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Abstract

Whole-slide images (WSI) are digitized representations of thin sections of stained tissue from 

various patient sources (biopsy, resection, exfoliation, fluid) and often exceed 100,000 pixels in 

any given spatial dimension. Deep learning approaches to digital pathology typically extract 

information from sub-images (patches) and treat the sub-images as independent entities, ignoring 

contributing information from vital large-scale architectural relationships. Modeling approaches 

that can capture higher-order dependencies between neighborhoods of tissue patches have 

demonstrated the potential to improve predictive accuracy while capturing the most essential slide-

level information for prognosis, diagnosis and integration with other omics modalities. Here, we 

review two promising methods for capturing macro and micro architecture of histology images, 

Graph Neural Networks, which contextualize patch level information from their neighbors through 

message passing, and Topological Data Analysis, which distills contextual information into its 

essential components. We introduce a modeling framework, WSI-GTFE that integrates these two 

approaches in order to identify and quantify key pathogenic information pathways. To demonstrate 

a simple use case, we utilize these topological methods to develop a tumor invasion score to stage 

colon cancer.
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1. Introduction

Large-scale architectural motifs and repetitive patterns of functional tissue sub-units (eg. 

cells, connective tissue, extracellular matrix) form the basis of histopathology. While normal 

tissue is relatively homogenous, cancer contains disordered structures / phenotypes that 

reflect driving genetic alterations. As neoplastic transformation progresses, the extent of 

infiltration and destruction of normal tissue is used to grade and stage cancers. Practitioners 

of histopathology are thus highly sensitive to disruptions in normal structure. A wide variety 

of computational methods have been developed to augment traditional histological 

inspection1 by reducing time and personnel costs associated with manual slide screening. 

These emerging techniques have also demonstrated the potential for identifying novel 

disease pathways and previously unrecognized morphologies.

Deep learning has been particularly successful in digital pathology2. In comparison to prior 

modeling techniques that use handcrafted features, deep learning applies parameterized 

filters and pooling mechanisms via convolutional neural networks (CNN) to capture and 

integrate lower level image features into successively higher levels of complexity3. These 

approaches have been used to automatically stage liver fibrosis4, identify morphological 

features correspondent with somatic alterations5, assess urine slides for bladder cancer6, and 

circumvent costly chemical staining procedures7,8, amongst many others9. Many research 

groups are developing high-throughput clinical pipelines to take advantage of these 

healthcare technologies. Validating and scaling these technologies is essential for successful 

deployment10.

As a result of the gigapixel resolution of Whole Slide Images (WSI), which contain a diverse 

range of tissue and morphological features, researchers typically must partition the WSI into 

smaller sub-images. These sub-images are then evaluated separately via the deep learning 

model for classification or segmentation tasks, from which their results may be aggregated 

for slide-level inferences. Aggregation via a CNN incorporates excessive whitespace and 

places unnecessary dependence on the orientation and positioning of the tissue section11. 

Alternatively, a ‘bag of images’ approach can be taken, in which patch representations are 

aggregated using autoregressive or attention-based mechanisms to generate a whole slide 

representation, ignoring non-tissue regions12–14. These integrative approaches may be highly 

stochastic and insufficiently reproducible / reliable to be properly integrated into the clinic or 

with other omics-based modalities. These methods may additionally undervalue the higher 

order context between a patch and its immediate neighbors which may be vitally important 

to the targeted prediction.

Graphs are mathematical constructs that model pairwise relationships between entities. 

Accordingly, graphs are well suited to model dyadic relationships between single patches 

(nodes) in a WSI as defined by their spatial distance/correlation (edges). Graph Neural 

Networks (GNN) have been developed to encapsulate information from adjacent tissue 

regions/cells in order to inform the representation of the current patch of interest. GNN 

naturally capture the intermingling of various tissue sub-compartments while remaining 

permutationally invariant (the ordering/rotation of patches on slides does not impact 

prediction). While square-grid convolutions over WSI sub-images propagate information 
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within a fixed neighborhood of patches and require consistent ordering of patches11, GNN 

relax the convolutional operator to aggregate information across an unfixed number of 

neighbors to update the patch-level embedding15.

