hounsfield unit (HU), LD = longest
diameter, LPD = longest perpendicular diameter, MPP = mean positive pixels, NCCN = National Comprehensive Cancer Network,
NSCLC = nonsmall cell lung cancer, PPP = percent positive pixels, ROC = receiver operating characteristic, ROI = region of interest,
SSF = spatial scaling factor.
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1. Introduction

Lung cancer is the leading cause of cancer-related death
worldwide, with a dismal 5-year survival rate of 15% in men
and 21% in women, according to the American Cancer Society.[1]

Over the last two decades, progress has been made in
understanding the genetic and molecular basis of lung cancer in
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the hope that a genotype-driven targeted treatment approach to
lung cancer will improve the survival and quality of life of patients
with lung cancer.[2–5] These new targeted therapies are efficacious
and selective in their action. Consequently, it is now standard
clinical practice to genotype advanced nonsmall cell lung cancer
(NSCLC) at the timeof diagnosis to help choose the best therapy.[2]

Early initiation of targeted therapies is associatedwith improved
outcome, prolonged progression-free survival, and lower loco-
regional recurrence rates but they should not be considered until
tumor histology and molecular genetic analysis have been
confirmed.[5,6] The National Comprehensive Cancer Network
(NCCN) has described clinical practice guidelines for molecular
genetic analysis for which there are FDA-approved targeted
therapies.[7] Though genotyping is essential for choosing the best
treatment, there are barriers in somepractice settings suchas ability
to get sufficient tissue for testing, cost of genotyping, and turn-
around time to receive the genotyping results.
A noninvasive technique to obtain information regarding

histology and mutations associated with NSCLC could be
transformative for enabling targeted therapy, primarily if the
technique can be used as an adjunct to a commonly used imaging
technique such as CT. Recent publications have highlighted the
role of radiomics in various malignancies including lung
cancer.[8–18] Radiomics involves histogram-based analyses of
distribution and spatial variation of pixel values within a region
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of interest (ROI) to obtain information about tumor heterogene-
ity. Few published studies have evaluated the role of radiomics in
predicting epidermal growth factor receptor (EGFR) mutation in
adenocarcinoma, the most common mutation that has an
approved targeted therapy as a first-line treatment. To the best
of our knowledge, there are no publications on the incremental
value of radiomics when combined with clinical history and
standard imaging features. The purpose of our study was
therefore to assess if radiomics can distinguish lung cancers based
on histology and EGFR genetic mutations.
2. Materials and methods

The Human Research Committee of our institutional review
board approved the study. The study was compliant with the
Health Insurance Portability and Accountability Act (HIPAA).
Two studies of co-authors (LVS, MKK) have received research
grants or consultation fee for unrelated projects. None of the
other authors have any financial conflict of interest concerning
the study.
2.1. Patients

Our retrospective study included patients with NSCLC who had
known histologic diagnosis and genotyping analysis of at least
EGFR between January 2008 and December 2013. Patients were
identified from a lung cancer database managed by our Medical
Thoracic Oncology Program registry. Patients with histologic
subtypes other than adenocarcinoma and squamous cell
carcinoma (such as those with small cell and large cell lung
cancer and metastatic cancers from nonlung primary sites) were
excluded (Fig. 1). We included 93 patients with nonsmall lung
cancer (total 94 lung nodules/masses: 69 adenocarcinomas and
25 squamous cell carcinoma). Out of 69 adenocarcinomas, 25
were EGFR mutation positive and the remaining 44 were EGFR
wild-type. Themean age of patients was 60±11 years (range: 26–
96 years). There were 43men and 50women (Table 1). The tissue
diagnosis of NSCLC was established with mediastinoscopy,
bronchoscopy, or CT-guided biopsy of primary or metastatic
sites. All biopsy specimens were tested for EGFR mutations by
multiplex PCR-based assay (Snapshot; Applied Biosystems,
Foster City, CA). The smoking history was gathered from
electronic medical records and was classified as current, former,
and never smokers.