Prior GNN research on WSIs center graph nodes on cells under the assumption that cell-cell 

interactions are the most salient points of information16. However, this approach 

underappreciates the diagnostic/prognostic information conveyed by tissue macro-

architectural structures. Constructing cell-centered graphs are limited by cell detection 

accuracy (a surprisingly difficult problem) and more importantly, incorporating all cells in a 

graph model is subject to complexity constraints. Despite these potential limitations, there 

remain numerous techniques to study WSI using GNN at various scales17. Here, we seek 

methods to explain graph convolution results post-hoc to elucidate mechanisms by which 

tissue regions interact.

Topological Data Analysis (TDA) quantifies the underlying shape and structure of data by 

collapsing persistent topological structures18. TDA is well-suited for summarizing Whole 

Slide Graphs (WSI fitted by a GNN; e.g. WSG) to identify and relate key tissue 

architectures, regions of interest, and their intermingling. However, the sheer quantity, 

complexity, and dimensionality of histology data makes interpretation challenging. A 

recently developed TDA-tool, Mapper18, alleviates this issue by providing a succinct 

summary of high-dimensional data to elucidate obscured relationships. Mapper projects the 

data to a lower dimensionality, packs the data into overlapping sets, which are then clustered 

to form a simplified, easily interpretable graph. Unlike pooling approaches that are built into 

the deep learning model and must be pre-specified, Mapper is generalizable and can be 

configured to study WSI information at multiple resolutions after fitting a GNN model. 

These models have the capacity to provide higher order descriptors of information flow for 

any GNN model, greatly simplifying analysis. Abstractions can then be analyzed to learn 

new disease biology through interrogation of patch-level embeddings. While TDA methods 

have previously been applied to high dimensional omics data19–21 and histopathology 

images22,23, to our knowledge, there have been no applications of TDA methods to GNN 

models fit on histological data, where these methods may be of great benefit.

Colorectal Cancer (CRC) is a common cancer with approximately 150,000 new cases 

annually in the United States and an estimated 63% 5-year survival rate. CRC most 

commonly arises from dysplastic adenomatous polyps with somatic alterations in the APC 

pathway or the mismatch repair (MMR) pathway24. The Colon is divided into distinct layers 

including epithelium, lamina propria, submucosa, muscularis propria, pericolic fat, and 

serosa (in certain anatomical locations). Tumor staging comprises tissue and nodal stages 

with higher numerals indicating a greater depth of invasion and greater number of lymph 

nodes (LN) involved by the tumor, respectively.

We present a Whole Slide Image GNN Topological Feature Extraction workflow (WSI-
GTFE)*, for applying topological methods to interrogate a WSI GNN fit and demonstrate its 

utility in determining colon cancer stage. As a simple use case for these methods, we apply 

*Software available on GitHub at the following URL: https://github.com/jlevy44/WSI-GTFE
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Mapper to quantitate the degree of tumor invasion into deeper sub-compartments of the 

colon and corroborate these tumor invasion scores (TIS) with disease staging to form an 

interpretable predictive score. The demonstration featured in this paper outlines some of the 

many potential applications of topological methods in the analysis of WSI GNN models.

2. Materials and Methods

2.1. Data Acquisition and Processing

We selected Colon (n=172) and accompanying Lymph Node (n=84) resection slides from 36 

patients at Dartmouth Hitchcock Medical Center. Briefly, samples were grossed, embedded 

in paraffin blocks, sliced into five-micron sections and scanned using the Leica Aperio-AT2 

scanner at 20×, stored in SVS image format, from which our in-house pipeline 

PathFlowAI10 was utilized to extract and preprocess the slides into NPY format. A board-

certified pathologist provided coarse segmentation maps in the following categories: 1) 

epithelium, 2) submucosa, 3) muscularis propria, 4) fat, 5) serosa, 6) debris, 7) 

inflammation, 8) lymph node, and 9) cancer. We extracted 2.69 million 256×256 pixel 

patches correspondent to these slides.

2.2. Overview of Framework

The WSI-GTFE framework (Figure 1), provides methods to summarize the intermingling of 

tissue sub-compartments via a two-stage CNN-GNN model, followed by utilization of TDA 

methods:

1. Learning patch-level CNN embeddings and constructing spatial adjacency graph 

(Figure 1A)

2. Contextualizing patch level embeddings via an unsupervised or supervised GNN 

(Figure 1B)

3. Optionally refining the patch level embeddings through estimation of uncertainty 

in patch-level classification tasks (Figure 1C)

4. Applying Mapper to pool patches into overlapping Regions of Interest (ROI) 

(Figure 1D–E)

5. Estimating the degree of information flow and intermingling between the regions 

(Figure 1F)

6. Optionally using measures of information flow as additional markers for clinical 

or molecular associations (Figure 1G)

2.2.1. Estimation of Patch-Level Embeddings—A WSI (an RGB array on the order 

of 100,000 pixels in any spatial dimension) X , is comprised of a collection of sub-images, 

xi . A neural network maps each sub-image to a low dimensional embedding or 

representation, zl , via the following mapping f: X →Z, zl = f xl . Patch-level features may 

be extracted using pretrained CNNs such as ImageNet, which has learned a huge collection 

of convolutional filters and features correspondent to 1000 common objects such as dogs, 

cats and birds25. Features may also be acquired using unsupervised approaches such as 
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variational autoencoders (VAE)26 or self-supervised techniques such as contrastive 

predictive coding (CPC)14 or SimCLR27. Finally, patch-level features may be learned after 

pretraining on histology targets of interest, such as classified objects or ROI. We utilized 

both an ImageNet-pretrained CNN as well as a CNN we pretrained for tissue sub-

compartment classification task, generating two separate sets of patch-level embeddings for 

comparison.

2.2.2. Contextualizing Patch-Level Embeddings via GNN—Graphs are 

represented via following expression G = (V, E, A, X). The set of nodes/patches or vertices 

V are related to each other via edgelist E. Alternatively, the edgelist may be represented by a 

sparse adjacency matrix A, of which binary indicators Aij depict a relationship between node 

i and node j. Node/patch-level embeddings or features are represented by attribute matrix X. 

A WSI may be encoded a graph by storing patch level embeddings ( zl , index i for select 

patch) in the attribute matrix X (m patches by n embedding dimensions) and recording 

spatial adjacency (via a k or radius nearest neighbors) of all patch coordinates as A. GNN 

utilize message passing operations to update the embeddings of nodes by their neighbors via 

the following convolution operation28:

zl* = zl * g = γ zl , SCATTERj ∈ Nϕ zl , zj (1)

The embeddings of the neighbors of patch i, in neighborhood N, are themselves updated via 

some parameterized functional ϕ, which is scattered in parallel across GPUs, and then 

aggregated to update the embedding of patch i via the parameterized operation γ. 

Information from neighboring are passed as such. Multiple applications of these 

convolutions expand the neighborhood from which information is propagated. Additional 

pooling mechanisms, AGG, such as DiffPool or MinCutPool29,30, serve to aggregate the 

patch level representations into cluster or slide-level representations:

z = AGG zl* (2)

There exist multiple modeling objectives for updating these embeddings, which include: 1) 

node-level classification, where y = f zl* , trained via the cross-entropy loss, 2) 

unsupervised node-level measures such as Deep Graph Infomax31 and spectral clustering 

objectives, and 3) graph-level supervised, eg. y = f( z ), or 4) graph-level self-supervised 

objectives. For demonstration purposes, we learn patch-level classification of colon sub-

compartments and predict these sub-compartments on held-out slides after initialization of 

an adjacency matrix of patches, which could be used to pretrain whole-slide level objectives. 