2.2. CT scanning

The CT examinations were performed at a single hospital but on
multiple different CT scanners (8, 16, 64, and 128- slice
multidetector-row CT). All included CT examinations repre-
sented contrast-enhanced CT performed using helical acquisition
mode, 100–120kV, automatic exposure control, reconstructed
slice thickness of 2.5 to 3mm and standard soft tissue
reconstruction kernel. Only transverse CT images were used
for CT texture analysis.
Analyzed images included one chest CT examination per

eligible patient performed before any therapy (surgery, radiation,
or systemic therapy). In patients with multiple potential imaging
studies, the examination closest to the date of tissue sampling was
selected. The images were evaluated on PACS system (Impax,
software version 6.5, Agfa Healthcare) by fellowship trained
thoracic radiologist (SRD, 17 years of experience). The size was
recorded in two dimensions: the longest diameter (LD) and
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longest perpendicular diameter (LPD). The density of the lung
lesion was characterized as solid, ground glass, and part solid
nodule based on Fleischner society guidelines of thoracic
radiology nomenclature.
2.3. Radiomics

DICOM images fromCT examinations were imported to a secure
offline server for radiomics analysis with commercially available
software (TexRAD limited, UK). For each CT examination, a
radiologist co-investigator (RLG) identified the transverse image
with the maximal dimension of the malignant lung nodule or
mass. This co-investigator (RLG) was blinded to the results of the
histology and molecular genetic testing. If a motion, contrast
streaking or beam hardening artifacts were noted on the image
with maximal dimension, another “artifact-free” image demon-
strating the lesion was chosen. The longest and its orthogonal
dimensions were measured for each lesion on the image used for
radiomics. A ROI was carefully drawn in the nodule or mass
avoiding contact with its edges using a semi-automated process
(Fig. 2). All lesions in the pleura, chest wall, mediastinum, and
bones were excluded. For cavitary lesions, a threshold of greater
than or equal to �50HU was applied to exclude air component
and include only the solid portions of the lesions. Macroscopic
calcifications if any were also excluded from the ROI.
The radiomic analysis comprised an initial image filtration step

followed by quantification of texture within the lesion. The
software highlights the size of the image features with the spatial
scaling factor (SSF), which ranges between object radii of 0, 2, 3,
4, 5, and 6mm. The filtration step is important to remove image
heterogeneity that is due to photon noise and to highlight
biologically important heterogeneity.[8,10]
2.4. Quantitative analysis

The following features were analyzed using the CTTA software.
The mean value of pixels with in a ROI as mean Hounsfield unit
(HU) values. The degree of dispersion of theHU value is expressed
as standard deviation (SD). The SD was also expressed as
logarithmic expression as “normalized SD”: ln(SD)/ln(n) [= ln
(SD)/ln (total pixels in ROI)] to represent the variability of region
size. The number of pixels having positive value are expressed as
percent positive pixels (PPP), and the mean positive pixels (MPP)
indicates value greater than 0. The asymmetry of histogram is
expressed as skewness,which can be negative or positive. The peak
of distribution in histogram represents kurtosis and is a marker of
vascularity and angiogenesis in the tumor. The kurtosis can be
positive with peak greater than normal Gaussian distribution and
negative with smaller peak. The complexity or heterogeneity of the
structure is represented by entropy. The vascular structures are
represented by kurtosis and distribution of nonvascular structures
by skewness. The software enables selection of SSFs (0, 2, 3, 4, 5, 6)
based on the lesion size to alter the filtration threshold.
2.5. Statistical analysis

The data were analyzed using SPSS 21 statistical software (IBM,
Armonk, NY). A Pearson correlation analysis was performed to
compare the radiomics features, clinical history (age, gender, and
smoking) and standard imaging features among different cancer
types (adenocarcinoma vs squamous cell carcinoma, EGFR
positive vs EGFR wild-type). The P-value of less than or equal to
0.05 with a 95% confidence interval was considered significant.



Figure 1. CONSORT diagram of patient selection.
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Receiver operating characteristic (ROC) curves and area under
curve (AUC) were generated for various radiomic features. The
probability variables for each group and all group together were
derived from the binary logistic regression analysis. The ROC
curves were generated for these probability variables to see the
difference.
3

3. Results

3.1. Differentiating adenocarcinoma vs squamous cell
carcinoma

Pearson correlation analysis showed that there were significant
correlations for 4/11 radiomics features (entropy, log of SD,
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Table 1

Patient demographics.
Number of patients 93
Male: Female 43:50
Mean age±SD 60±11 years
Smoker: Nonsmoker 61:32
Number of nonsmall lung cancer (Adenocarcinoma:

Squamous cell carcinoma)
94 (69:25)

Adenocarcinoma (EGFR mutation: Wild type) 69 (27:42)

EGFR= epidermal growth factor receptor, SD= standard deviation.