From the fitted GNN model, intermediate patch-level or cluster-level (when applying 

pooling operations) embeddings may be extracted for further analysis. While we constructed 

WSG from the spatial adjacency of patches in this work, this WSI-GTFE method is agnostic 

of WSG creation approach. These graphs also may be built using cell / nucleus detection 

methods, though such methods are beyond the scope of this work.
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2.2.3. Optional Refinement of Patch-Level Predictions—Graph convolutions aim 

to contextualize patches with their neighbors and as such are able to smooth the map of 

predictions across a slide. However, small deformities in an otherwise homogenous decision 

map, (for instance, pockets of inflammation that were not captured by the pathologist’s 

relatively coarse annotations), may be a source of signal noise. To further smooth the 

classification map of patches across a slide, assigned patch-level labels may be refined using 

label propagation techniques. Dropout32 methods randomly set predictors at a particular 

neural network layer to 0 with a certain probability, while DropEdge33 randomly prunes 

edges of a graph, which in this case corresponds to the adjacency matrix of the WSI. While 

both of these techniques have been utilized to improve the generalization of graph neural 

networks through perturbations to the input data and intermediate outputs, applications of 

these techniques during prediction may be used to make multiple posterior draws of a patch-

level categorial distribution for class label assignment. Both the variance of the predictive 

posterior distribution after numerous posterior draws and the entropy in the class labels after 

averaging the results for a sample after application of SoftMax layer may be used as 

estimates of uncertainty in prediction34. Nodes that exhibit high uncertainty may be pruned 

and the remaining class labels may be propagated to the unlabeled patches.

2.2.4. Application of Mapper to Extract Regions of Interest—Once a GNN model 

has been fit, post-hoc model explanation techniques such as visualization of the attention 

weights or the use of GNNExplainer35 to identify important subgraphs for classification can 

be performed. However, these may be difficult to interpret because they attempt to 

summarize complex interactions between high-dimensional data at the scale of thousands of 

patches per WSI. The complexity of such visualizations makes them difficult to understand 

and highlights the need for a simplified visualization.

Because similarity-based distances between patch-level GNN embeddings reflect higher-

order connectivity and perceptually similar histological information, topological methods 

(such as Mapper) can compress this data to its essential structures while revealing the most 

salient aspects. For a given WSI, Mapper operates on the resulting point cloud of the patch-

level GNN embeddings to first project the points to a lower dimensional space via 

techniques such as PCA, UMAP or NCVis36 (referred to as Projecting, f). Once the data is 

projected, it is separated into overlapping sets (Covering, U), the number of which 

determines the resolution of the data summary. In each set, a Clustering algorithm (e.g. 

hierarchical clustering) is applied to the datapoints. The output of applying Mapper to this 

structure is a graph, where a node represents a cluster of WSI patches and an edge represent 

the degree of shared patches between the clusters37. This Mapper graph summarizes higher-

order architectural relationships between patches and their shared histological information. 

In our framework, we refer to the nodes (collection of patches) as ROI, and the topological 

connectivity between the ROIs as their functional connectedness or “intermingling”. For 

instance, if a tumor ROI was connected to an ROI of the submucosa, we would say that the 

tumor has invaded (intermingled with) the submucosa. The degree of intermingling is 

quantified by the amount of overlap as defined by covering U and weighted by the incidence 

of cancer in each ROI. The expressiveness of this summary graph may be modified by 

selection of different Filter, Cover, and Cluster parameters which allows the user to 
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interrogate ROIs in the WSI at different scales (a degree of flexibility beyond that of 

currently existing GNN pooling operations). We implemented Mapper using the Deep Graph 
Mapper implementation; however, python-based Kepler-Mapper and giotto-tda also present 

software solutions that may be readily employed37–39.

2.2.5. Associating ROI Connectivity with Clinical Outcomes—Once ROIs have 

been extracted using Mapper, measures of functional relatedness between the regions may 

be correlated with slide-level clinical outcomes. In our simple use case, we developed a 

Tumor Invasion Score (TIS) that measures the degree of overlap between the tumor and an 

adjacent tissue region. To construct this score, we first decompose each ROI into a vector 

encoding the frequency of each predicted tissue sub-compartment, cl  (counts of patch class 

assignment). The amount of overlap, as learned by Mapper’s Cover operation, between two 

ROI (ROIi and ROIj, frequency vectors cl  and cj  respectively) is wij. The intermingling 

between different tumor sub-compartments for a pair of ROI may be expressed as 

Aij = wij cl ⊗ cj . Given Mapper graph G, with edge-list E, (eij ∈ E), the final pairwise 

associations between the regions are given by: I = ∑e ∈ E
Aij + AijT

2 . To measure tumor 

invasion/infiltration of the surrounding sub-compartments, we select the row of this matrix 

corresponding to the tumor: TIS = Itumor. These vectors may be stacked across patients to 

form a design matrix, X , which may be associated with binary or continuous outcomes, y . 

Here, we utilize Logistic Regression to associate TIS with cancer staging greater than 2 for 

the Colon samples, and positive Lymph Node status for Lymph Nodes.

2.3. Experimental Details

As proof of concept, we first pre-trained colon (comprised of epithelium, submucosa, 

muscularis propria, fat, serosa, inflammation, debris and cancer) and lymph node (fat, lymph 

node, cancer) classification networks with 10-fold cross validation (partitioning 10 separate 

training (82%), validation (8%) and test (10%) sets), evaluated using the area under the 

receiver operating curve (AUC/AUROC) and a weighted F1-Score. We extracted features 

from the penultimate layer of a ResNet50 neural network for about 2.7 million images per 

fold (26.9 million embedding extractions across 10-folds), using the pretrained network and 

separately from an ImageNet-pretrained model. After extraction of image features, we 

constructed graph datasets through calculation of the spatial adjacency (k-nearest neighbors) 

between the patches and storing node level embeddings into the attribute matrix. We created 

and trained a GNN that featured four graph attention layers, interspersed with ReLU 

activation functions40 and DropEdge layers, followed by one layer of DropOut and finally a 

linear layer with SoftMax activation for node level prediction (Figure 2A). Models were 

generated using the pytorch-geometric28 framework and trained using Nvidia v100 GPUs. 

For each cross-validation fold, we updated the parameters of our GNN through 

backpropagation of Cross-Entropy loss for node level classification on the training slides, 

while evaluating the potential to generalize on the validation set of Whole Slide Graphs 
(WSG) through evaluation of the F1-score. We saved the model parameters correspondent to 

the training epoch with the highest validation F1-score and extracted graph-node level 

embeddings and predictions on the validation and test sets of slides for each cross-validation 
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fold. We refined patch-level predictions for all validation and test slides for the models with 

ImageNet-pretrained image features. To evaluate node-level tissue sub-compartment 

classification, we then calculated AUROC and F1-Score fit statistics across test slides. 

Finally, we applied Mapper to extract ROIs and TIS for all test slides (Figure 2B), of which 

10-fold cross validation was applied over a non-penalized Logistic Regression model to 

estimate concordance with tumor stage and lymph node status. We also fit similar models to 

the frequencies of assignment of tissue sub-compartments for each case and combined 

relative frequencies of tissue sub-compartments with their TIS values to yield a final model. 

To evaluate the parsimony of the logistic regression model for alignment with our 

expectation that tumor infiltrating the fat corresponds to a high stage, we fit a generalized 

linear mixed effects model to the TIS scores, clustered by patient, and inspected the 

regression coefficients for quantitating the nature of these functional relationships.