Digumarthy et al. Medicine (2019) 98:1 Medicine
normalized SD, total), 2/3 clinical (smoking, gender), and 1/3
imaging features (LD) among adenocarcinomas and squamous cell
carcinomas (r=�0.354–0.112, n=94, P= .033 to <.0001). The
separate ROC analysis showed that 3/11 radiomic features [AUC
0.686–0.744, P= .006 to <.0001], 1/3 clinical features (smoking)
(AUC 0.732, P= .001), and 2/3 imaging features (LD and LPD)
[AUC 0.646–0658, P= .020 to .032] were significantly different.
The entropywas the only predictor on logistic regression (P= .015,
Nagelkerke R2=0.30). The entropy explained the 30% variance
and correctly identified 79.0% carcinomas. After adding all major
clinical, imaging and radiomics features in the regression model,
the entropy (P= .030), gender (P= .049), and smoking (P= .007)
were the predictors (Nagelkerke R2=0.57). The entropy, gender,
and smoking explained the 57% variance and correctly identified
85.0% carcinomas.
The separate ROC analysis (for radiomics, clinical, imaging)

showed that 3/11 radiomic features (entropy, normalized SD,
total) [AUC 0.686–0.744 (0.545–0.859), P= .006 to <0.0001],
1/3 clinical features (smoking) [AUC 0.732 (0.633–0.831),
P= .001], and 2/3 imaging features (LD and LPD) [AUC 0.646–
0658 (0.508–0.795), P= .020 to 0.032] were significantly
Figure 2. Segmentation of tumor by outlining the re
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different between the adenocarcinomas and squamous cell
carcinomas (Table 2).
For probability variables (radiomics, clinical, imaging), ROC

analysis showed higher AUC value for radiomics (AUC 0.800,
P< .0001) than clinical (AUC 0.780, P< .0001) and imaging
(AUC 0.694, P= .004) for differentiating adenocarcinomas and
squamous cell carcinomas (Fig. 3). There was a significant
difference among radiomics and imaging probability variables
(P< .0001), and no difference among radiomics and clinical
features (P= .13). The AUC value for combined (radiomics,
clinical, imaging) probability variable was significantly higher
(AUC 0.923, P< .0001) than separate probability variables.

3.2. Differentiating EGFR mutant vs EGFR wild-type
adenocarcinoma

ROC analyses (for radiomics, clinical, imaging) showed that 2/11
radiomic features (kurtosis, K2) [AUC 0.656–0.713 (0.522–
0.845), P= .03 to .003], 1/3 clinical features (smoking) [AUC
0.758 (0.638–0.878), P< .0001] (Fig. 4, Table 3), and none of the
imaging features were significantly different between EGFR
mutant and EGFR wild-type adenocarcinomas. The kurtosis was
the only predictor for differentiating FGFR positive and EGFR
wild-type adenocarcinomas on logistic regression analysis
(P= .037, Nagelkerke R2=0.15). The kurtosis explained the
15% variance and correctly identified 70.0% carcinomas.
For probability variables (radiomics, clinical, imaging), ROC

analysis showed slightly higher AUC value for clinical (AUC
0.794, P< .0001) than radiomics (AUC 0.725, P= .002) and
significantly higher than standard imaging (AUC 0.553, P
= .461). The AUC value for combined (radiomics, clinical,
imaging) probability variable was significantly higher (AUC
0.863, P< .0001) than separate probability variables.
gion of interest for extracting radiomic features.



Table 2

AUC values for radiomic features for adenocarcinoma vs squamous cell carcinoma.