3. Results

3.1. Patch-Level Classification and Embeddings

An acceptable patch-level classification performance indicates room to further interrogate 

the slides for functional relationships between patches. In Table 1, we present 10-fold CV 

AUROC and F1-Score statistics on held-out test slides for patch level classification. The 

pretrained CNN for colon segmentation yielded moderately low performance metrics, while 

pretraining for lymph node yielded much higher scores. After feature extraction and training 

of the GNN taking into account the information from neighboring patches, scores increased 

substantially. Pretraining the CNN on Colon-specific targets had little impact on the 

classification model after fitting the GNN, suggesting that information contained from the 

patch surroundings is sufficient to contextualize that particular patch, or that the pretrained 

ImageNet is generalizable enough to histology images. Inspection of the patch-level 

embeddings (Figure 3), further corroborate that the original CNN does little to delineate the 

different classes of colon tissue, while the GNN embeddings demonstrate clear separation 

between these sub-compartments.

3.2. Tumor Staging via Mapper Derived Invasion Scores

Figure 4 illustrates the extracted Mapper graph of representative low stage and higher stage 

slides. As compared to the lower stage slide, the TIS score derived for the higher stage 

indicates higher intermingling of tumor with regions of fat and is confirmed by pathologist 

annotations. We extracted an average of 32 ROIs from each WSI (range 5 – 155 ROI). 

Inspections of ROIs indicated some with clusters of tissue finely localized to histological 

tissue layer, and a few ROI that went undetected by the initial pathologist inspection (e.g. 

pockets of inflammation and tumor seeding in the fat).

TIS scores correlated very well with Tumor staging. Ten-fold CV AUC was 0.91 for 

advanced Colon cancer staging and 0.92 for positive Lymph Nodes (Table 2). The frequency 

of sub-compartment instance and tumor invasion was also able to predict cancer stage when 

considered in isolation. Taken together, TIS and compartment localization achieved a higher 

AUC score, which speaks to the complementary information that each approach was able to 

provide to form a more complete picture of tumor progression. From the TIS scores, we 
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were able to derive odds ratios (OR; measure of association between exposure and outcome, 

greater than one indicates adverse risk) as to their relation to tumor staging using linear 

mixed effects models (clustered on individual). As expected, fat interaction was highly 

associated with progression to a stage 3 or higher (Table 3). Importantly, invasion of the 

muscularis propria, an adjacent and superficial region to the fat, had a statistically significant 

odds ratio commensurate with its depth in the colon.

4. Discussion

Graph Neural Networks are increasingly promising approaches for studying WSI (and other 

gigapixel scale images) at multiple scales of inference through propagation of patch-wise 

information. However, when employing GNNs, the route of propagation often becomes 

obfuscated by the sheer quantity of patches being studied. This, in turn may make it difficult 

for researchers, clinicians or biologists to accept or understand these graph neural network 

technologies and their predictions. However, the compartmentalized and repetitive nature of 

tissue means that histology images can be greatly simplified via grouping of spatially 

adjacent subimages with perceptually similar and complementary input features. We have 

introduced methods from TDA to capture and reduce these motifs. In colon histology, we 

distilled information across WSI to better quantitate how the intermingling of different tissue 

sub-compartments inform disease stage. These results warrants investigation of other 

spatially driven processes, such as identifying ROIs correspondent to spatial 

transcriptomics41 and integration with high-dimensional omics data types.

Mapper has proven to be a useful TDA tool for elucidating high-level topology of the WSI. 

However, Mapper is highly dependent on the Filter function, Cover and Cluster parameters 

and algorithms to generate a topological map. While these features offer flexibility to study 

the WSI at multiple resolutions, which includes expanding the large range of ROI extracted, 

full exploration of the parameter space to identify an ideal range of parameters for Mapper 

graphs for the slide in study are beyond the scope of this work.

We also assessed the impact of domain-specific pre-training of a CNN on the resulting GNN 

predictions. Our preliminary results showed negligible impact on GNN accuracy. Integration 

of signal from the surrounding tissue context via GNNs may therefore be sufficient to 

overcome domain differences between histology images and real-world images (ImageNet). 

Further experimentation is needed on more nuanced examples to test this hypothesis.

There are a few limitations to our study. We assumed that GNNs are able to adequately 

capture patch-level information and their surrounding tissue architecture. The accuracy of 

our model was constrained by relatively coarse physician annotations that tended to ignore 

small structures like veins in the fat region of the lymph nodes, or small pockets of 

inflammation bounded by other tissue compartments, thereby reducing the accuracy of the 

model. However, inspection of regions with high uncertainty and label propagation allowed 

for correction of some of these issues. We also acknowledge the possibility of bias in given 

cross-validation folds. While we stratified the slides by whether they were representative of 

high or low stage, slides may contain different macroarchitectural features, and may, for 

instance, be completely devoid of serosa (which is only present in certain regions of the 
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abdomen), which made it difficult to predict its presence. The colon WSI sections were 

analyzed from 36 patients (representing 256 slides). We acknowledge that there were 

repeated measurements taken across different slides from the same patient, the results of 

these sections may be correlated. While in our final inference on the TIS scores we account 

for this using mixed effects modeling, extracting samples from different patients would have 

been preferred to reduce cluster-level effects (data and pathologist time allowing). Due to the 

number of free parameters, we did not perform robust hyperparameter scans over the GNN.

In the future, we intend to utilize extracted GNN features contained within our ROIs to 

better identify the core topological structures that form a pathologist’s understanding of a 

slide18. Simplicial complexes represent series of points, lines, triangles and higher-

dimensional tetrahedra. Persistence diagrams discover topological features in the form of 

simplicial complexes that persist over wide changes in proximity between points. These 

approaches can be readily applied to GNN embeddings to establish “barcodes” of various 

ROIs contained within the slide42,43, which may be used to supplement existing efforts to 

hash WSI to further assess the composition of other slides by the presence of characteristic 

topologies44. In addition to utilizing persistence based TDA methods, we aim to apply the 

aforementioned methods to GNN embeddings after applying graph pooling layers to identify 

topology and ROIs which may be related to molecular targets of interest, dense omics 

profiles and unlabeled clusters of tissue.

5. Conclusion

As multimodal deep learning approaches become increasingly important, GNNs are 

emerging as an attractive modeling tool for WSI representation where proper integration and 

association with slide-level outcomes is required. Conveniently, these approaches learn to 

identify key information pathways which may be simplified and visualized using TDA tools 

such as Mapper. Our method, WSI-GTFE, presents a framework from which to flexibly 

summarize the key insights acquired from fitting any GNN model to histological data. We 

hope that topological methods continue to see usage and integration with their deep learning 

graph counterparts for WSI level histological analyses given the benefits they provide in 

terms of model interpretability, quantitation of tissue compartment interaction, and potential 

for new biological discovery and disease prognostication.
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Fig. 1. 
WSI-GTFE Framework: a) patch-level CNN embeddings extracted using PathFlowAI form 

graph via their spatial adjacency; b) targets (eg. colon sub-compartments) predicted using 

successive applications of graph convolutions; c) highly uncertain regions (middle) from 

noisy prediction map (left) may be reassigned (right); d) Mapper summarizes GNN 

embeddings over WSI as a graph; e) Meaningful histology (ROI) captured as Mapper graph 

nodes; f) Functional relationships between Cancer and other ROI, weighted edges Mapper 

graph, mined to form TIS vector; g) TIS used in prediction model to form interpretable 

staging score (odds ratios and log-odds probability), demonstrates type of relationships that 

may be extracted using TDA
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Fig. 2. 
Methods: a) Neural network architecture for node classification experiment; 1000-d patch-

level embeddings pass through graph attention convolutions, ReLU and DropEdge layers 

which alter dimensionality of patch embeddings while routing information from neighbors; 

attention between blue node and neighborhood is characterized using red curves; pruned 

edges are portrayed using red lines; b) once GNN classification model has been fit, GNN 

embeddings are extracted; lens function projects them to lower-dimensionality; patches are 

covered and clustered to reveal high-level measurable relationships between muscularis 

propria, fat and cancer
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Fig. 3. 
UMAP projection of penultimate layer of neural network for one select colon slide; nodes 

colored by true sub-compartment; a) ImageNet-pretrained CNN embeddings of patches; b) 

colon-pretrained CNN embeddings of patches; c) updated GNN patch embeddings after 