Asymptotic 95% Confidence Interval

Test Result Variable Area Std. Error Asymptotic Sig. Lower Bound Upper Bound

Clinical 0.780 0.047 0.000 0.687 0.873
Imaging 0.694 0.065 0.004 0.567 0.821
Radiomics 0.800 0.052 0.000 0.698 0.902
Clinical, imaging & Radiomics 0.923 0.028 0.000 0.868 0.978
Smoking (Clinical) 0.732 0.050 0.001 0.633 0.831
Gender (Clinical) 0.617 0.066 0.084 0.489 0.746
Longest Diameter (Imaging) 0.646 0.070 0.032 0.508 0.783
Density (Imaging) 0.464 0.065 0.593 0.336 0.592
Skewness (Radiomics) 0.512 0.071 0.864 0.373 0.650
Kurtosis (Radiomics) 0.577 0.074 0.253 0.432 0.722
Entropy (Radiomics) 0.744 0.059 0.000 0.629 0.859
Mean Positive Pixel (Radiomics) 0.571 0.067 0.295 0.439 0.703
Normalized SD (Radiomics) 0.686 0.072 0.006 0.545 0.827

AUC= area under curve, SD= standard deviation.
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3.3. Differentiating EGFR wild-type adenocarcinoma vs
squamous cell carcinoma

The separate ROC analysis (for radiomics, clinical, imaging)
showed that only 3/11 radiomic features (entropy, normalized
SD, total) [AUC 0.673–0.759 (0.532–0.879), P= .018 to
<.0001], 1/3 of the clinical features, and 2/3 imaging features
(LP and LPD) [AUC 0.652–667 (0.513–0.804), P= .039 to .023]
were significantly different (Table 4).
For probability variables (radiomics, clinical, imaging), ROC

analysis showed higher AUC value for radiomics (AUC 0.800,
P< .0001) than clinical (AUC 0.676, P= .017) and standard
imaging (AUC 0.708, P< .0001) for differentiating EGFR wild-
type adenocarcinoma and squamous cell carcinomas. The AUC
Figure 3. Receiver operating characteristic curves with AUC values for pr
adenocarcinomas and squamous cell carcinomas of the lung. The AUC value for c
0.923, P< .0001) and higher than separate probability variables. AUC=area und
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value for combined (radiomics, clinical, imaging) probability
variable was significantly higher (AUC 0.890, P< .0001) than
separate probability variables.
3.4. Differentiating EGFR mutant adenocarcinoma vs
squamous cell carcinoma

ROC analyses (for radiomics, clinical, imaging) showed that 6/11
radiomic features (entropy, kurtosis, log of SD, normalized SD,
total, K2) [AUC 0.664–0.721 (0.505–0.862),P= .011 to<.0001],
2/3 clinical features (smoking, gender) [AUC0.672–0.889 (0.523–
0.987),P= .034 to<.0001], and none of the imaging featureswere
significantly different between the two groups.
obability variables radiomics, clinical, imaging and combined differentiate
ombined (radiomics, clinical, imaging) probability variable was improved (AUC
er curve.

http://www.md-journal.com


Figure 4. Receiver operating characteristic curves with AUC values for probability variables radiomics, clinical, imaging and combined differentiate fibroblast
growth factor receptor positive and epidermal growth factor receptor wild-type adenocarcinomas of the lung. The AUC value for combined (radiomics, clinical,
imaging) probability variable was improved (AUC 0.863, P< .0001) and higher than separate probability variables. AUC=area under curve.
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ROC analysis for probability variables (radiomics, clinical,
imaging) showed higher AUC value for clinical (most
squamous cell carcinomas patients were male smokers and
most EGFR mutant patients were female nonsmokers)
(AUC 0.936, P< .0001) than radiomics (AUC 0.815,
P< .0001) and imaging (AUC 0.666, P= .040) for differenti-
ating EGFR mutant adenocarcinoma and squamous cell
carcinomas (Table 5). The AUC value for combined (radio-
mics, clinical, imaging) probability variable was close to
1 (P< .0001) and significantly higher than independent
probability variables.
Table 3

AUC values for radiomic features for EGFR mutant vs EGFR wild typ

Test Result Variable Area Std. Error

Clinical 0.794 0.062
Imaging 0.553 0.069
Radiomics 0.725 0.065
Clinical, imaging & Radiomics 0.863 0.045
Smoking (Clinical) 0.758 0.061
Gender (Clinical) 0.590 0.070
Longest Diameter (Imaging) 0.558 0.070
Density (Imaging) 0.529 0.071
Skewness (Radiomics) 0.517 0.076
Kurtosis (Radiomics) 0.713 0.067
Entropy (Radiomics) 0.582 0.070
Mean Positive Pixel (Radiomics) 0.530 0.072
Normalized SD (Radiomics) 0.525 0.069

AUC= area under curve, EGFR= epidermal growth factor receptor, SD= standard deviation.
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4. Discussion

Recent studies on value of radiomics for predicting histopathol-
ogy have not considered the significance of clinical history and
imaging features which may have overemphasized the signifi-
cance of radiomics.[19–21] We found that accuracy for radiomics
features (AUC 0.800) was higher than clinical (AUC 0.780) and
standard imaging (AUC 0.694) in differentiating adenocarcino-
ma from squamous cell carcinomas. After combining radiomics,
clinical, and imaging features, the accuracy increased (AUC
0.923). Similar accuracy has been reported with few previous
studies as well.[22–33] This is important due to increased overall
e adenocarcinoma.

Asymptotic 95% Confidence Interval

Asymptotic Sig. Lower Bound Upper Bound

0.000 0.671 0.916
0.461 0.418 0.688
0.002 0.598 0.852
0.000 0.775 0.951
0.000 0.638 0.878
0.210 0.453 0.727
0.417 0.422 0.695
0.685 0.390 0.668
0.811 0.367 0.667
0.003 0.581 0.845
0.253 0.445 0.720
0.680 0.389 0.671
0.731 0.390 0.660



Table 4

AUC values for radiomic features for EGFR wild type adenocarcinoma vs squamous cell carcinoma.

Asymptotic 95% Confidence Interval

Test Result Variable Area Std. Error Asymptotic Sig. Lower Bound Upper Bound

Clinical 0.676 0.065 0.017 0.549 0.802
Imaging 0.708 0.065 0.005 0.581 0.834
Radiomics 0.800 0.057 0.000 0.689 0.911
Clinical, imaging & Radiomics 0.890 0.039 0.000 0.814 0.965
Smoking (Clinical) 0.631 0.067 0.075 0.499 0.763
Gender (Clinical) 0.582 0.072 0.265 0.441 0.723
Longest Diameter (Imaging) 0.652 0.071 0.039 0.513 0.790
Density (Imaging) 0.548 0.072 0.517 0.407 0.688
Skewness (Radiomics) 0.517 0.078 0.815 0.365 0.669
Kurtosis (Radiomics) 0.519 0.082 0.800 0.359 0.678
Entropy (Radiomics) 0.759 0.061 0.000 0.639 0.879
Mean Positive Pixel (Radiomics) 0.581 0.072 0.270 0.439 0.723
Normalized SD (Radiomics) 0.673 0.072 0.018 0.532 0.814

AUC= area under curve, EGFR= epidermal growth factor receptor, SD= standard deviation.
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incidence of adenocarcinoma and those in the central loca-
tions.[31] The radiomics (entropy) along with clinical (smoking
and gender) and imaging features can correctly identify 85%
adenocarcinoma and squamous cell carcinomas. This predictive
value is even higher between EGFR mutant adenocarcinoma and
squamous cell carcinomas, where the accuracy reaches up to
95%. This is mainly due to the fact that most squamous cell
carcinomas patients were male smokers and most EGFR mutant
patients were female nonsmokers. The combined radiomics
(kurtosis), clinical (smoking), and imaging can correctly
differentiate only up to 75% EGFR positive and EGFR wild-
type adenocarcinoma. The relatively similar clinical features can
partly explain the slightly decreased accuracy in this group, but
even in this cohort addition of radiomics improved the accuracy
of detection. In our study, none of the imaging features (density
and size of the tumor) was a predictor for predicting the mutation
status.
Weiss et al have reported that radiomics can differentiate

NSCLC with KRAS mutation from pan-wildtype.[30] Our study
demonstrates that radiomics features can detect differences in
tumor heterogeneity (kurtosis and entropy) between adenocarci-
nomas with and without EGFR mutations and between
Table 5

AUC values for radiomic features for EGFR mutation adenocarcinom

Test Result Variable Area Std. Error

Clinical 0.936 0.034
Imaging 0.666 0.080
Radiomics 0.815 0.060
Clinical, imaging & Radiomics 1.000 0.000
Smoking (Clinical) 0.889 0.050
Gender (Clinical) 0.672 0.076
Longest Diameter (Imaging) 0.636 0.082
Density (Imaging) 0.519 0.081
Skewness (Radiomics) 0.503 0.081
Kurtosis (Radiomics) 0.669 0.077
Entropy (Radiomics) 0.721 0.072
Mean Positive Pixel (Radiomics) 0.556 0.081
Normalized SD (Radiomics) 0.706 0.080

AUC= area under curve, EGFR= epidermal growth factor receptor, SD= standard deviation.