ImageNet extraction; d) updated GNN patch embeddings after colon-pretrained CNN 

extraction
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Figure. 4. 
Example Topological Feature Extraction on two Colon slides; a) Mapper visualization of 

WSG of a stage 3 tumor; each vertex corresponds to an ROI, placement of the vertex reflects 

center of mass and thickness of edge connecting two points reflects topological overlap; b) 

example of four ROIs from the stage 3 slide; image patches are stitched back together; 

location is depicted in slide; composition of ROI is denoted with word clouds, where size of 

word is proportional to percentage makeup of ROI; c) actual TIS score for slide, prevalent 

invasion in the submucosa, fat and muscularis to reveal deep invasion; actual score from 

classifier gives 99% probability of advanced stage; d) Mapper visualization for stage 1 slide; 

e) left-most ROI demonstrates epithelial crypts with inflammation in lower right pocket; f) 

actual reported TIS score denotes invasion of epithelium with 6% probability of advanced 

stage
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Table 1.

GNN node classification results for colon (n=172 slides; 2,116,396 images) and LN (n=84; 570,326 images); 

averaged across slides; confidence assessed via 1000-sample non-parametric bootstrap

10-Fold CV (n=256) Node Classification AUC ± SE F1-Score ± SE

Colon CNN-Only 0.75±0.0054 0.43±0.0079

Colon GNN ImageNet 0.95±0.0026 0.81±0.006

Colon Prediction Refinement n/a 0.83±0.0063

Colon GNN Pretrained 0.96±0.0031 0.82±0.0074

LN CNN-Only 0.91±0.0069 0.8±0.013

LN GNN ImageNet 0.96±0.0067 0.89±0.014

LN GNN Pretrained 0.97±0.0049 0.9±0.014
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Table 2.

Ten-Fold AUROC statistics for unpenalized logistic regression prediction model on held out test data across all 

slides for colon (n=172) and LN (n=84); three head columns indicate whether advanced staging was predicted 

using aggregates of colon sub-compartment assignments (Region Counts); invasion (Tumor Invasion Scores); 

or Both to lend complementary information; models with main effects and interactions were considered; 

confidence assessed via 1000-sample non-parametric bootstrap

AUC (10-Fold CV) Region Counts Only Tumor Invasion Scores Only Both

Stage > 2; LN Positive Main Effects Second Order 
Terms

Main Effects Second Order 
Terms

Main Effects Second Order 
Terms

Colon GNN Pretrained 0.89±0.028 0.85±0.031 0.84±0.032 0.89±0.028 0.91±0.022 0.85±0.031

Colon GNN Not Pretrained 0.89±0.027 0.88±0.028 0.86±0.029 0.89±0.027 0.91±0.023 0.88±0.028

LN GNN Pretrained 0.76±0.077 0.88±0.046 0.88±0.046 0.76±0.077 0.88±0.046 0.88±0.046

LN GNN Not Pretrained 0.89±0.051 0.92±0.039 0.92±0.034 0.89±0.051 0.92±0.037 0.92±0.039
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Table 3.

Taking into account clustering on the patient level, odds-ratios derived from GLMM (ICC=0.21, n=172) fit on 

TIS scores derived from GNN that utilized colon-pretrained CNN embeddings; odds ratios indicate risk of 

advanced progression given tumor invasion of region

Stage ≥ 3

Predictors Odds Ratios CI p

(Intercept) 0.52 0.29 – 0.93 0.027

TIS: Epithelium 0.82 0.43 – 1.56 0.539

TIS: Fat 7.54 2.93 – 19.38 <0.001

TIS: Muscularis 1.68 1.02 – 2.77 0.043

TIS: Serosa 1.43 0.33 – 6.28 0.632

TIS: Submucosa 1.23 0.57 – 2.63 0.597
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