7

adenocarcinomas and squamous cell carcinoma. The accuracy
of differentiating these carcinomas improved with combining
radiomics features along with clinical and imaging features noted
in our study. Mak and Digumarthy et al reported lower 18F-
fluorodeoxyglucose (FDG) uptake on PET examinations in
patients with EGFR-positive adenocarcinoma compared to those
with EGFR wild-type.[32] This supports observation from our
study that lesions with higher tumor heterogeneity (entropy) have
higher metabolic activity with greater 18-FDG uptake. Future
studies will be needed to assess if radiomics in combination with
the 18-FDG PET can enable better identification of EGFR
mutation in patients with adenocarcinoma.
There was a significant difference in kurtosis between EGFR

mutant and wild-type adenocarcinoma. Kurtosis is a marker for
tumor angiogenesis, which in turn is an essential factor
determining tumor aggressiveness and overall survival. Recent
studies have reported improved survival upon addition of
antiangiogenic therapy to patients with EGFR mutant adeno-
carcinomas receiving erlotinib.[27] This implies that as a surrogate
marker of tumor angiogenesis, kurtosis might be useful in
predicting and assessing response to antiangiogenic treatment in
patients with EGFR mutant adenocarcinomas.
a vs squamous cell carcinoma.

Asymptotic 95% Confidence Interval

Asymptotic Sig. Lower Bound Upper Bound

0.000 0.870 1.000
0.040 0.509 0.823
0.000 0.698 0.932
0.000 1.000 1.000
0.000 0.791 0.987
0.034 0.523 0.821
0.094 0.475 0.797
0.819 0.360 0.797
0.971 0.344 0.662
0.037 0.518 0.820
0.006 0.579 0.862
0.492 0.397 0.714
0.011 0.548 0.863
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Implication of our study is that by integrating clinical and
imaging features with radiomics features can improve the
distinction of tumors with squamous and adenocarcinoma
histology and EGFRmutation. There are established guidelines
for genetic testing for EGFR mutations and ALK rearrange-
ments in patients with lung adenocarcinomas[7] but issues
related to cost, invasiveness, and logistics of genetic profiling
are not trivial. In this context, our study demonstrates that
differentiation of lung cancer based on histology and/or
presence of EGFR positive with noninvasive technique such
as radiomics could assist the multidisciplinary lung cancer
treatment team in the decision making regarding molecular
testing options by triaging patients with lung cancer, separating
thembased on histology and likelihood of presence ofmutation,
in addition to other predictors of presence of genetic mutation
such as smoking history and ethnicity. This could potentially
affect therapy selection for patients with cancer and would
allow the pathologist to standardize genetic profiling, priori-
tizing tests, saving tissues from biopsy sample allowing for a
more thoughtful use of time, available sampled tissue and test
and labor-related expenses. Although less likely in the
developed nations, tools such as radiomics could be helpful
in nations with limited resources. Indeed, such a cost-effective
model based on radiomics has been reported for colorectal
cancer surveillance[34] and in chemotherapy selection for
patients with NSCLC.[35]

Our study has limitations. Since this was a retrospective
study, we did not perform sample size estimation.However, our
study has a higher sample size compared to some other
publications on radiomics. Ng et al have reported that
measurement of radiomics over the entire tumor volume is
more accurate than from a single image with largest axial
dimensions (as in our study) since the former better represents
tumor heterogeneity and has a stronger correlation with overall
survival compared to a single slice analysis.[36] However, most
investigations have reported promising results for assessment of
tumor biology[37,38] and prognosis[24,39] with radiomics from a
single image with the largest cross-sectional tumor area.
Another limitation of our study involves the exclusion of other
histological types of primary and metastatic lung cancers. We
also did not assess the effect of different forms of treatment on
radiomics since all post-treatment CT examinations were
excluded from our study.
In conclusion, radiomics features of NSCLC can help

distinguish between adenocarcinoma and squamous cell carci-
noma and EGFR positive and wild-type adenocarcinomas.
Entropy and Kurtosis are the two most important distinguishing
radiomic features. The radiomics evaluation adds incremental
value to clinical history and standard imaging features in
predicting histology and EGFR mutations and therefore,
incorporating radiomics in CT evaluation of nonsmall lung
cancers has potential clinical application.
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